Хлористый водород: формула, получение, физические и химические свойства, техника безопасности.

ОПРЕДЕЛЕНИЕ

Хлороводород (хлороводородная кислота, соляная кислота) - сложное вещество неорганической природы, которое может существовать как в жидком, так и в газообразном состоянии.

Во втором случае оно представляет собой бесцветный газ, хорошо растворимый в воде, а в первом - раствор сильной кислоты (35-36%). Строение молекулы хлороводорода, а также её структурная формула приведены на рис. 1. Плотность - 1,6391 г/л (н.у.). Температура плавления равна - (-114,0 o С), кипения - (-85,05 o С).

Рис. 1. Структурная формула и пространственное строение молекулы хлороводорода.

Брутто-формула хлороводорода - HCl. Как известно, молекулярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Молярная масса (М) - это масса 1 моль вещества. Легко показать, что численные значения молярной массы М и относительной молекулярной массы M r равны, однако первая величина имеет размерность [M] = г/моль, а вторая безразмерна:

M = N A × m (1 молекулы) = N A × M r × 1 а.е.м. = (N A ×1 а.е.м.) × M r = × M r .

Это означает, что молярная масса хлороводорода равна 36,5 г/моль .

Молярную массу вещества в газообразном состоянии можно определить, используя понятие о его молярном объеме. Для этого находят объем, занимаемый при нормальных условиях определенной массой данного вещества, а затем вычисляют массу 22,4 л этого вещества при тех же условиях.

Для достижения данной цели (вычисление молярной массы) возможно использование уравнения состояния идеального газа (уравнение Менделеева-Клапейрона):

где p - давление газа (Па), V - объем газа (м 3), m - масса вещества (г), M - молярная масса вещества (г/моль), Т - абсолютная температура (К), R - универсальная газовая постоянная равная 8,314 Дж/(моль×К).

Примеры решения задач

ПРИМЕР 1

Задание В каком из указанных веществ массовая доля элемента кислорода больше: а) в оксиде цинка (ZnO); б) в оксиде магния (MgO)?
Решение

Найдем молекулярную массу оксида цинка:

Mr (ZnO) = Ar(Zn) + Ar(O);

Mr (ZnO) = 65+ 16 = 81.

Известно, что M = Mr, значит M(ZnO) = 81 г/моль. Тогда массовая доля кислорода в оксиде цинка будет равна:

ω (O) = Ar (O) / M (ZnO) × 100%;

ω (O) = 16 / 81 × 100% = 19,75%.

Найдем молекулярную массу оксида магния:

Mr (MgO) = Ar(Mg) + Ar(O);

Mr (MgO) = 24+ 16 = 40.

Известно, что M = Mr, значит M(MgO) = 60 г/моль. Тогда массовая доля кислорода в оксиде магния будет равна:

ω (O) = Ar (O) / M (MgO) × 100%;

ω (O) = 16 / 40 × 100% = 40%.

Таким образом, массовая доля кислорода больше в оксиде магния, поскольку 40>19,75.

Ответ Массовая доля кислорода больше в оксиде магния

ПРИМЕР 2

Задание В каком из указанных соединений массовая доля металла больше: а) в оксиде алюминия (Al 2 O 3); б) в оксиде железа (Fe 2 O 3)?
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Рассчитаем массовую долю каждого элемента кислорода в каждом из предложенных соединений (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел).

Найдем молекулярную массу оксида алюминия:

Mr (Al 2 O 3) = 2×Ar(Al) + 3×Ar(O);

Mr (Al 2 O 3) = 2×27 + 3×16 = 54 + 48 = 102.

Известно, что M = Mr, значит M(Al 2 O 3) = 102 г/моль. Тогда массовая доля алюминия в оксиде будет равна:

ω (Al) = 2×Ar(Al) / M (Al 2 O 3) × 100%;

ω (Al) = 2×27 / 102 × 100% = 54 / 102 × 100% = 52,94%.

Найдем молекулярную массу оксида железа (III):

Mr (Fe 2 O 3) = 2×Ar(Fe) + 3×Ar(O);

Mr (Fe 2 O 3) = 2×56+ 3×16 = 112 + 48 = 160.

Известно, что M = Mr, значит M(Fe 2 O 3) = 160 г/моль. Тогда массовая доля железа в оксиде будет равна:

ω (O) = 3×Ar (O) / M (Fe 2 O 3) × 100%;

ω (O) = 3×16 / 160 × 100% = 48 / 160× 100% = 30%.

Таким образом, массовая доля металла больше в оксиде алюминия, поскольку 52,94 > 30.

Ответ Массовая доля металла больше в оксиде алюминия

20. Хлор. Хлороводород и соляная кислота

Хлор (Cl) – стоит в 3-м периоде, в VII группе главной подгруппы периодической системы, порядковый номер 17, атомная масса 35,453; относится к галогенам.

Физические свойства: газ желто-зеленого цвета с резким запахом. Плотность 3,214 г/л; температура плавления -101 °C; температура кипения -33,97 °C, При обычной температуре легко сжижается под давлением 0,6 МПа. Растворяясь в воде, образует хлорную воду желтоватого цвета. Хорошо растворим в органических растворителях, особенно в гексане (C6H14), в четырех-хлористом углероде.

Химические свойства хлора: электронная конфигурация: 1s22s22p63s22p5. На внешнем уровне 7 электронов. До завершения уровня нужен 1 электрон, который хлор принимает, проявляя степень окисления -1. Существуют и положительные степени окисления хлора вплоть до + 7. Известны следующие оксиды хлора: Cl2O, ClO2, Cl2O6 и Cl2O7. Все они неустойчивы. Хлор – сильный окислитель. Он непосредственно реагирует с металлами и неметаллами:

Реагирует с водородом. При обычных условиях реакция идет медленно, при сильном нагревании или освещении – со взрывом, по цепному механизму:

Хлор взаимодействует с растворами щелочей, образуя соли – гипохлориты и хлориды:

При пропускании хлора в раствор щелочи образуется смесь растворов хлорида и гипохлорита:

Хлор – восстановитель: Cl2 + 3F2 = 2ClF3.

Взаимодействие с водой:

Хлор не взаимодействует непосредственно с углеродом, азотом и кислородом.

Получение: 2NaCl + F2 = 2NaF + Cl2.

Электролиз: 2NaCl + 2H2O = Cl2 + H2 + 2NaOH.

Нахождение в природе: содержится в составе минералов: галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов.

Хлороводород HCl . Физические свойства: бесцветный газ, тяжелее воздуха, хорошо растворим в воде с образованием соляной кислоты.

хлороводородна киселина, хлороводород формула
Хло́роводоро́д, хло́ристый водоро́д (HCl) - бесцветный, термически устойчивый газ (при нормальных условиях) с резким запахом, дымящий во влажном воздухе, легко растворяется в воде (до 500 объёмов газа на один объём воды) с образованием хлороводородной (соляной) кислоты. При −85,1 °C конденсируется в бесцветную, подвижную жидкость. При −114,22 °C HCl переходит в твёрдое состояние. твёрдом состоянии хлороводород существует в виде двух кристаллических модификаций: ромбической, устойчивой ниже −174,75 °C, и кубической.

  • 1 Свойства
  • 2 Получение
  • 3 Применение
  • 4 Безопасность
  • 5 Примечания
  • 6 Литература
  • 7 Ссылки

Свойства

Водный раствор хлористого водорода называется соляной кислотой. При растворении в воде протекают следующие процессы:

Процесс растворения сильно экзотермичен. С водой HCl образует азеотропную смесь, содержащую 20,24 % HCl.

Соляная кислота является сильной одноосновной кислотой, она энергично взаимодействует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями, образуя соли - хлориды:

Хлориды чрезвычайно распространены в природе и имеют широчайшее применение (галит, сильвин). Большинство из них хорошо растворяется в воде и полностью диссоциирует на ионы. Слаборастворимыми являются хлорид свинца (PbCl2), хлорид серебра (AgCl), хлорид ртути(I) (Hg2Cl2, каломель) и хлорид меди(I) (CuCl).

При действии сильных окислителей или при электролизе хлороводород проявляет восстановительные свойства:

При нагревании хлороводород окисляется кислородом (катализатор - хлорид меди(II) CuCl2):

Концентрированная соляная кислота реагирует с медью, при этом образуется комплекс одновалентной меди:

Смесь 3 объемных частей концентрированной соляной и 1 объемной доли концентрированной азотной кислот называется «царской водкой». Царская водка способна растворять даже золото и платину. Высокая окислительная активность царской водки обусловлена присутствием в ней хлористого нитрозила и хлора, находящихся в равновесии с исходными веществами:

Благодаря высокой концентрации хлорид-ионов в растворе металл связывается в хлоридный комплекс, что способствует его растворению:

Присоединяется к серному ангидриду, образуя хлорсульфоновую кислоту HSO3Cl:

Для хлороводорода также характерны реакции присоединения к кратным связям (электрофильное присоединение):

Получение

В лабораторных условиях хлороводород получают, воздействуя концентрированной серной кислотой на хлорид натрия (поваренную соль) при слабом нагревании:

HCl также можно получить гидролизом ковалентных галогенидов, таких, как хлорид фосфора(V), тионилхлорид (SOCl2), и гидролизом хлорангидридов карбоновых кислот:

В промышленности хлороводород ранее получали в основном сульфатным методом (методом Леблана), основанном на взаимодействии хлорида натрия с концентрированной серной кислотой. настоящее время для получения хлороводорода обычно используют прямой синтез из простых веществ:

В производственных условиях синтез осуществляется в специальных установках, в которых водород непрерывно сгорает ровным пламенем в токе хлора, смешиваясь с ним непосредственно в факеле горелки. Тем самым достигается спокойное (без взрыва) протекание реакции. Водород подается в избытке (5 - 10 %), что позволяет полностью использовать более ценный хлор и получить незагрязненную хлором соляную кислоту.

Соляную кислоту получают растворением газообразного хлороводорода в воде.

Применение

Водный раствор широко используется для получения хлоридов, для травления металлов, очистки поверхности сосудов, скважин от карбонатов, обработки руд, при производстве каучуков, глутамината натрия, соды, хлора и других продуктов. Также применяется в органическом синтезе. Широкое распространие раствор соляной кислоты получил в производстве мелкоштучных бетонных и гипсовых изделий: тротуарная плитка, жби изделия и т.д.

Безопасность

Вдыхание хлороводорода может привести к кашлю, удушью, воспалению носа, горла и верхних дыхательных путей, а в тяжёлых случаях, отёк легких, нарушение работы кровеносной системы, и даже смерть. Контактируя с кожей может вызывать покраснение, боль и серьёзные ожоги. Хлористый водород может вызвать серьёзные ожоги глаз и их необратимое повреждение.

Использовался как отравляющее средство во время войн.

Примечания

  1. Хлороводород на сайте ХиМиК.ру
  2. Иногда хлористым водородом называют соляную кислоту
  3. А. А. Дроздов, В. П. Зломанов, Ф. М. Спиридонов. Неорганическая химия (в 3 т.). Т.2. - М.: Издательский центр «Академия», 2004.

Литература

  • Левинский М.И, Мазанко А. Ф., Новиков И. Н. «Хлористый водород и соляная кислота» М.:Химия 1985

Ссылки

  • Хлороводород: химические и физические свойства

П·о·р Хлорсодержащие неорганические кислоты

хлороводород, хлороводород википедия, хлороводород молекула, хлороводород формула, хлороводород химия 9 клас, хлороводородна киселина, хлороводородная кислота

Хлороводород Информацию О

51.5

-85,0 -20 1,0 14,53

При 30° жидкий хлористый водород растворяет меньше 0,1% воды. Молярная теплоемкость газообразного хлористого водорода при постоянном давлении вычисляется по формуле Ср = 6,5 + 0,001 Т.

Во влажном воздухе хлори­стый водород образует густой туман - мельчайшие капли со­ляной кислоты. Вредно дей­ствует на организм, раздражая и разрушая слизистые оболоч­ки и дыхательные пути. Пре­дельно допустимая концентра­ция НС1 в воздухе рабочей зо­ны производственных помеще­ний 0,01 мг/л (С12-0,001 мг/л).

Безводный хлористый во­дород почти не действует на металлы, соляная же кислота растворяет большинство метал­лов. В соляной кислоте устой­чивы платина, золото, тантал, ниобий, некоторые силикатные минералы (андезит, диабаз, кварц) и изделия (стекло, ке­рамика, фарфор), а также эбо­нит, резина, некоторые пласти­ческие массы, например, фао - лит, винипласт, тефлон и др. Углеродистая сталь, нагретая до 300-400°, и нержавеющие стали 1Х18Н9Т и ЭИ-496, на­гретые до 500°, удовлетвори­тельно устойчивы к соляной ки­слоте2"3. Окислы металлов превращаются газообразным хлористым водородом в хлори­ды; реакции ускоряются в при­сутствии водяного пара 4. Растворимость хлористого водорода в воде очень велика и Вильно зависит от температуры; при общем давлении 760 мм рт. ст.:

0 10 20 30 40 50 60

506,5 473,9 442,0 411,5 385,7 361,6 338,7

При парциальном давлении НС1 в газе 760 мм рт. ст. 1 л при 0° растворяет 525,2 л НС1 (в растворе 46,15 вес.% НС1), при 18° -451,2 л НС1 (в растворе 42,34 вес. % НС1). Общее давление паров и давление НС1 над соляной кислотой приведены на рис. 111 и 112. Теплоты растворения НС1 в воде могут быть вычислены с Помощью рис. 113.

Равновесное давление НС1 над соляной кислотой понижается при внесении в раствор CuCl, NH4CI и повышается в присутствии TiCU, SnCl2, SnCl4. Предпола­гают, что в системах CuCl - HCl - Н20, CuCl - NH4CI - - HCl - Н20, NH4C1 -HCl - -Н20 образуются соединения соответственно: 2СиС1 НС1, CuCl 2NH4C1, NH4CI «НС1 (и-зависит от температуры) 6. В системе CuCl2-НС1-Н20 при неизменной температуре давление пара Н20 уменьша­ется с возрастанием содержа­ния в растворе как НС1, так и СиС12. Это указывает на то, что в системе происходит высали­вание CuCI2 и HCI. В системе ZnCl2-HCl-Н20 взаимодей­ствие компонентов более слож­ное-в области одних концент­раций происходит высалива­ние, в области других - всали - вание отдельных компонентов6.

400

350

300

Для давления паров в системе НС1-Н20 характерен минимум, соответствующий азеотропной смеси, состав которой зависит от температуры кипения (давления). Азеотропная смесь, кипящая при

ТАБЛИЦА 29

Концентрации азеотропных растворов в системе НС1-Н20

Давление,

Давление,

Давление,

| Давление,

Мм рт. ст.

Мм рт. ст.

Мм рт. ст.

Мм рт. ст.

110° (под давлением 760 мм рт. ст.), содержит 20,24 вес. % НС1, при 75,9-22,15%, при 56,2-23,2%, при 19,9-24,6% 7 (см. также табл. 26).

Температуры кипения соляной кислоты при давлении 760 мм рт. ст. приведены в табл. 27.

Коэффициенты активности соляной кислоты приведены в Табл. 28 (см. также®).

ТАБЛИЦА 28

В системе НС1-Н20 установлено существование двух эвтектик: при -74,7° с 23,0% НС1 и при -73,0° с 26,5% НС!. Между эвтек- тиками находится ветвь кристаллизации конгруэнтно плавящегося при -70° гексагидрата НС1 6Н20. Метастабильная эвтектика лед -НС1-4Н20 находится при -87,5° и содержит 24,8% НС19.

В системе НС1-Н20 существуют кристаллогидраты10"11: НС1 8Н20, НС1 4Н20, НСЬЗНаО" (*пл -24,4°), НС1 2Н20 ,{*пл -17,7°), НС1 Н20 (/пл -15,35°). Лед кристаллизуется из.10%-ной кислоты при -20°, из 15%-ной при -30°, из 20%-ной при -60°, из 24%-ной при -80°.

Плотность соляной кислэты при 16°:

Концентрация HCl, % . . 10,17 20,01 30,56 39,11 Плотность, г/см3 1,050 1,100 1,165 1,200

Удельная теплоемкость с соляной кислоты, содержащей п мо­лей воды на 1 моль НС1 п:

П... ........... 5,2 10 ?0 50 100 290

С .............................. 0,660 0,749 0,885 0,932 0,964 0,970

Вязкость 2 н. соляной кислоты в 1,12 раза, а 12 и. кислоты в 2,14 раза больше вязкости воды.

Соляную кислоту применяют в химической промышленности для выработки хлористых солей цинка, кальция, бария, аммония и других и органических продуктов - анилина, дифениламина и про­чих, для выработки синтетического каучука (хлоропрена), краси­телей, для омыления жиров и масел. Соляную кислоту применяют йри получении гидролизного спирта и глюкозы из крахмала, в про­изводстве сахара, желатина и клея, при дублении и окраске кож, в производстве активированного угля, при крашении тканей, для травления металлов (снятия окислов с их поверхности) при метал­лообработке, в различных гидрометаллургических процессах, в гальванопластике, в нефтедобыче для увеличения дебита скважин, для консервирования кормов (в Японии) и т. д. Жидкий и газооб­разный хлористый водород применяют для гидрохлорирования раз - Личных органических соединений с целью получения хлористого этила C2HsCl, хлорвинила СН2СНС1 из ацетилена, этиленхлоргид- рина, синтетической камфоры и др.

В США производят более 1,8 мли. т в год соляной кислоты (100% НС1)17.

Выпускают несколько сортов твхничвекой соляной кислоты.(табл. 30).

ТАБЛИЦА 30

Требования к качеству соляной кислоты

Техническая

Синтетическая техническая

По ГОСТ 1382-69

По ГОСТ 857 - 69

По ГОСТ 5.1691-72 (аттестованная про­дукция)

0,005 0,003 0,0001 0,003

0,005 0,003 0.0001 0,003

0,008 0,008 0,0002 0,008

Очистка разбавленных растворов соляной кислоты (до 5 М) от

Соединений железа может быть произведена с помощью анионооб - менной смолы, которую регенерируют промывкой водой 18. Очистку концентрированной технической соляной кислоты (с концентра­цией больше 32% НС1) от ионов Fe3+, Fe2+ и S04~ - предложено про­изводить катионообменной смолой, приготовленной на основе фе­

Показана возможность очищать соляную кислоту от железа экстракцией бутилацетатом - при содержании Fe (III) 10-25 г/л Степень извлечения его превышает 99,9% 20. Летучие примеси можно выдувать из соляной кислоты воздухом.

Соляную кислоту транспортируют в стальных гуммированных цистернах и бочках и в фаолитовых контейнерах, а также в стек­лянных бутылях емкостью не более 40 л. Бутыли помещают в пле­теные из прутьев корзины или деревянные обрешетки, выложенные соломой или древесной стружкой. Хранят соляную кислоту в сталь­ных гуммированных резервуарах, а также в резервуарах, защищен­ных" фаолитом и винипластом21. Использование гуммированных цистерн и резервуаров сильно упрощается при осуществлении вул­канизации обкладки без давления при низкой температуре22.

В отдельных случаях для транспортировки и хранения НС1, а также для санитарных целей может представить интерес поглоще­ние хлористого водорода сульфатом меди или свинца, из которых он потом выделяется при нагревании23.

К техническому сульфату натрия, получаемому в соляно-суль- фатном производстве, по ГОСТ 1363-47 предъявляются следую­щие требования (в %):

I сорт II сорт

TOC o "1-3" h z Na2S04, не менее................................................................ 95 91

H2S04, не более................................................................. 1,5 3,5

NaCl » » . . ,.................................................................... 1,2 3,5

Fe » » ............................................................................. 0,2 0,25

Не растворимый в воде остаток, не более... 0,3 0,8

Цистерна с соляной кислотой

Одна из сильных одноосновных кислот и образуется при растворении газа хлороводорода (HCl) в воде, - прозрачная бесцветная жидкость с характерным запахом хлора. Разбавленная соляная кислота (также как и фосфорная) часто применяется для снятия оксидов при пайке металлов.

Иногда газообразное соединение HCl ошибочно называют соляной кислотой. HCl - это газ, который при растворении в воде образует соляную кислоту.

Хлороводород - бесцветный газ с резким удушливым запахом хлора. Он переходит в жидкое состояние при -84 0 C, а при -112 0 C - переходит в твёрдое состояние.

Хлороводород очень хорошо растворяется в воде. Так при 0 0 C в 1л воды растворяется 500л хлороводорода.
В сухом состоянии газ хлороводород достаточно инертный, но уже может взаимодействовать с некоторыми органическими веществами, например с ацетиленом (газ, который выделяется при опускании карбида в воду).

Химические свойства соляной кислоты

Химическая реакция с металлами :
2HCl + Zn =ZnCl 2 + H 2 - образуется соль (в данном случае прозрачный раствор хлорид цинка) и водород
- химическая реакция с оксидами металлов :
2HCl + CuO = CuCl 2 + H 2 O - образуется соль (в данном случае раствор соли зёленого хлорида меди) и вода
- химическая реакция с основаниями и щелочами (или реакция нейтрализации)
HCl + NaOH = NaCl + H 2 O - реакция нейтрализации, -образуется соль (в данном случае прозрачный раствор хлорид натрия) и вода.
- химическая реакция с солями (например, c мелом СaCO 3):
HCl + СaCO 3 = CaCl 2 + CO 2 + H 2 O - образуется углекислый газ, вода и прозрачный раствор хлорида кальция CaCl 2 .

Получение соляной кислоты

Соляную кислоту получают с помощью химической реакции соединения :

H 2 + Cl 2 = HCl - реакция происходит при повышенной температуре

А также при взаимодействии поваренной соли и концентрированной серной кислотой:

H 2 SO 4 (конц.) + NaCl = NaHSO 4 + HCl

В этой реакции, если вещество NaCl - в твёрдом виде, то HCl - это газ хлороводород , который при растворении в воде образует соляную кислоту

Существуют сложные химические вещества, по химическому строению сходные с соляной кислотой, но при этом содержащие в молекуле от одного до четырёх атомов кислорода. Эти вещества можно назвать кислородсодержащими кислотами . С повышением числа атомов кислорода увеличивается стойкость кислоты и её окислительная способность.

К кислородсодержащим кислотам слудующие:

  • хлорноватистая (HClO),
  • хлористая (HClO 2),
  • хлорноватая (HClO 3),
  • хлорная (HClO 4).

Каждое из этих химических сложных веществ обладает всеми свойствами кислот и способна образовывать соли. Хлорноватистая кислота (HClO) образует гипохлориты , например, соединение NaClO - гипохлорит натрия. Сама хлорноватистая кислота образуется при растворении хлора в холодной воде по химической реакции:

H 2 O + Cl 2 = HCl + HClO,

Как видите, в этой реакции образуется сразу две кислоты - соляная HCl и хлорноватистая HClO. Но последняя - нестойкое химическое соединение и постепенно переходит в соляную кислоту;

Хлористая HClO 2 образует хлориты , соль NaClO 2 - хлорит натрия;
хлорноватая (HClO 3) - хлораты , соединение KClO 3 , - хлорат калия (или бертолетова соль )- кстати, это вещество широко применяется при изготовления спичек .

И наконец самая сильная из известных одноосновных кислот - хлорная (HClO 4) - бесцветная, дымящаяся на воздухе, сильно гигроскопичная жидкость, - образует перхлораты , например, KClO 4 - перхлорат калия.

Соли, образованные хлорноватистой HClO и хлористой HClO 2 кислотами, в свободном состоянии не устойчивы и являются сильными окислителями в водных растворах. А вот соли, образованные хлорноватой HClO 3 и хлорной HClO 4 кислотами на основании щелочных металлов (например, таrже бертолетова соль KClO 3), - достаточно устойчивы и не проявляют окислительных свойств.