К слабым электролитам не относится h2s. К сильным электролитам относится кислота

ЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых проводят электрический ток.

НЕЭЛЕКТРОЛИТЫ – вещества, растворы или расплавы которых не проводят электрический ток.

Диссоциация – распад соединений на ионы.

Степень диссоциации – отношение числа продиссоциированных на ионы молекул к общему числу молекул в растворе.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы.

При написании уравнений диссоциации сильных электролитов ставят знак равенства.

К сильным электролитам относятся:

· Растворимые соли (смотри таблицу растворимости );

· Многие неорганические кислоты: HNO 3 , H 2 SO 4 ,HClO 3 , HClO 4 , HMnO 4 , HCl, HBr, HI (смотри кислоты-сильные электролиты в таблице растворимости );

· Основания щелочных (LiOH, NaOH,KOH) и щелочноземельных (Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2) металлов (смотри основания-сильные электролиты в таблице растворимости ).

СЛАБЫЕ ЭЛЕКТРОЛИТЫ в водных растворах лишь частично (обратимо) диссоциируют на ионы.

При написании уравнений диссоциации слабых электролитов ставят знак обратимости.

К слабым электролитам относятся:

· Почти все органические кислоты и вода (Н 2 О);

· Некоторые неорганические кислоты: H 2 S, H 3 PO 4 ,HClO 4 , H 2 CO 3 , HNO 2 , H 2 SiO 3 (смотри кислоты-слабые электролиты в таблице растворимости );

· Нерастворимые гидроксиды металлов (Mg(OH) 2 ,Fe(OH) 2 , Zn(OH) 2) (смотри основания- c лабые электролиты в таблице растворимости ).

На степень электролитической диссоциации влияет ряд факторов:

    природа растворителя и электролита : сильными электролитами являются вещества с ионными и ковалентными сильно-полярными связями; хорошей ионизирующей способностью, т.е. способностью вызывать диссоциацию веществ, обладают растворители с большой диэлектрической проницаемостью, молекулы которых полярны (например, вода);

    температура : поскольку диссоциация - процесс эндотермический, повышение температуры повышает значение α;

    концентрация : при разбавлении раствора степень диссоциации возрастает, а с увеличением концентрации - уменьшается;

    стадия процесса диссоциации : каждая последующая стадия менее эффективна, чем предыдущая, примерно в 1000–10 000 раз; например, для фосфорной кислоты α 1 > α 2 > α 3:

H3PО4⇄Н++H2PО−4 (первая стадия, α 1),

H2PО−4⇄Н++HPО2−4 (вторая стадия, α 2),

НPО2−4⇄Н++PО3−4 (третья стадия, α 3).

По этой причине в растворе данной кислоты концентрация ионов водорода наибольшая, а фосфат-ионов РО3−4 - наименьшая.

1. Растворимость и степень диссоциации вещества между собой не связаны. Например, слабым электролитом является хорошо (неограниченно) растворимая в воде уксусная кислота.

2. В растворе слабого электролита меньше других содержится тех ионов, которые образуются на последней стадии электролитической диссоциации

На степень электролитической диссоциации влияет также добавление других электролитов : например, степень диссоциации муравьиной кислоты

HCOOH ⇄ HCOO − + H +

уменьшается, если в раствор внести немного формиата натрия. Эта соль диссоциирует с образованием формиат-ионов HCOO − :

HCOONa → HCOO − + Na +

В результате в растворе концентрация ионов НСОО– повышается, а согласно принципу Ле Шателье, повышение концентрации формиат-ионов смещает равновесие процесса диссоциации муравьиной кислоты влево, т.е. степень диссоциации уменьшается.

Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводностиразбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь - константа диссоциации электролита, - концентрация, и - значения эквивалентной электропроводности при концентрации и при бесконечном разбавлении соответственно. Соотношение является следствием закона действующих масс и равенства

где - степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 году и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Электролитическая диссоциация воды. Водородный показатель рН Вода представляет собой слабый амфотерный электролит: Н2О Н+ + ОН- или, более точно: 2Н2О= Н3О+ + ОН- Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л =55,55 моль/л). Тогда Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW: Диссоциация воды – процесс эндотермический, поэтому с повышением температуры в соответствии с принципом Ле-Шателье диссоциация усиливается, ионное произведение возрастает и достигает при 100оС значения 10-13. В чистой воде при 25оС концентрации ионов водорода и гидроксила равны между собой: = = 10-7 моль/л Растворы, в которых концентрации ионов водорода и гидроксила равны между собой, называются нейтральными. Если к чистой воде прибавить кислоту, концентрация ионов водорда повысится и станет больше, чем 10-7 моль/л, среда станет кислой, при этом концентрация ионов гидроксила мгновенно изменится так, чтобы ионное произведение воды сохранило свое значение 10-14. Тоже самое будет происходить и при добавлении к чистой воде щелочи. Концентрации ионов водорода и гидроксила связаны между собой через ионное произведение, поэтому, зная концентрацию одного из ионов, легко вычислить концентрацию другого. Например, если = 10-3 моль/л, то = KW/ = 10-14/10-3 = 10-11 моль/л, или, если = 10-2 моль/л, то = KW/ = 10-14/10-2 = 10-12 моль/л. Таким образом, концентрация ионов водорода или гидроксила может служить количественной характеристикой кислотности или щелочности среды. На практике пользуются не концентрациями ионов водорода или гидроксила, а водородным рН или гидроксильным рОН показателями. Водородный показатель рН равен отрицательному десятичному логарифму концентрации ионов водорода: рН = - lg Гидроксильный показатель рОН равен отрицательному десятичному логарифму концентрации ионов гидроксила: рОН = - lg Легко показать, прологарифмировав ионное произведение воды, что рН + рОН = 14 Если рН среды равен 7 - среда нейтральная, если меньше 7 - кислая, причем чем меньше рН, тем выше концентрация ионов водорода. pН больше 7 – среда щелочная, чем больше рН, тем выше концентрация ионов гидроксила.

1. ЭЛЕКТРОЛИТЫ

1.1. Электролитическая диссоциация. Степень диссоциации. Сила электролитов

Согласно теории электролитической диссоциации, соли, кислоты, гидроксиды, растворяясь в воде, полностью или частично распадаются на самостоятельные частицы – ионы.

Процесс распада молекул веществ на ионы под действием полярных молекул растворителя называют электролитической диссоциацией . Вещества, диссоциирующие на ионы в растворах, называют электролитами. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами ; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами ; к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита (α) называется отношение числа его молекул, распавшихся в данном растворе на ионы (n ), к общему числу его молекул в растворе (N ), или

α = .

Степень электролитической диссоциации принято выражать либо в долях единицы, либо в процентах.

Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,03 (3%) до 0,3 (30%)-средними, менее 0,03 (3%)-слабыми электролитами. Так, для 0,1 M раствора CH 3 COOH α = 0,013 (или 1,3 %). Следовательно, уксусная кислота является слабым электролитом. Степень диссоциации показывает, какая часть растворенных молекул вещества распалась на ионы. Степень электролитической диссоциации электролита в водных растворах зависит от природы электролита, его концентрации и температуры.

По своей природе электролиты можно условно разделить на две большие группы: сильные и слабые . Сильные электролиты диссоциируют практически полностью (α = 1).

К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI , HClO 4 , H М nO 4 );

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH , NaOH , KOH , RbOH , CsOH , а также гидроксиды щелочноземельных металлов – Ba (OH ) 2 , Ca (OH ) 2 , Sr (OH ) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном в недиссоциированном состоянии (в молекулярной форме). Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S , HNO 2 , H 2 SO 3 , HCN , H 3 PO 4 , H 2 SiO 3 , HCNS , HСlO и др.);

2) вода (H 2 O );

3) гидроксид аммония (NH 4 OH );

4) большинство органических кислот

(например, уксусная CH 3 COOH, муравьиная HCOOH);

5) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости).

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация соляной кислоты (НС l ) записывается следующим образом:

HCl → H + + Cl – .

Основания диссоциируют с образованием катионов металла и гидроксид-ионов. Например, диссоциация КОН

КОН → К + + ОН – .

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато. Например,

H 2 CO 3 H + + HCO 3 – ,

HCO 3 – H + + CO 3 2– .

Первое равновесие – диссоциация по первой ступени – характеризуется константой

.

Для диссоциации по второй ступени:

.

В случае угольной кислоты константы диссоциации имеют следующие значения: K I = 4,3 × 10 –7 , K II = 5,6 × 10 –11 . Для ступенчатой диссоциации всегда K I >K II >K III > ... , т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2 → Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2– .

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Кислые соли рассматривают как продукт, получающийся из многоосновных кислот, в которых не все атомы водорода замещены на металл. Диссоциация кислых солей происходит по ступеням, например:

KHCO 3 K + + HCO 3 – (первая ступень)

Как отличать сильные электролиты от слабых? и получил лучший ответ

Ответ от Павел Бескровный[мастер]
СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов ЗНАЧЕНИЕ СТЕПЕНИ диссоциации стремится К ЕДИНИЦЕ в разбавленных растворах.
К сильным электролитам относят:
1) практически все соли;
2) сильные кислоты, например: H2SO4 (серная к-та) , HCl (соляная к-та) , HNO3 (азотная к-та) ;
3) все щёлочи, например: NaOH (гидроксид натрия) , KOH (гидроксид калия) .
СЛАБЫЕ ЭЛЕКТРОЛИТЫ при растворении в воде почти не диссоциируют на ионы. У таких электролитов ЗНАЧЕНИЕ СТЕПЕНИ диссоциации стремится К НУЛЮ.
К слабым электролитам относят:
1) слабые кислоты - H2S (сероводородная к-та) , H2CO3 (угольная к-та) , HNO2;
2) водный раствор аммиака NH3 * H2O
СТЕПЕНЬ ДИССОЦИАЦИИ - это отношение числа частиц, распавшихся на ионы (Nд) , к общему числу растворённых частиц (Nр) , (обозначается греческой буквой альфа) :
a= Nд / Nр. Электролитическая диссоциация - процесс обратимый для слабых электролитов. Электролиты надеюсь знаешь, что такое, раз спрашиваешь. Это по-проще, если по-сложней, то смотри выше (по ряду ЭО) .
Электролитическая диссоциация - процесс обратимый для слабых электролитов.
Если есть вопросы, то шли на мыло.

Электрический ток – направленное движение заряженных частиц – электронов или ионов.
Электролиты – это вещества, растворы или расплавы (в ЕГЭ чаще речь о растворах) которых проводят электрический ток, то есть содержат заряженные частицы. Свободных электронов в растворе не бывает, носителями заряда являются ионы. Электрический ток проводят расплавы веществ с ионной кристаллической решеткой.

К электролитам относятся:

  • Кислоты
  • Основания

Чем больше в растворе заряженных частиц, тем лучше он проводит электрический ток, т.е. чем больше молекул вещества диссоциирует, тем более сильным электролитом оно является.

Список сильных и слабых электролитов нужно знать наизусть!

Сильные электролиты (в растворах): 11

  • Растворимые соли

FeCl 3 , CuSO 4 , K 2 CO 3 и т.д.

  • Щелочи

8 растворимых гидроксидов: LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) 2 , Sr(OH) 2 , Ca(OH) 2 .

  • Сильные кислоты

HI, HBr, HCl, H 2 SO 4(разб) , HNO 3 , HClO 4 , HClO 3 , HMnO 4 , H 2 CrO 4

Слабые электролиты:

  • Слабые основания

нерастворимые гидроксиды, NH 3 ∙H 2 O, растворы аминов

  • Слабые кислоты и кислоты средней силы

H 3 PO 4 , HF, H 2 SO 3 , H 2 CO 3 , H 2 S, H 2 SiO 3 , органические кислоты.

  • Вода

H 2 O – очень слабый электролит, диссоциирует ничтожно мало. Чистая дистиллированная вода не проводит ток.

Неэлектролиты: большинство органических соединений, оксиды, вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи и т.д.

Сила электролита определяется степенью диссоциации. Рассмотрим соль А 2 В и кислоту Н 3 Х:

Диссоциация - всегда обратимый процесс.

Соли диссоциируют (обратимо распадаются на ионы) почти на 100%:

А 2 В ⇄ 2А + + В 2- . Так как все молекулы распались на ионы, из 1 моль АВ получилось 1 моль В 2- и 2 моль А + , то есть три моль ионов.

Многоосновные кислоты и основания диссоциируют ступенчато:

Н 3 Х ⇄ H + + H 2 X -

H 2 X - ⇄ HX 2- + H +

HX 2- ⇄X 3- + H +

При этом каждая следующая ступень диссоциации протекает хуже предыдущей, т.к. присутсвует конкурирующий процесс - обратная реакция. Порядок примерно такой: Из 1 моль молекул слабой кислоты по первой ступени диссоциировало 0,05 моль, по второй - 0,0002 моль и по третьей – 0,00000001 моль. Итого образовалось чуть больше 0,1 моль ионов.

Очевидно, этот раствор этой кислоты проводит ток хуже, чем раствор соли.

Пара вопросов для тренировки:

1) Какие частицы образутся при диссоциации нитрата натрия

а) Na + , N +5 , O -2 ; б) Na + , NO 3 - в) Na, NO 2 , O 2 г) NaNO 2 , O 2

Решение: нитрат натрия образован остатком азотной кислоты и катионом натрия. Уравнение его диссоциации: NaNO3 ⇄ Na + + NO 3 - . Ответ б).

2) В четырех пробирках находятся одномолярные растворы следующих веществ:

а) H 3 PO 4 б) Na 2 SO 4 в) NaCl г) HBr

В какой пробирке больше всего ионов?

Решение: a) ортофосфорная кислота – средней силы, диссоциирует слабо, большая часть молекул останутся в растворе молекулами.

б) сульфат натрия – соль, диссоциирует полностью, из одного моль соли олучается три моль ионов: Na 2 SO 4 ⇄ 2Na + + SO 4 2- .

в) хлорид натрия – соль, диссоциирует полностью, из одного моль соли образуется два моль ионов: NaCl ⇄ Na + + Cl - .

г) бромоводородная кислота – сильная, но диссоциирует не полностью (в отличие от солей). В реакции HBr ⇄ H+ + Br- из одного моль HBr образуется меньше двух моль ионов.

Константа гидролиза равна отношению произведения концентраций
продуктов гидролиза к концентрации негидролизованной соли.

Пример 1. Вычислить степень гидролиза NH 4 Cl.

Решение: Из таблицы находим Кд(NH 4 ОН)=1,8∙10 -3 , отсюда

Кγ=Кв/Кд к = =10 -14 /1,8∙10 -3 = 5,56∙10 -10 .

Пример 2. Вычислить степень гидролиза ZnCl 2 по 1 ступени в 0,5 М растворе.

Решение: Ионное уравнение гидролиза Zn 2 + H 2 O ZnOH + + H +

Kд ZnOH +1=1,5∙10 -9 ; hγ=√(Кв/ [Кд осн ∙Cм]) = 10 -14 /1,5∙10 -9 ∙0,5=0,36∙10 -2 (0,36%).

Пример 3. Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей: a) KCN; б) Na 2 CO 3 ; в) ZnSO 4 . Определите реакцию среды растворов этих солей.

Решение: а) Цианид калия KCN - соль слабой одноосновной кислоты (см. табл. I приложения) HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы К + и анионы CN - . Катионы К + не могут связывать ионы ОН - воды, так как КОН - сильный электролит. Анионы же CN - связывают ионы Н + воды, образуя молекулы слабого элекролита HCN. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

CN - + Н 2 О HCN + ОН -

или в молекулярной форме

KCN + Н 2 О HCN + КОН

В результате гидролиза в растворе появляется некоторый избыток ионов ОН - , поэтому раствор KCN имеет щелочную реакцию (рН > 7).

б) Карбонат натрия Na 2 CO 3 - соль слабой многоосновной кислоты и сильного основания. В этом случае анионы соли СО 3 2- , связывая водородные ионы воды, образуют анионы кислой соли НСО - 3 , а не молекулы Н 2 СО 3 , так как ионы НСО - 3 диссоциируют гораздо труднее, чем молекулы Н 2 СО 3 . В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

CO 2- 3 +H 2 O HCO - 3 +ОН -

или в молекулярной форме

Na 2 CO 3 + Н 2 О NaHCO 3 + NaOH

В растворе появляется избыток ионов ОН - , поэтому раствор Na 2 CO 3 имеет щелочную реакцию (рН > 7).

в) Сульфат цинка ZnSO 4 - соль слабого многокислотного основания Zn(OH) 2 и сильной кислоты H 2 SO 4 . В этом случае катионы Zn + связывают гидроксильные ионы воды, образуя катионы основной соли ZnOH + . Образование молекул Zn(OH) 2 не происходит, так как ионы ZnOН + диссоциируют гораздо труднее, чем молекулы Zn(OH) 2 . В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-моле­кулярное уравнение гидролиза

Zn 2+ + Н 2 О ZnOН + + Н +

или в молекулярной форме

2ZnSO 4 + 2Н 2 О (ZnOH) 2 SO 4 + H 2 SO 4

В растворе появляется избыток ионов водорода, поэтому раствор ZnSO 4 имеет кислую реакцию (рН < 7).

Пример 4. Какие продукты образуются при смешивании растворов A1(NO 3) 3 и К 2 СО 3 ? Составьте ионно-молекулярное и молекулярное уравнение реакции.

Решение. Соль A1(NO 3) 3 гидролизуется по катиону, а К 2 СО 3 - по аниону:

А1 3+ + Н 2 О А1ОН 2+ + Н +

СО 2- 3 + Н 2 О НСО - з + ОН -

Если растворы этих солей находятся в одном сосуде, то идет взаимное усиление гидролиза каждой из них, ибо ионы Н + и ОН - образуют молекулу слабого электролита Н 2 О. При этом гидро­литическое равновесие сдвигается вправо и гидролиз каждой из взятых солей идет до конца с образованием А1(ОН) 3 и СО 2 (Н 2 СО 3). Ионно-молекулярное уравнение:

2А1 3+ + ЗСО 2- 3 + ЗН 2 О = 2А1(ОН) 3 + ЗСО 2

молекулярное уравнение: ЗСО 2 + 6KNO 3

2A1(NO 3) 3 + ЗК 2 СО 3 + ЗН 2 О = 2А1(ОН) 3