Генетическое равновесие и его нарушение. Причины нарушения генетического равновесия


ГЕНОФОНД – сумма всех генотипов, представленных в популяции. Закономерности изменения генофонда популяции: постоянство частот аллелей различных генов ГЕНЕТИЧЕСКОЕ РАВНОВЕСИЕ (постоянство частот аллелей различных генов) в популяциях, живущих изолированно, в условиях слабого давления естественного отбора




Закон Харди-Вайнберга Частота генов (генотипов) в популяции есть величина постоянная и не изменяется из поколения в поколение. Равновесие генных частот: р рq + q 2 = 1, где р 2 - частота доминантных гомозигот (АА); 2 рq - частота гетерозигот (Аа); q 2 - частота рецессивных гомозигот (а).


Биологическая задача на закрепление закона а) б) В популяции озерной лягушки появилось потомство лягушат с темными пятнами (доминантный признак) и 320 лягушат со светлыми пятнами. Определить а) частоту встречаемости доминантного и рецессивного генов пятнистости б) число гетерозигот среди лягушат с темными пятнами = 2000 особей всего в популяции. - частота встречаемости гомозигот по рецессиву. р = 1 - q = 1 - 0,4 = 0,6 - частота встречаемости гомозигот по доминанте. 2 рq = 2 х 0,6 х 0,4 = 0,48 = 48% из 1680 будет гетерозигот. частота гетерозигот р рq + q 2 = 1 = 2000






Причины нарушения генетического равновесия 3. При распаде популяции на две неравных части непреодолимыми барьерами (При малом количестве особей одной из популяций ее генофонд по составу может отличаться от прежнего. Редкие аллели могут стать обычными и наоборот).




Решение задач на закон Харди-Вайнберга 1. Альбинизм у ржи наследуется как аутосомный рецессивный признак. На обследовании участка из растений обнаружено 210 альбинизма. Определите частоту генов альбинизма у ржи. Дано: а – альбинизм А – норма Альб 210 норма 8400 Частота q(а) - ? = (р+q) 2 = р рq + q 2 = 1 или = 5% (0,05 х 100%) q2q2 = q== = =0,05 Ответ: Частота встречаемости гена альбинизма (а) - 0,05 или 5%


Решение задач на закон Харди-Вайнберга 2. На одном из островов было отстреляно лисиц. Из них оказалось 9991 рыжих и 9 белых. Рыжий цвет доминирует над белым. Определите процентное содержание рыжих гомозиготных, рыжих гетерозиготных лисиц и белых лисиц. Дано: А – рыжие а – белые q 2, 2pq, p 2 - ? (р+q) 2 = р рq + q 2 = 1 р = 1 - 0,03 = 0,97 q2q2 = q = = = 0,03 = 0,0009 = 0,09% р 2 = 0,97 2 = 0,9409 = 94% 2 рq = 2 х 0,97 х 0,03 = 0,0582 = 5,8% Ответ: а – 0,03%; Аа – 5,8%; АА – 94%


Решение задач на закон Харди-Вайнберга 3. Альбинизм наследуется как рецессивный аутосомный признак. Заболевание встречается с частотой 1: Вычислите процентное количество гетерозигот в популяции. Дано: а – альбинизм А – норма Альб 1 норма Частота 2 рq - ? = (р+q) 2 = р рq + q 2 = 1 р = 1 – 0,0071 = 0,9924 q2q2 = q = = 0,0071 Ответ: кол-во гетерозигот в популяции – 1,4% = 2 рq = 2 х 0,0071 х 0,9924 = 0,014 = 1,4%


Решение задач на закон Харди-Вайнберга 4. Алькаптонурия наследуется как аутосомный рецессивный признак. Заболевание встречается с частотой 1:1000. Вычислите количество гетерозигот в популяции. Дано: А – норма а – алькаптонурия Альк 1 норма Частота 2 рq - ? = (р+q) 2 = р рq + q 2 = 1 р = 1 – 0,01 = 0,99 q2q2 = q = = 0,01 Ответ: кол-во гетерозигот в популяции – 1,9% = 2 рq = 2 х 0,01 х 0,99 = 0,0198 = 1,9%


Решение задач на закон Харди-Вайнберга 5. Врожденный вывих бедра наследуется как доминантный со средней пенетрантностью 25%. Заболевание встречается с частотой 6: Определите число гомозиготных особей по рецессивному гену. (р+q) 2 = р рq + q 2 = 1 Дано: А – вывих а – норма А 6 а Пенетрантность 25% q 2 - ? = р рq = Ответ: число гомозигот а – 9976 особей = q 2 = = 9976 Но т.к. пенетрантность – 25% или ¼, то носителей гена будет в 4 раза больше, поэтому р рq =


Решение задач на закон Харди-Вайнберга 6. Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин подагра не проявляется, у мужчин пенетрантность состав-ляет 20%. Определите генотипическую структуру популяции по анализируе-мому признаку. (р+q) 2 = р рq + q 2 = 1 Дано: А – подагра а – норма Пенетрантность - 2%: - нет - 20% Генетич. структура популяции? 2% болеют, но только, и носителей гена из них в 5 р больше, т.к. пенетрантность 20% (100% : 20% = 5) (р+q) 2 = р рq + q 2 = 1 10% носители гена заболевания, 10% + 10%, которые носят ген, но не болеют 20% носители гена подагры


Решение задач на закон Харди-Вайнберга 7. Структура популяции по системе крови МN в % среди: Население СНГ Европейцев Папуасов MM – ,1 MN – ,6 NN – Определите частоту генов L N и L M в указанных популяциях.

  • 11.Рнк - полимеразы. Строение, виды, функции.
  • 12.Инициация транскрипции. Промотор, стартовая точка.
  • 13. Элонгация и терминация транскрипции.
  • 14. Гетерогенная ядерная днк. Процессинг, сплайсинг.
  • 15. Арс-азы. Особенности строения, функции.
  • 16.Транспортная рнк. Строение, функции. Строение рибосом.
  • 17.Синтез полипептидной молекулы. Инициация и элонгация.
  • 18.Регуляция активности генов на примере лактозного оперона.
  • 19. Регуляция активности генов на примере триптофанового оперона.
  • 20.Негативный и позитивный контроль генетической активности.
  • 21.Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.
  • 22. Гистоны. Структура нуклеосом.
  • 23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
  • 24.Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
  • 25. Хар-ка хромосомного набора человека. Денверская номенклатура.
  • 27. . Классификация мутаций по изменению силы и направленности действия мутантного аллеля.
  • 28. Геномные мутации.
  • 29. Структурные перестройки хромосом: виды, механизмы образования. Делеции, дупликации, инверсии, инсерции, транслокации.
  • 30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации.
  • 31.Физические, химические и биологические мутагены
  • 32. Механизмы репарации днк. Фотореактивация. Болезни, связанные с нарушением процессов репарации.
  • 34. Хромосомные болезни, общая характеристика. Моносомии, трисомии, нулисомии, полные и мозаичные формы, механизм нарушения распределения хромосом в первом и втором мейозе.
  • 35. Хромосомные болезни, вызванные структурными перестройками хромосом.
  • 2.2. Наследование признаков, сцепленных с полом.
  • 37. Хромосомное определение пола и его нарушения.
  • 38. Дифференцировка пола на уровне гонад и фенотипа, ее нарушения.
  • 39. Хромосомные болезни, обусловленные аномалиями половых хромосом: синдром Шерешевского - Тернера, синдром Кляйнфельтера, полисомии по х и у- хромосомам.
  • 40. Хромосомные болезни, обусловленные аномалиями аутосом: синдромы Дауна, Эдвардса, Патау.
  • 41. Сущность и значение клинико-генеалогического метода, сбор данных для составления родословных, применение генеалогического метода.
  • 42.Критерии доминантного типа наследования на родословных: аутосомные, сцепленные с х - хромосомой и голандрические признаки.
  • 43. Критерии рецессивного типа наследования на родословных: аутосомные и сцепленные с х - хромосомой признаки.
  • 44. Вариабельность в проявлении действия гена: пенетрантность, экспрессивность. Причины вариабельности. Плейотропное действие гена.
  • 45. Мгк, цель, задачи. Показание направления в мгк. Проспективное и ретроспективное консультирование.
  • 46. Пренатальная диагностика. Методы: уз, амниоцентез, биопсия ворсин хориона. Показания к пренатальной диагностике.
  • 47. Сцепление и локализация генов. Метод картирования, предложенный т. Морганом.
  • 49. Гибридные клетки: получение, характеристика, использование для картирования.
  • 50. Картирование генов с использованием морфологических нарушений хромосом (транслокаций и делеций).
  • 51. Картирование генов у человека: метод днк-зондов.
  • 53. Митоз и его биологическое значение. Проблемы клеточной пролиферации в медицине.
  • 54. Мейоз и его биологическое значение
  • 55. Сперматогенез. Цитологические и цитогенетические характеристики.
  • 56. Овогенез. Цитологические и цитогенетические характеристики.
  • 58. Взаимодействие неаллельных генов. Комплементарность.
  • 59. Взаимодействие неаллельных генов. Эпистаз, его виды
  • 60. Взаимодействие неаллельных генов. Полимерия, ее виды.
  • 61. Хромосомная теория наследственности. Полное и неполное сцепление генов.
  • 62. Зигота, морула и формирование бластулы.
  • 63. Гаструляция. Типы гаструл.
  • 64. Основные этапы эмбриогенеза. Зародышевые листки и их производные. Гисто - и органогенез.
  • 65. Провизорные органы. Анамнии и амниоты.
  • 66. Генетическая структура популяции. Популяция. Дем. Изолят. Механизмы нарушения равновесия генов в популяции.
  • 68. Генетический груз, его биологическая сущность. Генетический полиморфизм.
  • 69. История становления эволюционных идей.
  • 70. Сущность представлений Дарвина о механизмах эволюции живой природы.
  • 71. Доказательства эволюции: сравнительно-анатомические, эмбриологические, палеонтологические и др.
  • 72. Учение а.И.Северцова о филэмбриогенезах.
  • 73. Вид. Популяция - элементарная единица эволюции. Основные характеристики популяции.
  • 74. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция и их характеристика.
  • 75. Формы видообразования и их характеристика.
  • 76. Формы естественного отбора и их характеристика.
  • 78. Предмет антропологии, ее задачи и методы
  • 79. Конституциональные варианты человека в норме по Сиго.
  • 80. Конституциональные варианты человека в норме по э.Кречмеру.
  • 81. Конституциональные варианты человека в норме по в.Н.Шевкуненко и а.М.Геселевич.
  • 82.Конституциональные варианты человека в норме по Шелдону
  • 83. Доказательства животного происхождения человека.
  • 84.Место человека в системе классификации в системе животного мира. Морфо-физиологические отличия человека от приматов.
  • 85. Палеонтологические данные о происхождении приматов и человека.
  • 86. Древнейшие люди - архантропы.
  • 87. Древние люда - палеоантропы.
  • 88. Неоантропы.
  • 89.Расы - как выражение генетического полиморфизма человечества.
  • 90.Биоценоз, биотоп, биогеоценоз, компоненты биогеоценоза.
  • 91.Экология как наука. Направления экологии.
  • 93.Глобальные экологические проблемы.
  • 94.Абиотические факторы: энергия Солнца; температура.
  • 95. Абиотические факторы: осадки, влажность; ионизирующие излучения.
  • 96. Экосистема. Виды экосистем.
  • 97. Адаптивные экологические типы человека. Тропический адаптивный тип. Горный адаптивный тип.
  • 66. Генетическая структура популяции. Популяция. Дем. Изолят. Механизмы нарушения равновесия генов в популяции.

    Любая популяция представляет собой непрерывный поток поколений благодаря обмену генами, который происходит в результате скрещивания особей друг с другом. Признаки, появившиеся в ходе независимого комбинирования генов, определяют формирование фенотипа организмов и обусловливают изменчивость в популяции. В ходе естественного отбора адаптивные фенотипы сохраняются, а неадаптивные исчезают. Так формируется генетическая реакция всей популяции, которая определяет выживание данного вида. Только те особи популяции, которые выжили и оставили потомство, вносят вклад в будущее своего вида.

    Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формахназываемых аллелями. Число особей в конкретной популяции, несущих определенный аллель, определяет частоту данного аллеля. Например, частота рецессивного аллеля отсутствия пигментации кожи (альбинизма) человека составляет 1 % (или 0,01), а доминантного аллеля, определяющего нормальную пигментацию кожи, 99 % (или 0,99). Если обозначить символом р частоту доминантного аллеля, а символом q - рецессивного аллеля, то

    р + q = 1, т.е. 0,99 + 0,01 = 1.

    Зная частоту одного аллеля, по этому уравнению легко определить частоту другого.

    Если известны частоты отдельных аллелей в генофонде популяции, можно рассчитать и частоты контролируемых аллелями одного гена генотипов.

    ПОПУЛЯЦИЯ , совокупность особей одного вида с общим генофондом. в течение большого числа поколений населяющая определённое пространство или объём (водный) с относительно однородными условиями обитания и относительно обособленная (изолированная) от других совокупностей этого вида. Особи популяции свободно скрещиваются между собой. В составе вида, занимающего определённый ареал, может быть одна (редко), несколько или много популяций. Подходящие для жизни места обитания хоть и встречаются часто в пределах ареала вида, но, как правило, не покрывают весь ареал, напр., двудомная крапива распространена широко, но встречается только во влажных тенистых местах с плодородными почвами. Бабочка капустная белянка и её гусеницы встречаются там, где выращивается капуста, – на огородах и полях, а поселения европейского крота, хорошо заметные по выбросам земли, можно увидеть на лесных опушках и лугах.

    Популяция представляет собой не хаотическое скопление особей, а устойчивое, имеющее определённую структуру образование. Особи популяции различаются по возрасту, полу, генотипу. но тесно связаны между собой. Большинство связей направлено на воспроизводство популяции, что определяется, прежде всего, взаимоотношениями между полами и возрастными группами. Длительное устойчивое существование популяции зависит от численности особей в ней. Однако численность для каждого вида различна, напр., численность популяции африканского слона может быть в несколько десятков особей, а атлантической сельди – в несколько тысяч. Численность популяции постоянно колеблется, но популяция не может длительно существовать, если её численность будет ниже некоторого предела, характерного для каждого вида. Внутри популяции случайное свободное скрещивание и «перемешивание» генофонда осуществляется легче и чаще, чем между различными территориально разобщёнными популяциями. Поэтому генотипическое сходство внутри популяции гораздо выше, чем за её пределами. Оно нарушается при возникновении у отдельных особей наследственных изменений (мутаций), которые в результате свободного скрещивания распространяются в популяции, что ведёт к её генетической гетерогенности (разнородности) и создаёт условия для действия естественного отбора. Таким образом, эволюционный процесс начинается с элементарных генетических событий в популяциях – микроэволюций. которые лежат в основе макроэволюционных процессов.

    67. Закон Харди - Вайнберга, его значение Харди - Вайнберга закон, закон популяционной генетики, устанавливающий соотношение между частотами генов и генотипов в популяции со свободным скрещиванием. Сформулирован в 1908 независимо английским математиком Г. Харди и немецким врачом В. Вайнбергом. Закон утверждает, что если численность популяции диплоидных организмов настолько велика, что можно пренебречь случайными флуктуациями частот генов (генетико-автоматические процессы), если в ней отсутствуют мутации, миграция и отбор (по изучаемому гену), то частоты генотипов AA, Aa и aa в популяции остаются одинаковыми из поколения в поколение (после первого) и удовлетворяют соотношениям Харди - Вайнберга: p2(AA): 2pq (Aa): q2(aa), где А и а - аллели несцепленного с полом гена, p - частота аллеля А, q - частота аллеля а. Х. - В. з. распространяется и на случай многоаллельного гена. В популяциях полиплоидных организмов (а также в популяциях диплоидов - для генов, сцепленных с полом) соответствующие соотношения устанавливаются лишь через большое число поколений. Если в популяции выполняются соотношения Х. - В. з., то это не свидетельствует ещё об отсутствии популяционно-генетических процессов. Например, скрещивание близкородственных особей (инбридинг), способствующее увеличению доли гомозигот в популяции, в сочетании с отбором против гомозигот может привести к частотам генотипов, удовлетворяющим соотношениям Х. - В. з. Сопоставление фактически наблюдаемых частот генотипов с теоретически ожидаемыми по Х. - В. з. в ряде случаев позволяет оценить частоты аллелей, вычленить влияющие на них факторы и получить количественные характеристики отбора, неслучайности скрещивания, миграции, случайных флуктуаций и т.п. Представление о генетическом равновесии в популяциях, впервые нашедшем выражение в Х. - В. з., составляет основу современной концепции о взаимодействии популяционно-генетических процессов.

    Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формах, называемых аллелями. В пределах генофонда популяции число особей, несущих определенный аллель, определяет частоту данного аллеля. Т.о., можно сказать, что генетическую структуру популяции характеризуют частоты аллелей и частоты генотипов.

    Ранее сложно было определить частоту встречаемости тех или иных генов (генотипов) в популяции. С переоткрытием законов Менделя, за год до того, как Иогансон в 1909 году предложил назвать менделевские наследственные факторы "генами", независимо друг от друга английский математик Г. Харди и немецкий врач В. Вайнберг изучая математическую модель популяции установили, что частоты членов пары аллельных генов в популяции распределяются в соответствии с коэффициентами разложения бинома Ньютона, соотношение одной пары альтернативных генов В и b постоянны из поколения в поколение и в последующих поколениях выражаются формулой

    р 2 + 2pq + q 2 = 1,

    Где р - пропорция (частота) доминантного гена, q - частота рецессивного гена а в популяции.

    То есть, если мы помножим бином, члены которого представляют собой частоты генов B и b для совокупности сперматозоидов (частота гена B + частота гена b), на другой такой же бином для совокупности яйцеклеток, то получим разложение бинома Ньютона - выражение, члены которого будут соответствовать частотам различных генотипов в потомстве (частота BB + частота Bb + частота bb):

    Это совершенно аналогично операции для предсказания генотипов потомства от того или иного скрещивания, с той лишь разницей, что теперь перед символом каждого гена ставится дробь, равная частоте этого гена в популяции; например: (1/2 B + 1/2 b) X (1/2 B + 1/2 b) = 1/4 BB + 1/2 Bb + 1/4 bb

    При таких расчетах частоты генов обычно выражают десятичными дробями, так как их проще умножать.

    Эта сформулированная зависимость позже была названа равновесием (правилом, законом) Харди-Вайнберга: относительные частоты доминантного и рецессивного аллелей и генотипов в данной популяции постоянны из поколения в поколение при свободном скрещивании особей и отсутствии в популяции мутационного процесса .

    Ж B(р) b(q)
    M
    B(р) BB (p 2) Bb (pq)
    b(q) Bb (pq) bb (q 2)
    Поскольку гамет, несущих ген А и несущих ген а, поровну,то:
    B (р=1/2) b (q=1/2)
    B (р=1/2) 1/4BB 1/4Bb
    b (q=1/2) 1/4Bb 1/4bb

    Предположим, что в популяции происходит свободное скрещивание самца коричневой рецессивной гомозиготной морской свинки с черной доминантной гомозиготной самкой, отличающихся по одной паре аллелей ВВ и bb. В мейозе у самца два гена bb разойдутся так, что каждый сформированный сперматозоид будет содержать только один ген b, а в мейозе у самки разойдутся гены ВВ и в каждую яйцеклетку попадет лишь один ген В (рис.1). В результате оплодотворения такой яйцеклетки сперматозоидом с геном b получатся гетерозиготные животные с генетической формулой Вb - первое гибридное поколение F 1 , т.е. такая морская свинка будет содержать доминантный ген В и рецессивный ген b, и будет черной окраски.

    При скрещивании двух гетерозиготных черных морских свинок происходит следующее. В мейозе хромосома, содержащая ген В, и хромосома, содержащая ген b, сначала конъюгируют, а затем расходятся, так что каждый сперматозоид и каждая яйцеклетка получают либо ген В, либо ген b, но никогда не получают одновременно оба эти гена. Сперматозоиды и яйцеклетки, содержащие ген В и соответственно ген b, образуются в равном числе. Между яйцеклетками и сперматозоидами, содержащими одинаковые гены, нет ни какого-либо особого притяжения, ни отталкивания; яйцеклетка с геном В с одинаковой вероятностью может быть оплодотворена как сперматозоидом, содержащим ген В, так и сперматозоидом, содержащим ген b.

    Чтобы наглядно представить все возможные комбинации, чертят "решетку", вдоль верхней стороны которой выписывают все возможные типы яйцеклеток, а вдоль левой - все возможные типы сперматозоидов, клетки же заполняют всеми возможными их сочетаниями в зиготе (рис.1.). Три четверти всех потомков будут ВВ или Вb и потому будут иметь черную окраску; одна четверть будет bb, и эти особи будут коричневыми. Это фенотипическое отношение 3: 1 характерно для потомков второго гибридного поколения (F 2), полученного от скрещивания особей, различающихся по одному признаку, обусловленному одной парой генов. Генотипическое отношение при этом будет 1ВВ:2Вb:1bb. Потомки от их скрещивания между собой - гибридное поколение F 3 и т.д. будут иметь аналогичные генотипы в аналогичном соотношении согласно закону Харди-Вайнберга.

    Доказательство закона Харди-Вайнберга

    Обозначим частоту доминантного аллеля В через р, т.е. р - вероятность иметь доминантный аллель В в наугад выбранной хромосоме. Тогда, вероятность иметь рецессивную аллель b будет 1-р, которое обозначим через q (1-р=q). Соответственно вероятности для особи (одного родителя) иметь частоту аллелей будет BB = p 2 , bb = (1-р) 2 = (q 2), Bb = 2p(1-p) = 2pq.

    Пусть количество гамет, несущих ген В и несущих ген b, будет поровну 1/2 В и 1/2 b. Тогда, соответственно, вероятность для одного родителя иметь частоту аллелей будет: BB = 1/4, bb = 1/4, Bb = 1/2

    Таким образом, берем популяцию в которой генотипы представлены в отношении 1/4 ВВ: 1/2 Bb: 1/4 bb. Если все члены популяции выбирают себе партнеров независимо от того, имеют ли они генотип BB, Bb или bb, и если все пары производят приблизительно одинаковое число потомков, то и в последующих поколениях соотношение генотипов потомков будет аналогичным: 1/4 BB: 1/2 Bb: 1/4 bb (табл. 1).

    Таб. 1. Потомство свободно скрещивающейся популяции
    состава 1/4 BB: 1/2 Bb: 1/4 bb
    Скрещивание Частота Потомство
    самец самка
    BB Х BB 1/4 Х 1/4 1/16 BB
    BB X Bb 1/4 X 1/2 1/16 BB + 1/16 Bb
    BB Х bb 1/4 Х 1/4 1/16 Bb
    Bb Х BB 1/2 Х 1/4 1/16 BB + 1/16 Bb
    Bb Х Bb 1/2 Х 1/2 1/16 BB + 1/8 Bb + 1/16 bb
    Bb Х bb 1/2 X 1/4 1/16 Bb + 1/16 bb
    bb Х BB 1/4 Х 1/4 1/16 Bb
    bb Х Bb 1/4 X 1/2 1/16 Bb + 1/16 bb
    bb Х bb 1/4 Х 1/4 1/16 bb
    Всего: 4/16 BB + 8/16 Bb + 4/16 bb

    В только что рассмотренном примере мы приняли, что исходная популяция имела состав 1/4 BB: 1/2 Bb: 1/4 bb. Мы может представить эти отношения в общей форме, обозначив частоту гена B в популяции через р и частоту гена b через q. Поскольку каждый ген должен быть либо B либо b, то р + q = 1, и, зная одну из этих величин, мы можем вычислить другую.

    Учитывая все скрещивания, происходящие в данном поколении, мы видим, что р яйцеклеток, содержащих ген B, и яйцеклеток, содержащих ген b, оплодотворяются р сперматозоидами, содержащими ген B, и q сперматозоидами, содержащими ген b:

    (рB + qb) X (рB + qb)

    Соотношение типов потомков, возникающих в результате всех этих скрещиваний, дается алгебраическим выражением:

    р 2 BB + 2рqBb + q 2 bb.

    Если р - частота гена B - равна 1/2, то q - частота гена b - равна (1-р), т.е. 1 - 1/2 = 1/2.

    По формуле частота генотипа BB, т. е. р 2 , равна (1/2) 2 =1/4, а частота генотипа Bb, т. е. 2рq, равна 2 X 1/2 X 1/2 = 1/2; частота генотипа bb, т. е. q 2 2, равна (1/2) 2 , или 1/4. Любая популяция, в которой распределение аллелей B и b соответствует отношению р 2 BB + 2рqBb + q 2 bb, находится в генетическом равновесии. Относительные частоты этих аллелей в последующих поколениях будут такими же (если они не изменятся под действием отбора или в результате мутаций).

    Отсюда следует, что если р 2 - частота генотипа BB - или q 2 - частота генотипа bb - известна, то можно подсчитать частоту других генотипов. Чтобы определить число людей в популяции, являющихся носителями данного признака, нужно только знать, связано ли его наследование с одной парой генов, и установить частоту появления индивидуумов, гомозиготных по рецессивному признаку.

    Доказанное положение о неизменности соотношения между определенными аллелями в последовательных поколениях остается справедливым при любом исходном соотношении, которое может быть различно в разных генофондах. Например, в рассмотренной выше популяции аллели B и b находятся в отношении 0,5: 0,5, в другой популяции они могут находиться в отношении 0,7: 0,3. Если в этой второй популяции все особи имеют равные шансы достигнуть половой зрелости и равные возможности для образования гамет, то 70% сперматозоидов, произведенных всеми самцами, будут содержать ген В и 30% - ген b. Точно так же 70% яйцеклеток, образовавшихся у всех самок, будут иметь ген B и 30% - ген b. При случайном соединении этих яйцеклеток со сперматозоидами соотношение различных генотипов в потомстве составит 0,49 BB + 0,42 Bb + 0,09 bb:

    Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов
    Ж B(р=0,7) b(q=0,3)
    M
    B(р=0,7) BB (p 2 =0,49) Bb (pq=0,21)
    b(q=0,3) Bb (pq=0,21) bb (q 2 =0,09)

    При этом генофонд потомства будет совершенно идентичен генофонду родительского поколения!

    В более общей форме это можно представить формулой (рB + qb) 2 , где р - частота одного аллеля (в нашем примере 0,7 для гена B), а q - частота другого аллеля (0,3 для гена b). Умножение (рB + qb) X (рB + qb) дает р 2 BB + 2рqBb + q 2 bb. Поскольку в нашем случае р = 0,7, то р 2 = 0,7 х 0,7 = 0,49; это и будет частота генотипа BB.

    Так же находим частоту генотипа bb: q = 0,3, q 2 = 0,3 X 0,3 = 0,09; наконец, частота гетерозигот Bb равна 2рq = 2 X 0,7 X 0,3 = 0,42.

    Путем аналогичных расчетов можно показать, что и следующее поколение, и каждое из дальнейших поколений будут иметь такой же генофонд (0,7 B + 0,3 b) и между всеми тремя генотипами сохранится то же соотношение (0,49 BB: 0,42 Bb: 0,09 bb). Однако это равновесие верно лишь при следующих условиях:

    1. размеры популяции велики, так что случайные отклонения не оказывают влияния на частоты генов;
    2. особи с тремя различными генотипами имеют равные шансы выжить, найти партнера для размножения и оставить потомство;
    3. скрещивание происходит случайным образом; выбор партнеров не зависит от их генотипа;
    4. гены B и b не мутируют;
    5. популяция изолирована, т.е. отсутствует обмен генами с другими популяциями.

    При соблюдении этих условий популяция будет находиться в состоянии генетического равновесия и никаких эволюционных изменений происходить не будет.

    В природе таких популяций практически не существует. Размеры популяций разных видов обычно сильно различаются. Например, у малоподвижных животных, таких как слизни, небольшие по размеру популяции формируются недалеко друг от друга, если имеется изолирующий их барьер (например ручьи, реки или высокая изгородь), который они не могут преодолеть.

    Не происходит в природе и случайных скрещиваний. В большинстве случаев они избирательны. Так, быстрее других будут опылены насекомыми цветки с наиболее яркими лепестками и большим количеством нектара. Самки птиц, млекопитающих спариваются с более сильным и здоровым самцом. Отстранение от размножения слабых особей уменьшает их шанс в передаче аллелей последующим поколениям.

    Генетическая структура популяции может изменяться под влиянием различных факторов, например мутаций генов, в результате чего равновесие Харди-Вайнберга нарушается.

    Т.о., с помощью формулы Харди-Вайнберга можно определить ожидаемые частоты генов, генотипов и фенотипов в поколениях свободно скрещивающейся популяции. Численные значения р и q, вычисленные по формуле Харди-Вайнберга, как правило, бывают близкими к фактическим.

    Если известна частота встречаемости рецессивных гомозигот (q) в популяции, можно вычислить

    • частоту доминантных гомозигот (р = 1 - q)
    • частоту гетерозигот (2рq)
    • частоту рецессивного аллеля: b = √ q
    • частоту доминантного аллеля: B = 1 - √ q
    • частоту доминантной гомозиготы (вариант 2): BB = B 2
    • частоту гетерозиготы (вариант 2): Bb = 2 х √ q х (1-√ q )

    Расчеты показывают, что в последующих поколениях в популяции сохраняется равновесное распределение частот генов. Но это равновесное соотношение наблюдается в достаточно многочисленной популяции с одинаковой жизнеспособностью гомо- и гетерозиготных особей. В такой модельной популяции не возникают мутации (или ими можно пренебречь) и не проявляется действие отбора, уничтожающего особей определенного генотипа. При этих условиях будет воспроизводиться один и тот же генотип, т. е. сохраняться определенное генетическое равновесие в последующих поколениях.

    Правило Харди-Вайнберга, позволяя дать количественную оценку генетической изменчивости популяций, указывает на постоянно существующие в популяции потенциальные возможности для ее стабильности, которая нарушается факторами природной среды. Наличие в популяции значительной доли рецессивных аллелей в гетерозиготном состоянии позволяет им сохраниться, так как они фенотипически не проявляются, а, следовательно, надежно укрыты и поэтому не устраняются из популяции. Таким образом, природная популяция является генетически гетерогенной. Гетерогенность популяции возникает и поддерживается за счет появления время от времени новых мутаций и генетической рекомбинации у видов с половым размножением.

    Дополнительно : определение частоты носителей гена -

    Генетическое равновесие genetic equilibrium - генетическое равновесие.

    Поддержание в ряду последовательных поколений относительных частот аллелей данного гена при отсутствии направленного действия отбора на какой-либо из генотипов.

    (Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


    Смотреть что такое "генетическое равновесие" в других словарях:

      генетическое равновесие - Поддержание в ряду последовательных поколений относительных частот аллелей данного гена при отсутствии направленного действия отбора на какой либо из генотипов. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь генетических терминов… … Справочник технического переводчика

      ГЕНЕТИЧЕСКОЕ РАВНОВЕСИЕ - Состояние равновесия в соотношении частот аллелей в одном или нескольких локусах популяции (стада). Оно достигается относительно быстро, при этом мутационное и селекционное давление взаимно сбалансированы. В стадах с. х. животных правильнее… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

      Популяционное равновесие частот генов - * папуляцыйная раўнавага частот генаў * population equilibrium of gene frequencies состояние равновесия в соотношении частот различных аллелей во всех генетических локусах популяции (), которого она достигает относительно быстро и при котором… …

      Стабильное равновесие - * стабільная раўнавага * stable equilibrium равновесие частот аллелей к. л. генетического локуса, которое восстанавливается в популяции после временного нарушения этого равновесия. Напр., локус, проявляющий сверхдоминантный эффект, поддерживает… … Генетика. Энциклопедический словарь

      Популяционный гомеостаз генетический г - Популяционный гомеостаз, генетический г. * папуляцыйны гамеастаз, генетычны г. * population homoeostasis or genetic h. способность популяции к саморегуляции, которая выражается в том, что определенная часть генов после временных нарушений… … Генетика. Энциклопедический словарь

      Genetic equilibrium. См. генетическое равновесие. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

      значение потенциальное - Смысловая возможность, содержащаяся в слове, проявляющаяся при контекстном употреблении в синтагматике: Волк – санитар природы. Потенциальный компонент значения слова волк – «зверь, уничтожающий наиболее слабых, больных животных, способных… … Термины и понятия лингвистики: Лексика. Лексикология. Фразеология. Лексикография

      значение потенциальное - Смысловая возможность, содержащаяся в слове, проявляющаяся при контекстном употреблении в синтагматике: Волк санитар природы. Потенциальный компонент значения слова волк – зверь, уничтожающий наиболее слабых, больных животных, способных нарушить… … Словарь лингвистических терминов Т.В. Жеребило

      Популяционные волны в численности в жизни - Популяционные волны, в. численности, в. жизни * папуляцыйныя хвалі, х. колькасці, х. жыцця * population waves or population fluctuations or number f. or life w. присущие всем видам () периодические и непериодические изменения численности особей… … Генетика. Энциклопедический словарь

      генетическая терапия ex vivo - * генетычная тэрапія ex vivo * gene therapy ex vivo генотерапия на основе изоляции клеток мишеней пациента, их генетической модификации в условиях культивирования и аутологичной трансплантации. Генетическая терапия с использованием зародышевой… … Генетика. Энциклопедический словарь

    Генофонд

    Для того, чтобы понимать, о чем идет речь, надо знать определения.

    Генофонд - это совокупность генотипов всех особей популяции.

    Популяция - это группа одновидовых организмов, занимающих определенный участок территории внутри ареала, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций. популяция генофонд мутация

    Мутационный процесс - источник наследственной изменчивости.

    Генетическое равновесие в популяциях

    Частота встречаемости различных аллелей в популяции определяется частотой мутаций, давлением отбора, а иногда и обменом наследственной информации с другими популяциями в результате миграций особей. При относительном постоянстве условий и высокой численности популяции все указанные процессы приводят к состоянию относительного равновесия. В результате генофонд таких популяций становится сбалансированным, в нем устанавливается генетическое равновесие, или постоянство частот встречаемости различных аллелей.

    Причины нарушения генетического равновесия

    Приведенные ранее пример с действием инсектицидов говорит о том, что действие естественного отбора приводит к направленным изменениям генофонда популяции - повышению частот "полезных" генов. Происходят микроэволюционные изменения. Однако изменения генофонда могут носить и ненаправленный, случайный характер. Чаще всего они связаны с колебаниями численности природных популяций или с пространственным обособлением части организмов данной популяции.

    Изменения генофонда могут быть направленными и ненаправленными, случайные изменения могут происходить вследствие разных причин. Одной из существенных причин, ведущих к изменению частот аллелей и генотипов в популяциях, служит поток генов, или миграция особей (семян, спор, пыльцы). Чем выше интенсивность миграции и чем больше разница в частотах аллелей, тем больше ее воз- действие на популяционное равновесие и генотипические частоты. Нечасто популяции представляют собой совершенно закрытые системы. Обычно между ними происходит обмен генами, величина которого зависит от пространственной близости и других причин.

    Прекращение потока генов из популяции в популяцию может быть результатом различных событий и иметь неодинаковые эволюционные последствия. В таких случаях имеют место полирующие механизмы, связанные с резким ограничением или полным прекращением скрещивания с представителями разных популяций и видов.

    Примером изолирующего барьера может служить изоляция, низанная с изменениями в ландшафте: образование преград в виде рек, горных хребтов, лесных массивов и т. Д. В результате свободное скрещивание сухопутных особей затрудняется из-за водных барьеров, а особей, обитающих в воде, - из-за барьеров суши. Возвышенности изолируют равнинные участки, а равнины - горные популяции.

    Резкие колебания численности популяций, чем бы они ни были вызваны, изменяют частоту аллелей в генофонде популяций. При создании неблагоприятных условий и сокращении численности популяции из-за гибели особей может происходить утрата некоторых генов, особенно редких. В целом, чем меньше численность популяции, тем выше вероятность потери редких генов, тем большее влияние оказывают на состав; генофонда случайные факторы. Периодические колебания численности свойственны почти всем организмам. Эти колебания изменяют частоту генов в популяциях, возникающих на смену друг другу.

    Примером являются некоторые насекомые; только малое их количество выживает после зимы. Эта малая доля дает начало новой летней популяции, ее генофонд часто отличается от генофонда популяции, существовавшей год назад.

    Случайное, ненаправленное изменение частот аллелей в малых популяциях Н.П. Дубинин и Д.Д. Ромашов назвали генетико-автоматическими процессами. Независимо от них американец С. Райт и англичанин Р. Фишер назвали это явление генетическим дрейфом.