Доказал что в состав белков входят аминокислоты. Аминокислотный состав белков

Белки и пептиды.

Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.


Белок , также как углеводы и жиры, - важнейшая составляющая часть пищи человека.

Химическое строение белков

Молекулы белков состоят из остатков аминокислот, соединённых в цепочку пептидной связью.



Пептидная связь возникает при образовании белков в результате взаимодействия аминогруппы (-NH2 ) одной аминокислоты с карбоксильной группой (-СООН ) другой аминокислоты.


Из двух аминокислот образуется дипептид (цепочка из двух аминокислот) и молекула воды.


Десятки, сотни и тысячи молекул аминокислот, соединяясь друг с другом, образуют гигантские молекулы белков.


В молекулах белков многократно повторяются группы атомов -СО-NH- ; их называют амидными , или в химии белков пептидными группами . Соответственно белки относят к природным высокомолекулярным полиамидам или полипептидам.


Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.


Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот .


Всё многообразие белков в большинстве случаев образовано этими двадцатью альфа-аминокислотами. При этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Аминокислотный состав белков определяется генетическим кодом организма.

Белки и пептиды

И белки , и пептиды – это соединения, построенные из остатков аминокислот. Различия между ними колличественные.


Условно считают, что:

  • пептиды содержат в молекуле до 100 аминокислотных остатков
    (что соответствует молекулярной массе до 10 000), а
  • белки – свыше 100 аминокислотных остатков
    (молекулярная масса от 10 000 до нескольких миллионов).

В свою очередь в группе пептидов принято различать:

  • олигопептиды (низкомолекулярные пептиды),
    содержащие в цепи не более 10 аминокислотных остатков, и
  • полипептиды , в состав цепи которых входит до 100 аминокислотных остатков.

Для макромолекул с числом аминокислотных остатков, приближающимся или немного превышающим 100, понятия полипептидов и белков практически не разграничиваются и часто являются синонимами.

Структура белков. Уровни организации.


Молекула белка это чрезвычайно сложное образование. Свойства белка зависят не только от химического состава его молекул, но и от других факторов. Например, от пространственной структуры молекулы, от связей между атомами, входящих в молекулу.


Выделяют четыре уровня структурной организации молекулы белка.


1. Первичная структура


Первичная структура представляет собой последовательность расположения остатков аминокислот в полипептидных цепях .


Последовательность остатков аминокислот в цепи является наиболее важной характеристикой белка. Именно она определяет основные его свойства.


Белок каждого человека имеет свою уникальную первичную структуру, связанную с генетическим кодом.


2. Вторичная структура.


Вторичная структура связана с пространственной ориентацией полипептидных цепей .


Её основные виды:

  • альфа-спираль,
  • бетта-структура (имеет вид складчатого листа).

Вторичная структура закрепляется, как правило, водородными связями между атомами водорода и кислорода пептидных групп, отстоящих друг от друга на 4 звена.


Водородные связи как бы сшивают спираль, удерживая полипептидную цепь в закрученном состоянии.



3. Третичная структура


Третичная структура отражает пространственную форму вторичной структуры .


Например, вторичная структура в форме спирали, в свою очередь, может иметь шаровидную или яйцевидную форму.


Третичная структура стабилизируется не только водородными связями, но и другими видами взаимодействия, например ионным, гидрофобным, а также дисульфидными связями.


4. Четвертичная структура


Первые три уровня характерны для структурной организации всех белковых молекул.


Четвёртый уровень встречается при образовании белковых комплексов, состоящих из нескольких полипептидных цепей.


Это сложное надмолекулярное образование, состоящее из нескольких белков, имеющих свою собственную первичную, вторичную и третичную структуры.


В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки.


Ассоциация полипептидных цепей в четвертичную структуру может приводить к возникновению новых биологических свойств, отсутствующих у исходных белков, образующих эту структуру.


В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Классификация белков

Ввиду многообразия пептидов и белков существует несколько подходов к их классификации. Их можно классифицировать по биологическим функциям, составу, пространственному строению .


По составу белки подразделяются на:

  • Простые,
  • Сложные.

Простые белки.


При гидролизе простых белков в качестве продуктов расщепления получаются только альфа-аминокислоты.


Сложные белки.


Сложные белки наряду с собственно белковой частью, состоящей из альфа-аминокислот, содержит органическую или неорганическую части непептидной природы, называемые простетическими группами .


Примерами сложных белков могут служить транспортные белки миоглобин и гемоглобин , в которых белковая часть – глобин – соединена с простетической группой – гемом . По типу простетической группы их относят к гемопротеинам .


Фосфопротеины содержат остаток фосфорной кислоты, металлопротеины – ионы метала.


Смешанные биополимеры представляют собой также сложные белки. В зависимости от природы простетической группы их подразделяют на:

  • Гликопротеины (содержат углеводную часть),
  • Липопротеины (содержат липидную часть),
  • Нуклеопротеины (содержат нуклеиновые кислоты).

В организме белки редко встречаются в «чистом» виде. В основном они входят в состав сложных образований с высоким уровнем организации, включающих в качестве субъединиц другие биополимеры и различные органические и неорганические группировки.


По пространственной структуре белки делятся на два больших класса:

  • Глобулярные и
  • Фибриллярные.

Глобулярные белки.


Для глобулярных белков более характерна альфа-спиральная структура, а цепи их изогнуты в пространстве так, что макромолекула приобретает форму сферы.


Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем.


Примеры глобулярных белков – альбумин (яичные белок), глобин (белковая часть гемоглобина), миоглобин , почти все ферменты.


Фибриллярные белки.


Для фибриллярных белков более характерна бетта-структура . Как правило, они имеют волокнистое строение, не растворяются в воде и солевых растворах.


К ним относятся многие широко распространённые белки - бетта-кератин (волосы, роговая ткань), бетта-фиброин (шёлк), миоинозин (мускульная ткань), коллаген (соединительная ткань).

Функции белков в организме.

Классификация белков по их функциям является достаточно условной, так как один и тот же белок может выполнять несколько функций.


Ниже перечислим основные функции белков в организме:


1. Каталитическая функция.


Белки этой группы называются ферментами . Ферменты катализируют различные химические реакции. Например, реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм).


Примеры каталитических белков: каталаза, алкогольдегидрогеназа, пепсин, трипсин, амилаза и пр.


2. Структурная функция


Придают форму клетке и её органоидам . Например, мономеры актина и тубулина формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.


3. Защитная функция


Существует несколько видов защитных функций белков:

  • Физическая защита
    Физическую защиту организма обеспечивают коллаген - белок, образующий основу
    межклеточного вещества соединительных тканей (в том числе костей, хряща,
    сухожилий и глубоких слоёв кожи (дермы)); кератин , составляющий основу роговых
    щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки
    рассматривают как белки со структурной функцией. Примерами белков этой группы
    служат фибриногены и тромбины , участвующие в свёртывании крови.

  • Химическая защита
    Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию.
    Особенно важную роль в детоксикации у человека играют ферменты печени ,
    расщепляющие яды или переводящие их в растворимую форму, что способствует их
    быстрому выведению из организма.

  • Иммунная защита
    Белки, входящие в состав крови и других биологических жидкостей, участвуют в
    защитном ответе организма как на повреждение, так и на атаку патогенов. Они
    нейтрализуют бактерии, вирусы или чужеродные белки.

4. Регуляторная функция


Белки этой группы регулируют различные процессы, протекающие в клетках или в организме. К белкам этой группы относятся: белки-гормоны , белки-рецепторы и пр.


Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.


5. Сигнальная функция


Сигнальная функция белков - способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.


Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др. Связывание гормона с его рецептором является сигналом, запускающим ответную реакцию клетки.


Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.


6. Транспортная функция


Участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.


Примером транспортных белков можно назвать гемоглобин , который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.


Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость.

7. Запасная (резервная) функция


К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S ) и яйцеклетках животных. Ряд других белков используется в организме в качестве источника аминокислот. Примерами резервных белков являются казеин , яичный альбумин .


8. Рецепторная функция


Белковые рецепторы могут находиться как в цитоплазме, так и встраиваться в клеточную мембрану.


Рецепторы реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы.


9. Моторная (двигательная) функция


Двигательный белок, моторный белок - класс молекулярных моторов, способных перемещаться. Они транформируют химическую энергию, содержащуюся в АТФ , в механическую энергию движения.


Двигательные белки обеспечивают движения организма, например, сокращение мышц.


К двигательным белкам относят белки цитоскелета - динеины , кинезины , а также белки, участвующие в мышечных сокращениях - актин , миозин .

Строение аминокислот

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы : аминогруппу -NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.

Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа -NH 2 определяет основные свой­ства аминокислот , т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений . Следо вательно, аминокислоты - это амфотерные орга­нические соединения .

Со щелочами они реагируют как кислоты:

С сильными кислотами как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они рас­творимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие . Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-CO- , например:

Получаемые в результате такой реакции высо­комолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов .

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды α-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы -NH-CO- на­зывают пептидными .

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита : α, β, γ и т. д. Так, 2-аминобутановую кислоту можно на звать также α-аминокислотой:

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Белки

Белки - это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» - первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции : каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемо­глобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Белки - основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее химической деятельности.

Исключительное свойство белка - самоорганизация структуры , т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки - важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот .

Строение белков

В пространственном строении белков большое значение имеет характер радикалов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия ; полярные радикалы , содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия . Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей .

В молекулах белка а-аминокислоты связаны между собой пептидными (-СО-NH-) связями:

Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисуль­фидными (-S-S-) связями или, как их часто называют, дисульфидными мостиками .

Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи , а также гидрофобное взаимодействие - особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода - 51-53; кислорода - 21,5-23,5; азота - 16,8-18,4; водорода - 6,5-7,3; серы - 0,3-2,5.

Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы. Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка. Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каждая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе. Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

В формировании третичной структуры , кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные, или шаровидные, и фибриллярные, или нитевидные, белки.

Для глобулярных белков более характерна α-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.


- последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами - пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, - 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию - транспорт кислорода; в таких случаях у человека развивается заболевание - серповидноклеточная анемия.

Вторичная структура - упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура - укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия.

В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов - поверхностных белков нервных клеток.

Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков .

Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции - связывание кислорода и транспортировка его в ткани и органы. Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

Классификация белков

Существует несколько классификаций белков:

По степени сложности (простые и сложные).

По форме молекул (глобулярные и фибрилляр­ные белки).

По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах - альбумины, спирто­растворимые - проламины, растворимые в раз­бавленных щелочах и кислотах - глутелины).

По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки - амфотерные электролиты . При опреде­ленном значении pH среды (оно называется изо­электрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация . Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (-СО-NH-, пеп­тидная связь), аминные (-NH 2) и карбоксильные (-СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении рН среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма - сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды.

Различная гидрофильность клейковинных бел­ков - один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков . При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков , степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хле­ба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование . Под процессом пенообразова­ния понимают способность белков образовывать высококонцентрированные системы «жидкость - газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков . Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции . Для качественного определе­ния белка используют следующие реакции:

1. Денатурация – процесс нарушения естественной структуры белка (разрушение вторичной, третичной, четвертичной структуры).

2. Гидролиз — разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.

3. Качественные реакции белков:

· биуретовая;

Биуретовая реакция – фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

· ксантопротеиновая;

Ксантопротеиновая реакция – появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), при которой происходит взаимодействие ароматических и гетероатом­ных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

· реакция определения серы в белках.

Цистеиновая реакция (для белков, содержащих серу) — кипячение раствора белка с ацетатом свинца(II) с появлением черного окрашивания.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

1. Какие вещества являются биологическими полимерами? Какие вещества являются мономерами для построения молекул биополимеров?

Биологическими полимерами являются: б) нуклеиновые кислоты; в) полисахариды; д) белки.

Мономерами для построения молекул биополимеров являются: а) аминокислоты; г) нуклеотиды; е) моносахариды.

2. Какие функциональные группы характерны для всех аминокислот? Какими свойствами обладают эти группы?

Для всех аминокислот характерно наличие аминогруппы (–NH 2), обладающей основными свойствами, и карбоксильной группы (–СООН) с кислотными свойствами.

3. Сколько аминокислот участвует в образовании природных белков? Назовите общие черты строения этих аминокислот. Чем они различаются?

В образовании природных белков участвуют 20 аминокислот. Такие аминокислоты называются белокобразующими. В их молекулах карбоксильная группа и аминогруппа связаны с одним и тем же атомом углерода. По этому признаку белокобразующие аминокислоты сходны между собой.

Белокобразующие аминокислоты различаются составом и строением боковой группы (радикала). Она может быть неполярной или полярной (нейтральной, кислой, основной), гидрофобной или гидрофильной, что и придаёт каждой аминокислоте особые свойства.

4. Каким образом аминокислоты соединяются в полипептидную цепь? Постройте дипептид и трипептид. Для выполнения задания используйте структурные формулы аминокислот, показанные на рисунке 6.

Аминогруппа (–NH 2) одной аминокислоты способна взаимодействовать с карбоксильной группой (–СООН) другой аминокислоты. При этом выделяется молекула воды, а между атомом азота аминогруппы и атомом углерода карбоксильной группы возникает пептидная связь. Образующаяся молекула представляет собой дипептид, на одном конце молекулы которого находится свободная аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.

Структурную формулу дипептида (например, Ала–Глу) можно представить следующим образом:

Структурную формулу трипептида (например, Глу–Ала–Лиз) можно представить следующим образом:

5. Охарактеризуйте уровни структурной организации белков. Какие химические связи обусловливают различные уровни структурной организации белковых молекул?

Молекулы белков могут принимать различные пространственные формы, которые представляют собой четыре уровня их структурной организации.

Цепочка (линейная последовательность) аминокислотных остатков, соединённых пептидными связями, представляет собой первичную структуру белковой молекулы. Каждый белок организма имеет уникальную первичную структуру. На основе первичной структуры создаются другие виды структур, поэтому именно первичная структура определяет форму, свойства и функции белка.

Вторичная структура возникает в результате образования водородных связей между атомами водорода NH-групп и атомами кислорода CO-групп разных аминокислотных остатков полипептидной цепи.

Третичная структура формируется за счёт образования водородных, ионных, дисульфидных (S–S связей между остатками аминокислоты цистеина) и других связей, возникающих между разными группами атомов белковой молекулы в водной среде. При этом полипептидная спираль укладывается в своеобразный клубок (глобулу) таким образом, что гидрофобные аминокислотные радикалы погружаются внутрь глобулы, а гидрофильные располагаются на поверхности и взаимодействуют с молекулами воды.

В состав молекул некоторых белков входит не один, а несколько полипептидов, образующих единый комплекс. Так формируется четвертичная структура. Полипептиды не связываются ковалентными связями, прочность четвертичной структуры обеспечивается взаимодействием слабых межмолекулярных сил.

Таким образом, первичная структура белковой молекулы обусловлена наличием пептидных связей между остатками аминокислот. Вторичную структуру стабилизируют водородные связи, третичную – водородные, ионные, дисульфидные и др., четвертичную – слабые межмолекулярные взаимодействия.

6. Человек и животные получают аминокислоты из пищи. Из чего могут синтезироваться аминокислоты у растений?

Растения – автотрофные организмы. Они синтезируют аминокислоты из первичных продуктов фотосинтеза (которые, в свою очередь, образуются из углекислого газа и воды) и азотсодержащих неорганических соединений (ионов аммония, нитрат-ионов). Таким образом, у растений исходными веществами для синтеза аминокислот являются СО 2 , Н 2 О, NH 4 + (NH 3), NO 3 – .

7. Сколько разных трипептидов можно построить из трёх молекул аминокислот (например, аланина, лизина и глутаминовой кислоты), если каждую аминокислоту можно использовать только один раз? Будут ли эти пептиды обладать одинаковыми свойствами?

Можно построить шесть трипептидов: Ала–Лиз–Глу, Ала–Глу–Лиз, Лиз–Ала–Глу, Лиз–Глу–Ала, Глу–Ала–Лиз и Глу–Лиз–Ала. Все полученные пептиды будут обладать разными свойствами.

8. Для разделения смеси белков на компоненты используется метод электрофореза: в электрическом поле отдельные белковые молекулы с определённой скоростью перемещаются к одному из электродов. При этом одни белки двигаются в сторону катода, другие перемещаются к аноду. Как строение молекулы белка связано с его способностью двигаться в электрическом поле? От чего зависит направление движения белковых молекул? От чего зависит их скорость?

В водных растворах радикалы кислых аминокислот, входящих в состав белка, заряжены отрицательно вследствие диссоциации карбоксильных групп:

–СООН → –СОО – + Н +

Радикалы основных аминокислот имеют положительный заряд за счёт присоединения ионов водорода (Н +) к атомам азота, входящим в состав этих радикалов:

–NH 2 + Н + → NH 3 +

Карбоксильная группа и аминогруппа, находящиеся на концах полипептидной цепи, также приобретают заряд (отрицательный и положительный соответственно). Таким образом, в растворе белковая молекула имеет определённый суммарный заряд, что и обусловливает её движение в электрическом поле.

Заряд молекулы белка зависит от соотношения остатков кислых и основных аминокислот. Если в составе белка преобладают остатки кислых аминокислот, то суммарный заряд молекулы будет отрицательным и она будет перемещаться к аноду (положительно заряженному электроду). Если же преобладают остатки основных аминокислот, то суммарный заряд молекулы будет положительным, и белок будет двигаться в сторону катода (отрицательно заряженного электрода).

Скорость движения зависит прежде всего от величины заряда белковой молекулы, её массы и пространственной конфигурации.

Аминокислоты и белки

Строительными блоками белков служат аминокислоты. Классификация аминокислот.

1. Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин.

2. Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты.

3. Диаминомонокарбоновые: аргинин, лизин, оксилизин.

4. Гидроксилсодержащие: треонин, серин.

6. Ароматические: фенилаланин, тирозин.

7. Гетероциклические: триптофан, пролин, оксипролин, гистидин.

Аминокислота представляет собой производное органиче­ской кислоты, в котором водород в α-положении замещен на аминогруппу (-NH 2). Например, из уксусной кислоты образуется глицин, а из пропионовой - аланин. В аминокислотах одновременно присутствуют и кислотная и основная группы (карбоксил -СООН и аминогруппа -NH 2), они относятся к амфотерным соединениям .

Присутствующие в клетке свободные аминокислоты образуются в ре­зультате расщепления белков или поступают из межклеточной жидкости. Свободные аминокислоты составляют так называемый аминокислотный фонд, из которого клетка черпает строительные блоки для синтеза новых белков.

Связь R-NH-СО-R называется пептидной связью. Образующаяся молекула также является амфотерной, поскольку на одном ее конце всегда находится кислая группа, а на другом - основная; боковые цепи (остатки аминокислот) могут быть основными или кислыми. Комбинация из двух аминокислот носит название дипептида, из трех - трипептида. Пептид, состоящий из небольшого числа аминокислот, назы­вается олигопептидо.и. Если же число аминокислот в молекуле достаточно велико, вещество называют полипептидом.

Расстояние между двумя пептидными связями равно примерно 0,35 нм. Молекула белка с мол. массой 30 000, состоящая из 300 аминокислотных остатков, в полностью вытянутом состоянии должна иметь длину 100 нм, ширину 1 нм и толщину 0,46 нм.

Белки называют протеинами (греч. протео - занимаю пер­вое место). Это слово [в русском языке оно сохранилось лишь в названиях сложных белков] указывает, что все основные функции организма связаны со специфическими белками. Они входят в состав ферментов и со­кратительного аппарата клеток, присутствуют в крови и других межклеточ­ных жидкостях. Некоторые длииноцепочечные белки, такие, как коллаген и эластин, играют важную роль в построении тканевых структур.

Кератин и кол­ лаген нерастворимы и обладают фибриллярной структурой; глобулярные белки, например яичный альбумин и белки сыворотки, растворимы в воде и солевых растворах и их молекулы имеют сферическую, а не нитевидную форму.

Сложные белки, в молекулу которых входит небелковая часть, так называемая простетическая группа. К ним принадлежат нуклеопротеиды ,липо протеиды и хромопротеиды (гемоглобин, гемоцианин и цитохромы), в которых простетической группой служит пигмент. Простетической группой гемоглобина и миоглобина (белка мышц) является гем - металлсодержащее органическое соединение, связывающее кислород.

Первичная структура белков . Полипептидная цепь, построенная из аминокислот, представляет собой первичную структуру белковой молекулы. Это наиболее важная специфическая структура, до некоторой степени опре­деляющая так называемые вторичную и третичную структуры белка. Агре­гаты белковых субъединиц, обладающих вторичной и третичной структурой, составляют четвертичную структуру.

Изучение порядка расположения аминокислот в молекуле белка стало возможным после того, как были разработаны методы расщепления белков. Первый успех принадлежит Сэнджеру, которому в 1954 г. удалось, наконец, полностью расшифровать последовательность аминокислот в инсулине. Молекула инсулина состоит из двух цепей: А-цепь содержит 21 аминокислоту, а В-цепь - 30. Обе цепи соединены двумя дисульфидными (-S-S-) связями.

В молекуле белка аминокислоты уложены как бусины на нити, и последовательность их расположения имеет важное биологическое значение. Например, ферментативные свойства некоторых белков определяются по­следовательностью аминокислот на небольшом участке цепи, называемом активным центром . В молекуле гемоглобина замена одной-единствен­ной аминокислоты уже приводит к глубоким биологическим изменениям.

Вторичная структура белков . Молекула белка состоит из нескольких сотен аминокислот, и поэтому полипептидная цепь лишь в редких случаях бывает вытянута полностью; обычно она определенным образом изогнута, образуя вторичную структуру. Фибриллярные белки (склеропротеины) часто характеризуются упорядоченным расположением цепей, благодаря чему их можно исследовать методом рентгеноструктур­ного анализа. В результате этих исследований было найдено, что фибриллярные белки можно разбить на три структурных типа или группы.

В белках типа β-кератина смежные цепи расположены таким образом, что образуют струк­туру складчатого слоя . В этой структуре боковые группы (амино­кислотные остатки) перпендикулярны плоскости, в которой лежат сами цепи; отдельные цепи соединены друг с другом водородными связями, образуя «пептидную решетку».

В белках типа α-кератина полипептидная цепь закручена в виде спи­рали, образуя так называемую а-спиральную структуру . Водо­родные связи в этом случае являются внутримолекулярными, а не межмо­лекулярными. Для группы коллагена предложена модель, состоящая из трех спиралей.

Третичная структура белков . В глобулярных белках полипептидные цепи определенным образом свернуты, образуя компактную структуру. Расположение таких цепей в пространстве очень сложно, но может быть выяснено мето­дом рентгеноструктурпого анализа.

Пространственное расположение це­пей до некоторой степени предопределено последовательностью чередования амино­кислот в первичной структуре и связями, образующимися между некоторыми амино­кислотными остатками. Многие биологи­ческие свойства белков, например фермен­тативная активность и антигенноетъ, свя­заны именно с третичной структурой.

Четвертичная структура белка; прин­ цип самосборки. В отличие от первич­ной, вторичной и третичной структур, которые содержат одну полипептидную цепь, четвертичная структура состоит из двух или более цепей. Эти цепи могут быть одинаковыми или раз­ными, но в обоих случаях они связаны слабыми связями (нековалентнымн). Нап­ример, молекула гемоглобина состоит из четырех полипептидных субъединиц - двух α и двух β-цепей. Разделение и ас­социация этих субъединиц может проис­ходить спонтанно.Под действием мочевины молекула ге­моглобина распадается на две половники, одна из которых состоит из двух α-субъединиц, в другая из двух β -субъединиц. При удалении мочевины они объединяются вновь, образуя четырехкомпонентную молекулу. Этот процесс высокоспецифичен: объединяться могут только две разные половинки молекул (так называемый принцип самосборки). Многие ферменты и другие белки с мол. массой свыше 50 000, вероятно, обладают четвертичной структурой. Например, альдолаза (мол. масса 150 000) распадается при низком рН на субъединицы с мол. массой 50 000 каждая, но вновь ассоциирует при ней­тральном рН.

Связи в белковой молекуле . В структуре белков встречаются самые различные типы связей. Первичная структура (пептидная связь) полностью определяется химическими, или ковалентными , связями. Между остаткам цистина (например, в инсулине и рибонуклеазе) образуются S-S-связи той же природы. Вторичная и третичная структуры стабилизируются рядом более слабых связей. Эти связи можно класси­фицировать следующим образом:

1. Ионные, или электростатические, связи между положительными и отрицательными ионами, находящимися на расстоянии 0,2...0,3 нм.

2. Водородные связи (длина связи 0,25...0,32 нм); эти по существу также электростатические связи, но более слабые, чем ионные, образуются между двумя сильно отрицательными атомами - С, N или О.

3. Слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекул растворителя.

4. Связи, образующиеся за счет вандерваальсовых сил при взаимодействии полярных боковых цепей.

Электрические заряды белков . Все аминокислоты являются амфолитами (цвиттерионами), обладающими положительно и отрицательно заряженными группами (-NH 2 и -СООН). Так как эти группы участвуют в образовании пептидной связи, в полипептидной цепи свободными остаются только кон­цевые СООН- и - NH 2- группы, а также СООН-группы из дикарбоновых амино­кислот и NH 2 -группы из диаминокислот. Все эти группы ионизируются сле­дующим образом:

1. Кислые группы теряют протоны и становятся отрицательно заряженными. Этот тип диссоциации встречается в дикарбоновых аминокислотах (аспарагиновая и глутаминовая), у которых свободная карбоксильная группа диссоциирует на СОО - и Н + .

2. Основные группы, приобретая протон, становятся положительно заряженными. Этот тип встречается в аминокислотах с двумя основными группами (лизин и аргинин), у которых свободные аминогруппы ионизи­руются с образованием положительного заряда.

Все эти так называемые ионогенные группы вместе с концевыми свобод­ными карбоксильными и аминогруппами участвуют в кислотно-щелочных реакциях белков и определяют электрические свойства белковых молекул.

Движение белков в электирическом поле - электрофорез.
Аминокислоты - соединения, содержащие амино- и карбок­сильную группы. В зависимости от расположения амино- и кар­боксильной групп различают α-, β-, γ-, δ- и т. д. аминокислоты:

α-Аминокислоты являются составными частями белков и уча­ствуют в важнейших биологических процессах. Первая аминокис­лота была выделена в 1820 г. французским исследователем X. Браконно кислотным гидролизом желатины, однако лишь через 13 лет в ней было обнаружено присутствие азота. Позднее была показана роль α-аминокислот как структурных элементов белка (Н. Н. Любавин, 1871 г.). К началу XX в. методом гидролиза бел­ка было выделено более 20 аминокислот.

  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 17. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования (на примере ферментов синтеза и распада гликогена).
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 21. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.(пцр)
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 41. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 45. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 50. Образование активных форм кислорода (синглетный кислород, пероксид водорода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 51. . Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53.Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 54. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 55. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 58. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 59. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 64. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 66. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 76. Оринитиновый цикл мочевинообразования. Химизм, место протекания процесса. Энергетический эффект процесса, его регуляция. Количественное определение мочевины сыворотки крови, клиническое значение.
  • 2. Образование спермидина и спермина, их биологическая роль
  • 78. Обмен фенилаланина и тирозина. Особенности обмена тирозина в разных тканях.
  • 79. Эндокринная, паракринная и аутокринная системы межклеточной коммуникации. Роль гормонов в системе регуляции метаболизма. Регуляция синтеза гормонов по принципу обратной связи.
  • 80. Классификация гормонов по химическому строению и биологическим функция.
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 1. Общая характеристика рецепторов
  • 2. Регуляция количества и активности рецепторов
  • 82. Циклические амф и гмф как вторичные посредники. Активация протеинкиназ и фосфорилирование белков, ответственных за проявление гормонального эффекта.
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 85. Гормоны гипоталамуса и передней доли гипофиза, химическая природа и биологическая роль.
  • 2. Кортиколиберин
  • 3. Гонадолиберин
  • 4. Соматолиберин
  • 5.Соматостатин
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихся из проопиомеланокортина
  • 4. Гормоны задней доли гипофиза
  • 86. Регуляция водно-солевого обмена. Строение, механизмдействия и функции альдостерона и вазопрессина. Роль системы ренин-ангиотензин-альдостерон. Предсердный натриуретический фактор.
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 87. Регуляция обмена ионов кальция и фосфатов. Строение, биосинтез и механизм действия паратгормона, кальцитонина и кальцитриола.Причины и проявления рахита, гипо- и гиперпаратиреоидизма.
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Биосинтез йодтиронинов
  • 2. Регуляция синтеза и секреции йодтиронинов
  • 3. Механизм действия и биологические функции йодтиронинов
  • 4. Заболевания щитовидной железы
  • 90. Гормоны коры надпочечников (кортикостероиды). Их влияние на метаболизм клетки. Изменения метаболизма при гипо- и гиперфункции коры надпочечников.
  • 3. Изменения метаболизма при гипо- и гиперфункции коры надпочечников
  • 91. Гормоны мозгового слоя надпочечников. Секреция катехоламинов. Механизм действия и биологические функции катехоламинов. Патология мозгового вещества надпочечников.
  • 1. Синтез и секреция катехоламинов
  • 2. Механизм действия и биологические функции катехоламинов
  • 3. Патология мозгового вещества надпочечников
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • 93.Распад гема. Схема процесса, место протекания. «Прямой» и «непрямой» билирубин, его обезвреживание в печени.Диагностическое значение определения билирубина в крови и моче.
  • 94. . Нарушения катаболизма гема. Желтухи: гемолитическая, желтуха новорожденных, печеночно-клеточная, механическая, наследственная (нарушения синтеза удф-глюкуронилтрансферазы).
  • 1. Гемолитическая (надпечёночная) желтуха
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 3. Механическая, или обтурационная (подпечёночная) желтуха
  • 1. Участие трансфераз в реакциях конъюгации
  • 2. Роль эпоксидгидролаз в образовании диолов
  • 96. Гемоглобины человека, структура. Транспорт кислорода и диоксида углерода. Гемоглобин плода и его физиологическое значение. Гемоглобинопатии.
  • 98. Белки сыворотки крови, биологическая роль основных фракций белков, значение их определения для диагностики заболеваний. Содержание и функции некоторых белков плазмы крови
  • 98. Ферменты плазмы крови, энзимодиагностика. Количественное определение активности аминотрансфераз (АлАт, АсАт).
  • Аминотрансферазы
  • Аланинаминотрансфераза (алат)
  • 99. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Особенности биосинтеза и созревания коллагена. Роль аскорбиновой кислоты в созревании коллагена.
  • 104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена.
  • 1.Предмет и задачи биологической химии. Биохимия как молекулярный уровень изучения структурной организации, анаболизма и катаболизма живой материи. Место биохимии среди других биологических дисциплин. Значение биохимии в подготовке врача и для медицины.

    Биохимия – это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах, а также связи этих превращений с деятельностью органов и тканей. Таким образом, биохимия состоит как бы из трех частей: 1) статическая биохимия (это анализ химического состава живых организмов); 2) динамическая биохимия (изучает совокупность превращения веществ и энергии в организме); 3) функциональная биохимия (исследует процессы, лежащие в основе различных проявлений жизнедеятельности).

    Главным для биохимии является выяснение функционального, то есть биологического назначения всех химических веществ и физико-химических процессов в живом организме, а также механизм нарушения этих функций при разных заболеваниях. Современная биохимия решает следующие задачи : 1. Биотехнологическую, т.е. создание фармацевтических препаратов (гормонов, ферментов), регуляторов роста растений, средств борьбы с вредителями, пищевых добавок. 2. Проводит разработку новых методов и средств диагностики и лечения наследственных заболеваний, канцерогенеза, природы онкогенов и онкобелков. 3. Проводит разработку методов генной и клеточной инженерии для получения принципиально новых пород животных и форм растений с более ценными признаками. 4. Изучает молекулярные основы памяти, психики, биоэнергетики, питания и целый ряд других задач.

    Биологическая химия изучает молекулярные процессы, лежащие в основе разви­тия и функционирования организмов. Биохимия использует методы «молекуляр­ных» наук - химии, физической химии, молекулярной физики, и в этом отноше­нии биохимия сама является молекулярной наукой. Однако главные конечные задачи биохимии лежат в области биологии: она изучает закономерности биоло­гической, а не химической формы движения материи. С другой стороны, «молекулярные изобретения» природы, открываемые биохимиками, находят приме­нение в небиологических отраслях знания и в промышленности (молекулярная бионика, биотехнология). В таких случаях биохимия выступает в роли метода, а предметом исследований и разработок являются проблемы, выходящие за пре­делы биологии.

    Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ включает 3 этапа: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

    Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания перевариваются (расщепляются до простых веществ). При переваривании происходит гидролиз полимеров (белков, полисахаридов и других сложных органических веществ) до мономеров, всасывающихся в кровь и включающихся в промежуточный обмен.

    Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.

    Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО 2 , Н 2 О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

    Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).

    Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

    Практически любое заболевание начинается с по­вреждения (нарушения) одной реакции в метабо­лизме клетки, а затем оно распространяется на ткань, орган и целый организм. Нарушение метабо­лизма ведет к нарушению гомеостаза в биологичес­ких жидкостях организма человека, что сопровож­дается изменением биохимических показателей.

    Большое значение клинико-биохимических методов исследования био­логических жидкостей велико в медицине и важно для подготовки медицинских лаборатор­ных техников. Достаточно напомнить, что только в крови человека можно определить современными методами биохимических исследований около 1000 показателей метаболизма.

    Биохимические показа­тели биологических сред организма человека широко используются при:

    1. постановке диагноза заболевания, особенно дифференциального диагноза;

    2. выборе метода лечения;

    3.контроле за правильностью назначенного ле­чения;

    4.результаты биохимических анализов служат одним из критериев излеченности патологическо­го процесса;

    5.скрининге (выявлении болезни на доклини­ческой стадии);

    6.мониторинге (контроле за течением заболе­вания и результатом лечения);

    7. прогнозе (информации о возможном исходе заболевания).

    2. Аминокислоты, входящие в состав белков, их строение и свойства. Пептиды.

    Биологическая роль аминокислот и пептидов.

    1. Общие структурные особенности аминокислот, входящих в состав белков

    Общая структурная особенность аминокислот - наличие амино- и карбоксильной групп, соединённых с одним и тем же?-углеродным атомом. R - радикал аминокислот - в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение. В водных растворах при нейтральном значении рН?- аминокислоты существуют в виде биполярных ионов. В отличие от 19 остальных?-аминокислот, пролин - иминокислота, радикал которой связан как с?-углеродным атомом, так и с аминогруппой, в результате чего молекула приобретает циклическую структуру.

    19 из 20 аминокислот содержат в?-положении асимметричный атом углерода, с которым связаны 4 разные замещающие группы. В результате эти аминокислоты в природе могут находиться в двух разных изомерных формах - L и D. Исключение составляет глицин, который не имеет асимметричного?-углеродного атома, так как его радикал представлен только атомом водорода. В составе белков присутствуют только L-изомеры аминокислот.

    Чистые L- или D-стереоизомеры могут за длительный срок самопроизвольно и неферментативно превращаться в эквимолярную смесь L- и D-изомеров. Этот процесс называют рацемизацией. Рацемизация каждой L-аминокислоты при данной температуре идёт с определённой скоростью. Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к?-углеродному атому.

    2. Классификация аминокислот по химическому строению радикалов

    По химическому строению аминокислоты можно разделить на алифатические, ароматические и гетероциклические

    В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH 2), тиольная (-SH), амидная (-CO-NH 2), гидроксильная (-ОН) и гуанидиновая группы.

    Для записи аминокислотных остатков в молекулах пептидов и белков используют трёхбуквенные сокращения их тривиальных названий, а в некоторых случаях и однобуквенные символы

    3. Классификация аминокислот по растворимости их радикалов в воде

    Все 20 аминокислот в белках организма человека можно сгруппировать по способности их радикалов растворяться в воде. Радикалы можно выстроить в непрерывный ряд, начинающийся полностью гидрофобными и заканчивающийся сильно гидрофильными.

    Растворимость радикалов аминокислот определяется полярностью функциональных групп, входящих в состав молекулы (полярные группы притягивают воду, неполярные её отталкивают).

    Аминокислоты с неполярными радикалами

    К неполярным (гидрофобным) относят радикалы, имеющие алифатические углеводородные цепи (радикалы аланина, валина, лейцина, изолейцина, пролина и метионина) и ароматические кольца (радикалы фенилаланина и триптофана). Радикалы таких аминокислот в воде стремятся друг к другу или к другим гидрофобным молекулам, в результате чего поверхность соприкосновения их с водой уменьшается.

    Аминокислоты с полярными незаряженными радикалами

    Радикалы этих аминокислот лучше, чем гидрофобные радикалы, растворяются в воде, так как в их состав входят полярные функциональные группы, образующие водородные связи с водой. К ним относят серии, треонин и тирозин, имеющие гидроксильные группы, аспарагин и глутамин, содержащие амидные группы, и цистеин с его тиольной группой.

    Аминокислоты с полярными отрицательно заряженными радикалами

    К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в радикале дополнительную карбоксильную группу, при рН около 7,0 диссоциирующую с образованием СОО - и Н + . Следовательно, радикалы данных аминокислот - анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

    Аминокислоты с полярными положительно заряженными радикалами

    Дополнительную положительно заряженную группу в радикале имеют лизин и аргинин. У лизина вторая аминогруппа, способная присоединять Н + , располагается в?-положении алифатической цепи, а у аргинина положительный заряд приобретает, гуанидиновая группа, Кроме того, гистидин содержит слабо ионизированную имидазольную группу, поэтому при физиологических колебаниях значений рН (от 6,9 до 7,4) гистидин заряжен либо нейтрально, либо положительно. При увеличении количества протонов в среде имидазольная группа гистидина способна присоединять протон, приобретая положительный заряд, а при увеличении концентрации гидроксильных групп - отдавать протон, теряя положительный заряд радикала. Положительно заряженные радикалы - катионы.Наибольшей растворимостью в воде обладают полярные заряженные радикалы аминокислот.

    4. Изменение суммарного заряда аминокислот в зависимости от рН среды

    При нейтральных значениях рН все кислотные (способные отдавать Н +) и все основные (способные присоединять Н +) функциональные группы находятся в диссоциированном состоянии.

    Поэтому в нейтральной среде аминокислоты, содержащие недиссоциирующий радикал, имеют суммарный нулевой заряд. Аминокислоты, содержащие кислотные функциональные группы, имеют суммарный отрицательный заряд, а аминокислоты, содержащие основные функциональные группы, - положительный заряд

    Изменение рН в кислую сторону (т.е. повышение в среде концентрации Н +) приводит к подавлению диссоциации кислотных групп. В сильно кислой среде все аминокислоты приобретают положительный заряд.

    Напротив, увеличение концентрации ОН - групп вызывает отщепление Н + от основных функциональных групп, что приводит к уменьшению положительного заряда. В сильно щелочной среде все аминокислоты имеют суммарный отрицательный заряд.

    5. Модифицированные аминокислоты, присутствующие в белках

    Непосредственно в синтезе белков организма человека принимают участие только 20 перечисленных аминокислот. Однако в некоторых белках имеются нестандартные модифицированные аминокислоты - производные одной из этих 20 аминокислот.

    Модификации аминокислотных остатков осуществляются уже в составе белков, т.е. только после окончания их синтеза. Введение дополнительных функциональных групп в структуру аминокислот придаёт белкам свойства, необходимые для выполнения ими специфических функций.

    6. Химические реакции, используемые для обнаружения аминокислот

    Для обнаружения и количественного определения аминокислот, находящихся в растворе, можно использовать нингидриновую реакцию.

    Эта реакция основана на том, что бесцветный нингидрин, реагируя с аминокислотой, конденсируется в виде димера через атом азота, отщепляемый от?-аминогруппы аминокислоты. В результате образуется пигмент красно-фиолетового цвета. Одновременно происходит декарбоксилирование аминокислоты, что приводит к образованию СО 2 и соответствующего альдегида. Нингидриновую реакцию широко используют при изучении первичной структуры белков Так как интенсивность окраски пропорциональна количеству аминокислот в растворе, её используют для измерения концентрации?-аминокислот.

    Специфические реакции на отдельные аминокислоты

    Качественное и количественное определение отдельных аминокислот возможно благодаря наличию в их радикалах особенных функциональных групп.

    Аргинин определяют с помощью качественной реакции на гуанидиновую группу (реакция Сакагучи), а цистеин выявляют реакцией Фоля, специфичной на SH-группу данной аминокислоты. Наличие ароматических аминокислот в растворе определяют ксантопротеиновой реакцией (реакция нитрования), а наличие гидроксильной группы в ароматическом кольце тирозина - с помощью реакции Миллона.

    Б. Пептидная связь. Строение и биологические свойства пептидов

    3.Биологическая роль пептидов

    В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью.

    Функции пептидов зависят от их первичной структуры. Ангиотензин I по структуре очень похож на ангиотензин II (имеет только две дополнительные аминокислоты с С-конца), но при этом не обладает биологической активностью.

    Изменение в аминокислотном составе пептидов часто приводит к потере одних и возникновению других биологических свойств.

    Так как пептиды - мощные регуляторы биологических процессов, их можно использовать как лекарственные препараты. Основное препятствие для терапевтического использования - их быстрое разрушение в организме. Одним из важнейших результатов исследований является не только изучение структуры пептидов, но и получение синтетических аналогов природных пептидов с целенаправленными изменениями в их структуре и функциях.

    Открытые и изученные в настоящее время пептиды можно разделить на группы по их основному физиологическому действию:

      пептиды, обладающие гормональной активностью (окситоцин, вазопрессин, рилизинг-гормоны гипоталамуса, меланоцитстимулирующий гормон, глюкагон и др.);

      пептиды, регулирующие процессы пищеварения (гастрин, холецистокинин, вазоинтестиналшый пептид, желудочный ингибирующий пептид и др.);

      пептиды, регулирующие тонус сосудов и АД (брадикинин, калидин, ангиотензин II);

      пептиды, регулирующие аппетит (лептин, нейропептид Y, меланоцитстимулирующий гормон, (?-эндорфины);

      пептиды, обладающие обезболивающим действием (энкефалины и эндорфины и другие опиоидные пептиды). Обезболивающий эффект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

      пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, обучения, памяти, возникновения чувства страха и т.д.

    3. Первичная структура белков. Пептидная связь, ее характеристика (прочность, кратность, компланарность, цис- ,транс- изомерия). Значение первичной структуры для нормального функционирования белков (на примере гемоглобина S ).

    Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты

    Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид.

    При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

    Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

      копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;

      способность существовать в двух резонансных формах (кето- или енольной форме);

      транс-положение заместителей по отношению к С-N-связи;

      способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

    Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь. Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

    Особенности первичной структуры белка . В остове полипептидной цепи чередуются жесткие структуры (плоские пептидные группы) с относительно подвижными участками (-СНR), которые способны вращаться вокруг связей. Такие особенности строения полипептидной цепи влияют на укладку ее в пространстве.

    2.Характеристика пептидной связи

    Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу.

    Связь между?-углеродным атомом и?-аминогруппой или?-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.

    Пептидные связи обычно расположены в транс-конфигурации, т.е. ?-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве.

    Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки.

    В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами.

    Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей).

    Химическая природа каждого белка уникальна и тесно связана с его биологической функцией. Способность белка выполнять присущую ему функцию определяется его первичной структурой. Даже небольшие изменения в последовательности аминокислот в белке могут привести к серьезному нарушению в его функционировании, возникновению тяжелого заболевания. Болезни, связанные с нарушениями первичной структуры белка, получили название молекулярных. К настоящему времени открыто несколько тысяч таких болезней. Одной из молекулярных болезней является серповидноклеточная анемия, причина которой кроется в нарушении первичной структуры гемоглобина. У людей с врожденной аномалией структуры гемоглобина в полипептидной цепочке, состоящей из 146 аминокислотных остатков, в шестом положении находится валин, тогда как у здоровых людей на этом месте - глутаминовая кислота. Аномальный гемоглобин хуже транспортирует кислород, а эритроциты крови больных имеют серповидную форму. Заболевание проявляется в замедлении развития, общей слабости организма.