Функции естественного отбора. Естественный отбор и борьба за существование

Обитающих в природных условиях, присутствует индивидуальная изменчивость , которая может проявляться в трёх видах — полезная, нейтральная и вредная. Обычно организмы с вредной изменчивостью погибают на различных этапах индиви-дуального развития . Нейтральная изменчивость организмов не влияет на их жизнеспособность. Индивиды с полезной изменчивостью выживают благодаря преимуществу во внутривидовой, межвидовой борьбе или в борьбе против неблагоприятных условий окружающей среды.

Движущий отбор

При изменении условий среды выживают те особи вида, у которых проявилась наследственная изменчивость и в связи с этим развились признаки и свойства, соответствующие новым условиям, а те особи, которые не имели такой изменчивости, погибают. Во время своего путешествия Дарвин обнаружил, что на океанических островах, где господствуют сильные ветры, встречается мало длиннокрылых насекомых и много насекомых с рудиментарными крыльями и бескрылых насекомых. Как объясняет Дарвин, насекомые с нормальными крыльями не могли противо-стоять сильным ветрам на этих островах и погибали. А насекомые с рудиментарными крыльями и бескрылые совсем не поднимались в воздух и скрывались в щелях, находя там укрытие. Этот процесс, который сопровождался наследственной изменчивостью и естествен-ным отбором и продолжался в течение многих тысяч лет, привёл к сокращению численности на этих островах длиннокрылых насекомых и к появлению особей с рудиментарными крыльями и бескры-лых насекомых. Естественный отбор, который обеспечивает возникновение и развитие новых признаков и свойств организмов, называется движущим отбором .

Дизруптивный отбор

Дизруптивный отбор — это форма естественного отбора, приводящая к об-разованию ряда полиморфных форм, отличающихся друг от друга в пре-делах одной популяции.

ЕСТЕСТВЕННЫЙ ОТБОР- результат борьбы за существование; он основывается на преимущественном выживании и оставлении потомства наиболее приспособленными особями каждого вида и гибели менее приспособленных организмов

В условиях постоянного изменения среды естественный отбор устраняет неприспособленные формы и сохраняет наследственные уклонения, совпадающие с направлением изменившихся условий существования. Происходит либо смена нормы реакции, либо ее расширение (нормой реакции называется способность организма реагировать приспособительными изменениями на действие факторов среды; норма реакции - это пределы модификационной изменчивости, контролируемой генотипом данного организма). Эта форма отбора была открыта Ч. Дарвином и получила название движущего .

В качестве примера можно привести вытеснение темноокрашенной формой бабочки березовой пяденицы исходной светлой формы. На юго-востоке Англии в прошлом наряду со светлоокрашенной формой бабочки изредка встречались темноокрашенные. В сельской местности на коре березы светлая окраска оказывается защитной, они незаметны, а темноокрашенные, наоборот, выделяются на светлом фоне и становятся легкой добычей птиц. В индустриальных зонах в связи с загрязнением среды промышленной копотью темноокрашенные формы приобретают преимущество и быстро вытесняют светлых. Так, из 700 видов бабочек в этой стране за последние 120 лет сменили светлую окраску на темную 70 видов ночных бабочек. Такая же картина наблюдается и в других индустриальных зонах Европы. Аналогичными примерами может служить появление насекомых, устойчивых к инсектицидам, форм микроорганизмов, устойчивых к действию антибиотиков, распространение крыс, устойчивых к ядам, и т. д.

Отечественный ученый И. И. Шмальгаузен открыл стабилизирующую форму отбора, которая действует в постоянных условиях существования. Эта форма отбора направлена на сохранение имеющейся нормы. При этом постоянство нормы реакции поддерживается до тех пор, пока остается стабильной среда, особи же, уклоняющиеся от средней нормы, из популяции исчезают. Например, во время снегопада и сильного ветра погибли короткокрылые и длиннокрылые воробьи, а выжили особи, имевшие средние размеры крыльев. Или другой пример: устойчивое постоянство частей цветка по сравнению с вегетативными органами растения, так как пропорции цветка приспособлены к размерам опыляющих насекомых (шмель не может проникнуть в слишком узкий венчик цветка, хоботок бабочки не может коснуться слишком коротких тычинок цветков с длинным венчиком). На протяжении миллионов лет стабилизирующий отбор оберегает виды от существенных изменений, но только до тех пор, пока условия жизни существенно не изменяются.

Выделяют также разрывающий, или дизруптивный , отбор, действующий в условиях разнообразной среды: отбирается не какой-либо один признак, а несколько различных, каждый из которых благоприятствует выживанию в узких пределах ареала популяции. В силу этого популяция расчленяется на несколько групп. Например, одни волки в Китскильских горах США похожи на легкую борзую и охотятся на оленей, другие волки той же местности, более грузные, с короткими ногами, нападают обычно на стада овец. Дизруптивный отбор действует в условиях резкого изменения среды: на периферии популяции выживают формы, имеющие разнонаправленные изменения, они дают начало новой группе, в которой вступает в действие стабилизирующий отбор. Ни одна из форм отбора не встречается в природе в чистом виде, так как факторы среды изменяются и действуют в совокупности, как целое. Однако в определенные исторические отрезки времени одна из форм отбора может стать ведущей.

Все формы естественного отбора составляют единый механизм, который, действуя на статистической основе как кибернетический регулятор, поддерживает равновесие популяций с окружающими условиями внешней среды. Творческая роль естественного отбора состоит не только в устранении неприспособленных, но и в том, что он направляет возникающие приспособления (результат мутаций и рекомбинаций), "выбирая" в длинном ряду поколений только те из них, которые в наибольшей степени оказываются пригодными в данных условиях существования, что и приводит к возникновению все новых и новых жизненных форм.

Формы естественного отбора (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Формы отбора, графическое представление Особенности каждой формы естественного отбора
ДВИЖУЩАЯ В пользу особей с уклоняющимся от ранее установившегося в популяции значением признака; приводит к закреплению новой нормы реакции организма, которая соответствует изменившимся условиям окружающей среды
II СТАБИЛИЗИРУЮЩАЯ Направлена на сохранение установившегося в популяции среднего значения признака. Результатом действия стабилизирующего отбора является большое сходство всех особей растений или животных, наблюдаемое в любой популяции
ДИЗРУПТИВНАЯ, ИЛИ РАЗРЫВАЮЩАЯ Благоприятствует более чем одному фенотипически оптимальному признаку и действует против промежуточных форм, приводит как к возникновению внутривидового полиморфизма, так и к изоляции популяций

ЕСТЕСТВЕННЫЙ ОТБОР, процесс избирательного выживания и дифференциального размножения организмов, основной движущий фактор их эволюции. Идеи о существовании естественного отбора высказывались с начала 19 века разными английскими натуралистами (в том числе А. Уоллесом). Но только Ч. Дарвин (1842, 1859) оценил его как главный фактор эволюции. По Дарвину, естественный отбор является результатом борьбы за существование; даже незначительные наследуемые различия между особями одного вида могут дать преимущества в этой борьбе, которая обусловлена тенденцией организмов к высокой интенсивности размножения (в геометрической прогрессии) и невозможности сохранения всего потомства вследствие ограниченности природных ресурсов. Гибель подавляющего числа особей в каждом поколении неизбежно ведёт к естественному отбору - «выживанию наиболее приспособленного» к данным условиям. В результате суммирования полезных изменений в течение многих поколений формируются новые адаптации и в конечном счёте возникают новые виды. Рассуждения о действии естественного отбора Дарвин строил преимущественно на обобщении опыта доместикации животных и растений по аналогии с искусственным отбором, подчёркивая, однако, что в отличие от проводимой человеком селекции естественный отбор определяется взаимодействием организмов с условиями окружающей среды и не имеет определённой цели.

Систематическое исследование естественного отбора, расширение и совершенствование методик его изучения началось с конца 19 века. Использование методов биометрии позволило установить статистически значимые различия между выжившими и погибшими организмами при изменении условий среды. Благодаря разработкам Р. Фишера, Дж. Холдейна, С. Райта и С. С. Четверикова, осуществивших синтез классического дарвинизма и генетики, появилась возможность приступить к экспериментальному изучению генетических основ естественного отбора. Обследованные природные популяции оказались буквально насыщены мутациями, многие из которых становились полезными при изменениях условий существования или при комбинации с другими мутациями. Было установлено, что мутационный процесс и свободное скрещивание (панмиксия) обеспечивают генетическую разнородность популяций и уникальность особей, имеющих разные шансы на выживание; это обусловливает высокую интенсивность и эффективность естественного отбора. Кроме того, стало очевидным, что естественный отбор имеет дело не с единичными признаками, а с целыми организмами и что генетическая сущность естественного отбора заключается в неслучайном (дифференцированном) сохранении в популяции определённых генотипов, избирательно передающихся следующим поколениям. Естественный отбор носит вероятностный характер, действует на основе мутационного процесса и существующего генофонда, влияет на частоту распространения генов и их комбинаций, способствует уменьшению негативного действия мутаций и образованию механизмов защиты от их вредного действия, определяя тем самым темпы и направления эволюции. Под контролем естественного отбора находятся не только разнообразные признаки, но и сами факторы эволюции, например интенсивность и характер мутабельности, аппарат наследственности (отсюда понятие «эволюция эволюции»). При отсутствии же естественного отбора происходит снижение или утрата приспособленности организмов из-за накопления нежелательных мутаций, что проявляется в возрастании генетические груза, в том числе в популяциях современного человека.

Выделяют более 30 форм естественного отбора; ни одна из них не существует в чистом виде, а скорее характеризует тенденцию действия отбора в конкретной экологической ситуации. Так, движущий отбор способствует сохранению определённого отклонения от прежней нормы и приводит к выработке новых приспособлений через направленную перестройку всего генофонда популяций, а также генотипов и фенотипов особей. Он может вести к доминированию одной (или нескольких) ранее существовавшей формы над другими. Классическим примером его действия стало преобладание в промышленных районах темноокрашенных форм бабочки берёзовая пяденица, незаметных для птиц на загрязнённых копотью стволах деревьев (до середины 19 века встречалась только светлая форма, имитировавшая пятна лишайников на светлых стволах берёзы). Быстрое привыкание к ядам различных видов насекомых и грызунов, возникновение резистентности микроорганизмов к антибиотикам свидетельствуют о том, что давления движущего отбора в природных популяциях достаточно для того, чтобы обеспечить быстрый адаптивный ответ на резкие изменения среды. Как правило, селекция по одному признаку влечёт за собой целый ряд преобразований. Например, длительный отбор на содержание белка или масла в зёрнах кукурузы сопровождается изменениями форм зёрен, размеров початков, их расположения над уровнем почвы и др.

Результатом действия движущего отбора в филогенезе крупных таксонов является ортоселекция, примером которой служит установленная В. О. Ковалевским направленная эволюция конечности предков лошади (от пятипалости к однопалости), протекавшая миллионы лет и обеспечившая увеличение скорости и экономичности бега.

Дизруптивный, или разрывающий, отбор благоприятствует сохранению крайних отклонений и ведёт к увеличению полиморфизма. Он проявляется в тех случаях, когда ни одна из внутривидовых форм с разными генотипами не получает абсолютного преимущества в борьбе за существование из-за разнообразия условий, одновременно встречающихся на одной территории; при этом прежде всего элиминируются особи со средним или промежуточным характером признаков. Ещё в начале 20 века российский ботаник Н. В. Цингер показал, что большой погремок (Alectoroleophus major), цветущий и плодоносящий на некошеных лугах в течение всего лета, на скашиваемых лугах образует две расы: ранневесеннюю, успевающую принести семена до начала покоса, и позднеосеннюю - низкие растения, не повреждаемые при покосе, а затем быстро зацветающие и успевающие дать семена до начала морозов. Другим примером полиморфизма служит различие в окраске раковин у земляной улитки (Capacea nemoralis), являющейся кормом для птиц: в густых буковых лесах, где в течение всего года сохраняется подстилка из красно-бурого опада, обычны особи с коричневой и розовой окраской; на лугах с жёлтой подстилкой преобладают улитки с жёлтой окраской. В смешанных же лиственных лесах, где характер фона меняется с наступлением нового сезона, ранней весной доминируют улитки с бурой и розовой окраской, а летом - с жёлтой. Дарвиновы вьюрки (Geospizinae) на островах Галапагос (классический пример адаптивной радиации) - конечный результат длительного дизруптивного отбора, приведшего к образованию десятков близкородственных видов.

Если указанные формы естественного отбора приводят к изменению и фенотипической, и генетической структуры популяций, то впервые описанный И. И. Шмалъгаузеном (1938) стабилизирующий отбор сохраняет в популяции среднее значение признаков (норму) и не пропускает в следующее поколение геномы особей, наиболее отклоняющихся от этой нормы. Он направлен на поддержание и повышение устойчивости в популяции среднего, ранее сложившегося фенотипа. Известно, например, что во время снежных бурь выживают птицы, которые по многим признакам (длина крыла, клюва, масса тела и т.д.) приближаются к средней норме, а отклонившиеся от этой нормы особи погибают. Размеры и форма цветков у растений, опыляемых насекомыми, более устойчивы, чем у растений, опыляемых ветром, что обусловлено сопряжённой эволюцией растений и их опылителей, «выбраковкой» уклонившихся от нормы форм (например, шмель не может проникнуть в слишком узкий венчик цветка, а хоботок бабочки не касается слишком коротких тычинок у растений с длинным венчиком). Благодаря стабилизирующему отбору при внешнем неизменном фенотипе могут идти существенные генетические изменения, обеспечивающие независимость развития адаптаций от колеблющихся условий среды. Одним из результатов действия стабилизирующего отбора можно считать «биохимическую универсальность» жизни на Земле.

Дестабилизирующий отбор (название предложено Д. К. Беляевым, 1970) ведёт к резкому нарушению систем регуляции онтогенеза, вскрытию мобилизационного резерва и росту фенотипической изменчивости при интенсивном отборе в каком-либо определённом направлении. Например, отбор на снижение агрессивности хищных зверей в неволе через перестройку нейрогуморальной системы ведёт к дестабилизации цикла размножения, сдвигам в сроках линьки, изменениям в положении хвоста, ушей, в окраске и др.

Обнаружены гены, которые могут быть летальными или снижать жизнеспособность организмов в гомозиготном состоянии, а в гетерозиготном, напротив, повышать экологическую пластичность и другие показатели. В этом случае можно говорить о так называемом сбалансированном отборе, обеспечивающем поддержание генетического разнообразия с определённым соотношением частот аллелей. Примером его действия может служить повышение устойчивости у больных серповидно-клеточной анемией (гетерозиготных по гену гемоглобина S) к заражению различными штаммами малярийного плазмодия (смотри Гемоглобины).

Важным шагом в преодолении стремления все признаки организмов объяснять действием естественного отбора стала концепция нейтральной эволюции, согласно которой часть изменений на уровне белков и нуклеиновых кислот происходит путём фиксации адаптивно нейтральных или почти нейтральных мутаций. Возможен отбор видов, возникающих в периферийных популяциях «внезапно» с геохронологической точки зрения. Ещё раньше было доказано, что катастрофический отбор, при котором в период резких изменений среды выживает небольшое число особей и даже единственный организм, может стать основой формирования нового вида за счёт хромосомной перестройки и смены экологической ниши. Так, образование ксерофитного, эндемичного вида Clarkia lingulata в горах Сьерра-Невада в Калифорнии объясняют сильной засухой, вызвавшей массовую гибель растений, принявшую катастрофический характер в периферийных популяциях.

Естественный отбор, затрагивающий вторичные половые признаки особей, называют половым (например, яркая брачная окраска самцов у многих видов рыб и птиц, зазывающие крики, специфические запахи, сильно развитые орудия для турнирного боя у млекопитающих). Эти признаки полезны, так как повышают возможность участия их носителей в воспроизведении потомства. В половом отборе наибольшую активность проявляют самцы, что выгодно для вида в целом, т.к. самки остаются в большей безопасности в период размножения.

Выделяют также групповой отбор, способствующий сохранению признаков, полезных семье, стае, колонии. Его частным случаем у колониальных насекомых является отбор сородичей, при котором стерильные касты (рабочие, солдаты и др.) обеспечивают (нередко ценой собственной жизни) выживание плодовитых особей (маток) и личинок и тем самым сохранение всей колонии. Альтруистическое поведение родителей, притворяющихся ранеными, чтобы увести хищника от своих детей, грозит гибелью имитатору, но в целом повышает шансы на выживание его потомства.

Хотя представления о ведущей роли естественного отбора в эволюции получили подтверждение во множестве экспериментов, до сих пор они подвергаются критике, исходящей из представления о невозможности образования организмов в результате случайной комбинации мутаций. При этом игнорируется тот факт, что каждый акт естественного отбора совершается на базе предыдущих результатов его же действия, которые, в свою очередь, предопределяют формы, интенсивность и направления естественного отбора, а значит, пути и закономерности эволюции.

Лит.: Шмальгаузен И. И. Факторы эволюции. 2-е изд. М., 1968; Майр Э. Зоологический вид и эволюция. М., 1968; Шеппард Ф. М. Естественный отбор и наследственность. М., 1970; Левонтин Р. Генетические основы эволюции. М., 1978; Wilson D. S. The natural selection of populations and communities. Menlo Park, 1980; Галл Я. М. Исследования по естественному отбору // Развитие эволюционной теории в СССР. Л., 1983; Гаузе Г. Ф. Экология и некоторые проблемы происхождения видов // Экология и эволюционная теория. Л., 1984; Ратнер В. А. Краткий очерк теории молекулярной эволюции. Новосиб., 1992; Докинз Р. Эгоистичный генерал М., 1993; Sober Е. The nature of selection: evolutionary theory in philosophical focus. Chi., 1993; Дарвин Ч. Происхождение видов... 2-е изд. СПб., 2001; Coyne J., Orr Н. А. Speciation. Sunderland, 2004; Gavrilets S. Fitness landscapes and the origin of species. Princeton, 2004; Яблоков А. В., Юсуфов А. Г. Эволюционное учение. 5-е изд. М., 2004; Северцов А. С. Теория эволюции. М., 2005; Колчинский Э. И. Э. Майр и современный эволюционный синтез. М., 2006.


Естественный отбор - природный процесс, при котором из всех живых организмов сохраняются во времени только те, которые обладают качествами, способствующими успешному воспроизведению себе подобных. По представлениям синтетической теории эволюции, естественный отбор является одним из важнейших факторов эволюции.

Механизм естественного отбора

Идею о том, что в живой природе действует механизм, подобный искусственному отбору, впервые высказали английские учёные Чарльз Дарвин и Альфред Уоллес. Суть их идеи состоит в том, что для появления удачных созданий, природе вовсе не обязательно понимать и анализировать ситуацию, а можно действовать наугад. Достаточно создавать широкий спектр разнообразных особей - и, в конечном счёте, выживут наиболее приспособленные.

1. Сначала появляется особь с новыми, совершенно случайными, свойствами

2. Потом она оказывается или не оказывается способной оставить потомство, в зависимости от этих свойств

3. Наконец, если исход предыдущего этапа оказывается положительным, то она оставляет потомство и её потомки наследуют новоприобретённые свойства

В настоящее время, отчасти наивные взгляды самого Дарвина оказались частично переработаны. Так, Дарвин представлял, что изменения должны происходить очень плавно, а спектр изменчивости является непрерывным. Сегодня, однако, механизмы естественного отбора объясняются при помощи генетики, которая вносит некоторое своеобразие в эту картину. Мутации в генах, которые работают на первом этапе описанного выше процесса, являются существенно дискретными. Ясно, однако, что основная суть идеи Дарвина осталась без изменений.

Формы естественного отбора

Движущий отбор - форма естественного отбора, когда условия среды способствуют определённому направлению изменения какого-либо признака или группы признаков. При этом иные возможности изменения признака подвергаются отрицательному отбору. В результате в популяции от поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).

Современным случаем движущего отбора является «индустриальный меланизм английских бабочек». «Индустриальный меланизм» представляет собой резкое повышение доли меланистических (имеющих тёмную окраску) особей в тех популяциях бабочек, которые обитают в промышленных районах. Из-за промышленного воздействия стволы деревьев значительно потемнели, а также погибли светлые лишайники, из-за чего светлые бабочки стали лучше видны для птиц, а тёмные - хуже. В XX веке в ряде районов доля тёмноокрашенных бабочек достигла 95 %, в то время как впервые тёмная бабочка (Morfa carbonaria) была отловлена в 1848 году.

Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определенном направлении, перемещая соответственно и норму реакции. Например, при освоении почвы, как среды обитания у различных неродственных групп животных конечности превратились в роющие.

Стабилизирующий отбор - форма естественного отбора, при котором действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака.

Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детенышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.

Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорожденные с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорожденные со средним весом. Учет размера крыльев у птиц, погибших после бури, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.

Дизруптивный (разрывающий) отбор - форма естественного отбора, при котором условия благоприятствуют двум или нескольким крайним вариантам (направлениям) изменчивости, но не благоприятствуют промежуточному, среднему состоянию признака. В результате может появиться несколько новых форм из одной исходной. Дизруптивный отбор способствует возникновению и поддержанию полиморфизма популяций, а в некоторых случаях может служить причиной видообразования.

Одна из возможных в природе ситуаций, в которой, вступает в действие дизруптивный отбор, - когда полиморфная популяция занимает неоднородное местообитание. При этом разные формы приспосабливаются к различным экологическим нишам или субнишам.

Примером дизруптивного отбора является образование двух рас у погремка лугового на сенокосных лугах. В нормальных условиях сроки цветения и созревания семян у этого растения покрывают всё лето. Но на сенокосных лугах семена дают преимущественно те растения, которые успевают отцвести и созреть либо до периода покоса, либо цветут в конце лета, после покоса. В результате образуются две расы погремка - ранне- и позднецветущая.

Дизруптивный отбор осуществлялся искусственно в экспериментах с дрозофилами. Отбор проводился по числу щетинок, оставлялись лишь особи с малым и большим количеством щетинок. В результате примерно с 30-го поколения две линии разошлись очень сильно, несмотря на то, что мухи продолжали скрещиваться между собой, осуществляя обмен генами. В ряде других экспериментов (с растениями) интенсивное скрещивание препятствовало эффективному действию дизруптивного отбора.

Отсекающий отбор - форма естественного отбора. Его действие противоположно положительному отбору. Отсекающий отбор выбраковывает из популяции подавляющее большинство особей, несущих признаки, резко снижающие жизнеспособность при данных условиях среды. С помощью отсекающего отбора из популяции удаляются сильно вредные аллели. Также отсекающему отбору могут подвергаться особи с хромосомными перестройками и набором хромосом, резко нарушающими нормальную работу генетического аппарата.

Положительный отбор - форма естественного отбора. Его действие противоположно отсекающему отбору. Положительный отбор увеличивает в популяции число особей, обладающих полезными признаками, повышающими жизнеспособность вида в целом. С помощью положительного отбора и отсекающего отбора совершается изменение видов (а не только посредством уничтожения ненужных особей, тогда любое развитие должно остановиться, но этого не происходит). Среди примеров положительного отбора: чучело археоптерикса можно использовать как планер, а чучело ласточки или чайки нельзя. Но первые птицы летали лучше археоптерикса.

Другой пример положительного отбора - появление хищников, превосходящих своими «умственными способностями» многих других теплокровных. Или появление таких рептилий, как крокодилы, обладающих четырехкамерным сердцем и способных жить как на земле, так и в воде.

Палеонтолог Иван Ефремов утверждал, что человек прошел не только отбор на лучшую приспособленность к условиям окружающей среды, но и «отбор на социальность» - выживали те сообщества, члены которых лучше поддерживали друг друга. Это еще один из примеров положительного отбора.

Частные направления естественного отбора

· Выживание наиболее приспособленных к условиям обитания видов и популяций, например видов, обладающих жабрами в воде, поскольку приспособленность позволяет выигрывать борьбу за выживание.

· Выживание физически здоровых организмов.

· Выживание физически сильнейших организмов, поскольку физическая борьба за ресурсы является неотъемлемой частью жизни. Имеет значение во внутривидовой борьбе.

· Выживание наиболее сексуально успешных организмов, поскольку половое размножение является доминирующим способом размножения. В данном случае в дело вступает половой отбор.

Однако все эти случаи являются частными, а главным остаётся успешное сохранение во времени. Поэтому иногда эти направления нарушаются ради следования главной цели.

Роль естественного отбора в эволюции

Ч. Дарвин полагал естественный отбор основополагающим фактором эволюции живого (селекционизм в биологии). Накопление в конце XIX - начале XX века сведений по генетике, в частности обнаружение дискретного характера наследования фенотипических признаков, подтолкнуло многих исследователей к пересмотру указанного тезиса Дарвина: в качестве чрезвычайно важных факторов эволюции стали рассматриваться мутации генотипа (мутационизм Г. де Фриза, сальтационизм Р. Гольдшмитда и др.). С другой стороны, открытие известных корреляций среди признаков родственных видов (закон гомологических рядов) Н. И. Вавилова привело к формулировке гипотез об эволюции на основе закономерностей, а не случайной изменчивости (номогенез Л. С. Берга, батмогенез Э. Д. Копа и др.). В 1920-1940-е г. г. в эволюционной биологии интерес к селекционистским теориям возродился благодаря синтезу классической генетики и теории естественного отбора.

Разработанная в результате этого синтетическая теория эволюции (СТЭ), часто называемая неодарвинизмом, опирается на количественный анализ частоты аллелей в популяциях, изменяющейся под влиянием естественного отбора. Тем не менее, открытия последних десятилетий в различных областях научного знания - от молекулярной биологии с её теорией нейтральных мутаций М. Кимуры и палеонтологии с её теорией прерывистого равновесия С. Дж. Гоулда и Н. Элдриджа (в которой вид понимается как относительно статическая фаза эволюционного процесса) до математики с её теорией бифуркаций и фазовых переходов - свидетельствуют о недостаточности классической СТЭ для адекватного описания всех аспектов биологической эволюции. Дискуссия о роли различных факторов в эволюции продолжается и сегодня, и эволюционная биология подошла к необходимости своего очередного, третьего синтеза.

Возникновение адаптаций в результате естественного отбора

Адаптациями называются свойства и признаки организмов, которые обеспечивают приспособление к той среде, в которой эти организмы живут. Адаптацией также называют процесс возникновения приспособлений. Выше мы рассмотрели, как некоторые адаптации возникают в результате естественного отбора. Популяции березовой пяденицы приспособились к изменившимся внешним условиям благодаря накоплению мутаций темной окраски. В популяциях человека, населяющих малярийные районы, адаптация возникла благодаря распространению мутации серповидно-клеточной анемии. И в том, и в другом случае, адаптация достигается за счет действия естественного отбора.

При этом материалом для отбора служит наследственная изменчивость, накопленная в популяциях. Поскольку разные популяции отличаются друг от друга по набору накопленных мутаций, то к одним и тем же факторам внешней среды они приспосабливаются по-разному. Так, африканские популяции адаптировались к жизни в малярийных районах за счет накопления мутаций серповидно-клеточной анемии Hb S , а в популяциях, населяющих юго-восточную Азию устойчивость к малярии сформировалась на основе накопления ряда других мутаций, которые в гомозиготном состоянии также вызывают болезни крови, а в гетерозиготном - обеспечивают защиту от малярии.

Эти примеры иллюстрируют роль естественного отбора в формировании адаптаций. Нужно, однако, ясно понимать, что это – частные случаи относительно простых адаптаций, возникающих за счет селективного размножения носителей единичных «полезных» мутаций. Маловероятно, что большинство адаптаций возникло таким путем.

Покровительственная, предостерегающая и подражательная окраска. Рассмотрим, например, такие широко распространенные адаптации, как покровительственная, предостерегающая и подражательная окраска (мимикрия). Покровительственная окраска позволяет животным становится незаметными, сливаясь с субстратом. Одни насекомые поразительно сходны с листьями деревьев, на которых они обитают, другие напоминают засохшие веточки или шипы на стволах деревьев. Эти морфологические адаптации дополняются поведенческими приспособлениями. Насекомые выбирают для укрытия именно те места, где они менее заметны.

Несъедобные насекомые и ядовитые животные - змеи и лягушки, имеют яркую, предостерегающую окраску. Хищник, раз столкнувшись с таким животным, надолго ассоциирует этот тип окраски с опасностью. Этим пользуются некоторые неядовитые животные. Они приобретают поразительное сходство с ядовитыми, и тем самым снижают опасность со стороны хищников. Уж имитирует окраску гадюки, муха подражает пчеле. Это явление называется мимикрией.

Как возникли все эти удивительные приспособления? Маловероятно, чтобы единичная мутация могла обеспечивать такое точное соответствие между крылом насекомого и живым листом, между мухой и пчелой. Невероятно, чтобы единственная мутация заставляла покровительственно окрашенное насекомое прятаться именно на тех листьях, на которые оно похоже. Очевидно, что такие приспособления как покровительственная и предостерегающая окраски и мимикрия возникали путем постепенного отбора всех тех мелких уклонений в форме тела, в распределении определенных пигментов, во врожденном поведении, которые существовали в популяциях предков этих животных. Одной из важнейших характеристик естественного отбора является его кумулятивность – его способность накапливать и усиливать эти уклонения в ряду поколений, слагая изменения отдельных генов и контролируемых ими систем организмов.

Самая интересная и трудная проблема – это начальные стадии возникновения адаптаций. Понятно, какие преимущества дает почти идеальное сходство богомола с сухим сучком. Но какие преимущества могли быть у его далекого предка, который лишь отдаленно напоминал сучок? Неужели хищники так глупы, что их можно так легко обмануть? Нет, хищники отнюдь не глупы, и естественные отбор из поколения в поколение «учит» их все лучше и лучше распознавать уловки их добычи. Даже идеальное сходство современного богомола с сучком не дает ему 100-процентной гарантии, что ни одна птица его никогда не заметит. Однако его шансы ускользнуть от хищника выше, чем у насекомого с менее совершенной покровительственной окраски. Точно также, у его далекого предка, лишь чуть-чуть похожего на сучок, шансы на жизнь были несколько выше, чем у его родственника вовсе на сучок не похожего. Конечно, птица, которая сидит рядом с ним, в ясный день легко его заметит. Но если день туманный, если птица не сидит рядом, а пролетает мимо и решает не тратить времени на то, что может быть богомолом, а может быть и сучком, тогда и минимальное сходство сохраняет жизнь носителю этого едва заметного сходства. Его потомки, которые унаследуют это минимальное сходство, будут более многочисленны. Их доля в популяции станет больше. Это осложнит жизнь птицам. Среди них станут более успешными те, кто точнее будет распознавать замаскированную добычу. Вступает в действие тот самый принцип Красной Королевы, который мы обсуждали в параграфе, посвященном борьбе за существование. Чтобы сохранить преимущество в борьбе за жизнь, достигнутое за счет минимального сходства, виду-жертве приходится меняться.

Естественный отбор подхватывает все те мельчайшие изменения, которые усиливают сходство в окраске и форме с субстратом, сходство между съедобным видом и тем несъедобным видом, которому он подражает. Следует учитывать, что разные виды хищников пользуются разными методами поиска добычи. Одни обращают внимание на форму, другие на окраску, одни обладают цветным зрением, другие нет. Поэтому естественный отбор автоматически усиливает, насколько это возможно, сходство между имитатором и моделью и приводит к тем изумительным адаптациям, которые мы наблюдаем в живой природе.

Возникновение сложных адаптаций

Многие адаптации производят впечатление тщательно продуманных и направленно спланированных устройств. Как такая сложнейшая структура как глаз человека могла возникнуть путем естественного отбора случайно возникавших мутаций?

Ученые предполагают, что эволюция глаза началась с небольших групп светочувствительных клеток на поверхности тела наших очень далеких предков, живших около 550 млн. лет назад. Способность различать свет и тьму была, безусловно, полезна для них, повышала их шансы на жизнь по сравнению с их абсолютно слепыми сородичами. Случайно возникшее искривление «зрительной» поверхности улучшило зрение, это позволяло определить направление на источник света. Возник глазной бокал. Вновь возникающие мутации могли вести к сужению и расширению отверстия глазного бокала. Сужение постепенно улучшало зрение – свет стал проходить через узкую диафрагму. Как видите, каждый шаг повышал приспособленность тех особей, которые менялись в «правильном» направлении. Светочувствительные клетки формировали сетчатку. Со временем в передней части глазного яблока сформировался хрусталик, выполняющий функцию линзы. Он возник, по-видимому, как прозрачная двухслойная структура, наполненная жидкостью.

Ученые попытались смоделировать этот процесс на компьютере. Они показали, что глаз, подобный сложному глазу моллюска, мог возникнуть из слоя фоточувствительных клеток при относительно мягком отборе всего за 364 000 поколений. Иными словами, животные, у которых смена поколений происходит каждый год, могли сформировать полностью развитый и оптически совершенный глаз в менее, чем за полмиллиона лет. Эта очень короткий срок для эволюции, если учесть что средний возраст вида у моллюсков равняется нескольким миллионам лет.

Все предполагаемые стадии эволюции глаза человека мы можем обнаружить среди ныне живущих животных. Эволюция глаза шла разными путями в разных типах животных. Благодаря естественному отбору независимо возникло множество разных форм глаза, и человеческий глаз – только один из них, причем не самый совершенный

Если внимательно рассмотреть конструкцию глаза человека и других позвоночных животных, можно обнаружить целый ряд странных несообразностей. Когда свет попадает в глаз человека он проходит через хрусталик и попадает на светочувствительные клетки сетчатки. Свет вынужден пробиваться через густую сеть капилляров и нейронов, чтобы попасть на фоторецепторный слой. Как это ни удивительно, но нервные окончания подходят к светочувствительным клеткам не сзади, а спереди! Более того, нервные окончания собираются в оптический нерв, который отходит от центра сетчатки, и создает тем самым слепое пятно. Чтобы компенсировать затенение фоторецепторов нейронами и капиллярами и избавится от слепого пятна, наш глаз постоянно движется, посылая в мозг серию разных проекций одного и того же изображения. Наш мозг производит сложнейшие операции, складывая эти изображения, вычитая тени, и вычисляя реальную картину. Всех этих сложностей можно было бы избежать, если бы нервные окончания подходили к нейронам не спереди, а сзади как, например, у осьминога.

Само несовершенство глаза позвоночных проливает свет на механизмы эволюции путем естественного отбора. Мы уже не раз говорили о том, что отбор всегда действует «здесь и сейчас». Он сортирует разные варианты уже существующих структур, выбирая и слагая вместе лучшие из них: лучшие «здесь и сейчас», безотносительно к тому, во что эти структуры могут превратиться в далеком будущем. Поэтому ключ к объяснению и совершенств и несовершенств современных структур следует искать в прошлом. Ученые считают, что все современные позвоночные произошли от животных подобных ланцетнику. У ланцетника светочувствительные нейроны располагаются на переднем конце нервной трубки. Перед ними расположены нервные и пигментные клетки, которые прикрывают фоторецепторы от света попадающего спереди. Ланцетник принимает световые сигналы, приходящие с боков его прозрачного тела. Можно думать, что у общего предка позвоночных глаз был устроен сходным образом. Затем эта плоская структура стала преобразовываться в глазной бокал. Передняя часть нервной трубки впячивалась внутрь, и нейроны, находившиеся впереди рецепторных клеток, оказались поверх них. Процесс развития глаза у эмбрионов современных позвоночных в известном смысле воспроизводит последовательность событий, происходивших в далеком прошлом.

Эволюция не создает новых конструкций «с чистого листа», она меняет (часто неузнаваемо меняет) старые конструкции, так чтобы каждый этап этих изменений был приспособительным. Любое изменение должно повышать приспособленность его носителей или, хотя бы, не снижать ее. Эта особенность эволюции ведет к неуклонному совершенствованию различных структур. Она же является причиной несовершенства многих адаптаций, странных несообразностей в строении живых организмов.

Следует помнить, однако, что все приспособления, сколь бы совершенны они ни были, носят относительный характер. Понятно, что развитие способности к полету не очень хорошо совмещается с возможностью быстро бегать. Поэтому птицы, обладающие наилучшими способностями к полету, - плохие бегуны. Напротив, страусы, которые не способны летать, прекрасно бегают. Приспособление к определенным условиям может быть бесполезно или даже вредно при появлении новых условий. Однако условия обитания меняются постоянно и иногда очень резко. В этих случаях накопленные ранее адаптации могут затруднить формирование новых, что может вести к вымиранию больших групп организмов, как это случилось более 60-70 млн лет назад с некогда очень многочисленными и разнообразными динозаврами.



Идея сравнения искусственного и естественного отбора состоит в том, что в природе так же происходит отбор наиболее «удачных», «лучших» организмов, но в роли «оценщика» полезности свойств в данном случае выступает не человек, а среда обитания . К тому же, материалом как для естественного, так и для искусственного отбора являются небольшие наследственные изменения, которые накапливаются из поколения в поколение.

Механизм естественного отбора

В процессе естественного отбора закрепляются мутации, увеличивающие приспособленность организмов к окружающей их среде. Естественный отбор часто называют «самоочевидным» механизмом, поскольку он следует из таких простых фактов, как:

  1. Организмы производят потомков больше, чем может выжить;
  2. В популяции этих организмов существует наследственная изменчивость;
  3. Организмы, имеющие разные генетические черты, имеют различную выживаемость и способность размножаться.

Центральное понятие концепции естественного отбора - приспособленность организмов . Приспособленность определяется как способность организма к выживанию и размножению в существующей окружающей среде. Это определяет размер его генетического вклада в следующее поколение . Однако главным в определении приспособленности является не общее число потомков, а число потомков с данным генотипом (относительная приспособленность) . Например, если потомки успешного и быстро размножающегося организма слабые и плохо размножаются, то генетический вклад и, соответственно, приспособленность этого организма будут низкими .

Естественный отбор для черт, которые могут изменяться в некотором диапазоне значений (например, размер организма), можно разделить на три типа :

  1. Направленный отбор - изменения среднего значения признака в течение долгого времени, например увеличение размеров тела;
  2. Дизруптивный отбор - отбор на крайние значения признака и против средних значений, например, большие и маленькие размеры тела;
  3. Стабилизирующий отбор - отбор против крайних значений признака, что приводит к уменьшению дисперсии признака.

Частным случаем естественного отбора является половой отбор , субстратом которого является любой признак, который увеличивает успешность спаривания за счёт увеличения привлекательности особи для потенциальных партнёров . Черты, которые эволюционировали за счёт полового отбора, особенно хорошо заметны у самцов некоторых видов животных. Такие признаки, как крупные рога , яркая окраска , с одной стороны могут привлекать хищников и понижать выживаемость самцов , а с другой это уравновешивается репродуктивным успехом самцов с подобными ярко выраженными признаками .

Отбор может действовать на различных уровнях организации - таких, как гены, клетки, отдельные организмы, группы организмов и виды . Причём отбор может одновременно действовать на разных уровнях . Отбор на уровнях выше индивидуального, например, групповой отбор , может приводить к кооперации (см. Эволюция#Кооперация) .

Формы естественного отбора

Существуют разные классификации форм отбора. Широко используется классификация, основанная на характере влияния форм отбора на изменчивость признака в популяции.

Движущий отбор

Движущий отбор - форма естественного отбора, которая действует при направленном изменении условий внешней среды. Описали Дарвин и Уоллес . В этом случае особи с признаками, которые отклоняются в определённую сторону от среднего значения, получают преимущества. При этом иные вариации признака (его отклонения в противоположную сторону от среднего значения) подвергаются отрицательному отбору. В результате в популяции из поколения к поколению происходит сдвиг средней величины признака в определённом направлении. При этом давление движущего отбора должно отвечать приспособительным возможностям популяции и скорости мутационных изменений (в ином случае давление среды может привести к вымиранию).

Примером действия движущего отбора является «индустриальный меланизм» у насекомых. «Индустриальный меланизм» представляет собой резкое повышение доли меланистических (имеющих тёмную окраску) особей в тех популяциях насекомых (например, бабочек), которые обитают в промышленных районах. Из-за промышленного воздействия стволы деревьев значительно потемнели, а также погибли светлые лишайники, из-за чего светлые бабочки стали лучше видны для птиц, а тёмные - хуже. В XX веке в ряде районов доля тёмноокрашенных бабочек в некоторых хорошо изученных популяциях березовой пяденицы в Англии достигла 95 %, в то время как впервые тёмная бабочка (morfa carbonaria ) была отловлена в 1848 году.

Движущий отбор осуществляется при изменении окружающей среды или приспособлении к новым условиям при расширении ареала. Он сохраняет наследственные изменения в определённом направлении, перемещая соответственно и норму реакции . Например, при освоении почвы как среды обитания у различных неродственных групп животных конечности превратились в роющие.

Стабилизирующий отбор

Стабилизирующий отбор - форма естественного отбора, при которой его действие направлено против особей, имеющих крайние отклонения от средней нормы, в пользу особей со средней выраженностью признака. Понятие стабилизирующего отбора ввел в науку и проанализировал И. И. Шмальгаузен .

Описано множество примеров действия стабилизующего отбора в природе. Например, на первый взгляд кажется, что наибольший вклад в генофонд следующего поколения должны вносить особи с максимальной плодовитостью. Однако наблюдения над природными популяциями птиц и млекопитающих показывают, что это не так. Чем больше птенцов или детёнышей в гнезде, тем труднее их выкормить, тем каждый из них меньше и слабее. В результате наиболее приспособленными оказываются особи со средней плодовитостью.

Отбор в пользу средних значений был обнаружен по множеству признаков. У млекопитающих новорождённые с очень низким и очень высоким весом чаще погибают при рождении или в первые недели жизни, чем новорождённые со средним весом. Учёт размера крыльев у воробьёв, погибших после бури в 50-х годах под Ленинградом, показал, что большинство из них имели слишком маленькие или слишком большие крылья. И в этом случае наиболее приспособленными оказались средние особи.

Дизруптивный отбор

Дизруптивный (разрывающий) отбор - форма естественного отбора, при которой условия благоприятствуют двум или нескольким крайним вариантам (направлениям) изменчивости, но не благоприятствуют промежуточному, среднему состоянию признака. В результате может появиться несколько новых форм из одной исходной. Дарвин описывал действие дизруптивного отбора, считая, что он лежит в основе дивергенции , хотя и не мог привести доказательств его существования в природе. Дизруптивный отбор способствует возникновению и поддержанию полиморфизма популяций, а в некоторых случаях может служить причиной видообразования.

Одна из возможных в природе ситуаций, в которой вступает в действие дизруптивный отбор, - когда полиморфная популяция занимает неоднородное местообитание. При этом разные формы приспосабливаются к различным экологическим нишам или субнишам.

Примером дизруптивного отбора является образование двух рас у погремка большого на сенокосных лугах. В нормальных условиях сроки цветения и созревания семян у этого растения покрывают всё лето. Но на сенокосных лугах семена дают преимущественно те растения, которые успевают отцвести и созреть либо до периода покоса, либо цветут в конце лета, после покоса. В результате образуются две расы погремка - ранне- и позднецветущая.

Дизруптивный отбор осуществлялся искусственно в экспериментах с дрозофилами. Отбор проводился по числу щетинок, оставлялись только особи с малым и большим количеством щетинок. В результате примерно с 30-го поколения две линии разошлись очень сильно, несмотря на то, что мухи продолжали скрещиваться между собой, осуществляя обмен генами. В ряде других экспериментов (с растениями) интенсивное скрещивание препятствовало эффективному действию дизруптивного отбора.

Половой отбор

Половой отбор - это естественный отбор на успех в размножении. Выживание организмов является важным, но не единственным компонентом естественного отбора. Другим важным компонентом является привлекательность для особей противоположного пола. Дарвин назвал это явление половым отбором. «Эта форма отбора определяется не борьбой за существование в отношениях органических существ между собой или с внешними условиями, но соперничеством между особями одного пола, обычно самцами, за обладание особями другого пола». Признаки, которые снижают жизнеспособность их носителей, могут возникать и распространяться, если преимущества, которые они дают в успехе размножения, значительно выше, чем их недостатки для выживания.

Распространены две гипотезы о механизмах полового отбора.

  • Согласно гипотезе «хороших генов», самка «рассуждает» следующим образом: «Если данный самец, несмотря на яркое оперение и длинный хвост, сумел не погибнуть в лапах хищника и дожить до половой зрелости, значит он обладает хорошими генами, которые позволили ему это сделать. Следовательно, его стоит выбрать в качестве отца своих детей: он передаст им свои хорошие гены». Выбирая ярких самцов, самки выбирают хорошие гены для своих потомков.
  • Согласно гипотезе «привлекательных сыновей», логика выбора самок несколько иная. Если яркие самцы, по каким бы то ни было причинам, являются привлекательными для самок, стоит выбирать яркого отца для своих будущих сыновей, потому что его сыновья унаследуют гены яркой окраски и будут привлекательными для самок в следующем поколении. Таким образом, возникает положительная обратная связь , которая приводит к тому, что из поколения в поколение яркость оперения самцов все более усиливается. Процесс идет по нарастающей, пока не достигнет предела жизнеспособности.

При выборе самцов самки не задумываются о причинах своего поведения. Когда животное чувствует жажду, оно не рассуждает, что ему следует попить воды, для того чтобы восстановить водно-солевой баланс в организме - оно идет на водопой, потому что чувствует жажду. Точно так же и самки, выбирая ярких самцов, следуют своим инстинктами - им нравятся яркие хвосты. Те, кому инстинкт подсказывал иное поведение, не оставили потомства. Логика борьбы за существование и естественного отбора - логика слепого и автоматического процесса, который, действуя постоянно из поколения в поколение, сформировал то удивительное разнообразие форм, окрасок и инстинктов, которое мы наблюдаем в мире живой природы.

Методы селекции: положительный и отрицательный отбор

Существует две формы искусственного отбора: Положительный и Отсекающий (отрицательный) отбор.

Положительный отбор увеличивает в популяции число особей, обладающих полезными признаками, повышающими жизнеспособность вида в целом.

Отсекающий отбор выбраковывает из популяции подавляющее большинство особей, несущих признаки, резко снижающие жизнеспособность при данных условиях среды. С помощью отсекающего отбора из популяции удаляются сильно вредные аллели. Также отсекающему отбору могут подвергаться особи с хромосомными перестройками и набором хромосом, резко нарушающими нормальную работу генетического аппарата.

Роль естественного отбора в эволюции

На примере рабочего муравья мы имеем насекомое, чрезвычайно отличающееся от своих родителей, тем не менее, абсолютно бесплодное и, следовательно, не могущее передавать из поколения в поколение приобретённые модификации строения или инстинктов. Можно задать хороший вопрос - насколько возможно согласовать этот случай с теорией естественного отбора?

- Происхождение видов (1859)

Дарвин предполагал, что отбор может применяться не только к индивидуальному организму, но и к семейству. Он также говорил, что, возможно, в той или иной мере это может объяснять и поведение людей. Он оказался прав, однако предоставить более расширенное представление этой концепции стало возможно только после появления генетики. Первый набросок «теории родственного отбора» сделал английский биолог Уильям Гамильтон в 1963 году, который первым предложил рассматривать естественный отбор не только на уровне индивида или целого семейства, но и на уровне гена .

См. также

Примечания

  1. , с. 43-47.
  2. , p. 251-252.
  3. Orr H. A. Fitness and its role in evolutionary genetics // Nature Reviews Genetics. - 2009. - Vol. 10, no. 8. - P. 531-539. - DOI :10.1038/nrg2603 . - PMID 19546856 .
  4. Haldane J. B. S. The theory of natural selection today // Nature . - 1959. - Vol. 183, no. 4663. - P. 710-713. - PMID 13644170 .
  5. Lande R., Arnold S. J. The measurement of selection on correlated characters // Evolution. - 1983. - Vol. 37, no. 6. - P. 1210-1226. -