Окислительно-восстановительные реакции. Как решать окислительно-восстановительные реакции? Окислительно восстановительные реакции 9

9.1. Какие бывают химические реакции

Вспомним, что химическими реакциями мы называем любые химические явления природы. При химической реакции происходит разрыв одних и образование других химических связей. В результате реакции из одних химических веществ получаются другие вещества (см. гл. 1).

Выполняя домашнее задание к § 2.5, вы познакомились с традиционным выделением из всего множества химических превращений реакций четырех основных типов, тогда же вы предложили и их названия: реакции соединения, разложения, замещения и обмена.

Примеры реакций соединения:

C + O 2 = CO 2 ; (1)
Na 2 O + CO 2 = Na 2 CO 3 ; (2)
NH 3 + CO 2 + H 2 O = NH 4 HCO 3 . (3)

Примеры реакций разложения:

2Ag 2 O 4Ag + O 2­ ; (4)
CaCO 3 CaO + CO 2­ ; (5)
(NH 4) 2 Cr 2 O 7 N 2­ + Cr 2 O 3 + 4H 2 O­ . (6)

Примеры реакций замещения:

CuSO 4 + Fe = FeSO 4 + Cu ; (7)
2NaI + Cl 2 = 2NaCl + I 2 ; (8)
CaCO 3 + SiO 2 = CaSiO 3 + CO 2­ . (9)

Реакции обмена – химические реакции, в которых исходные вещества как бы обмениваются своими составными частями.

Примеры реакций обмена:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 + 2H 2 O; (10)
HCl + KNO 2 = KCl + HNO 2 ; (11)
AgNO 3 + NaCl = AgCl + NaNO 3 . (12)

Традиционная классификация химических реакций не охватывает все их разнообразие – кроме реакций четырех основных типов существует еще и множество более сложных реакций.
Выделение двух других типов химических реакций основано на участии в них двух важнейших нехимических частиц: электрона и протона.
При протекании некоторых реакций происходит полная или частичная передача электронов от одних атомов к другим. При этом степени окисления атомов элементов, входящих в состав исходных веществ, изменяются; из приведенных примеров это реакции 1, 4, 6, 7 и 8. Эти реакции называются окислительно-восстановительными .

В другой группе реакций от одной реагирующей частицы к другой переходит ион водорода (Н +), то есть протон. Такие реакции называют кислотно-основными реакциями или реакциями с передачей протона .

Среди приведенных примеров такими реакциями являются реакции 3, 10 и 11. По аналогии с этими реакциями окислительно-восстановительные реакции иногда называют реакциями с передачей электрона . С ОВР вы познакомитесь в § 2, а с КОР – в следующих главах.

РЕАКЦИИ СОЕДИНЕНИЯ, РЕАКЦИИ РАЗЛОЖЕНИЯ, РЕАКЦИИ ЗАМЕЩЕНИЯ, РЕАКЦИИ ОБМЕНА, ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ, КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ.
Составьте уравнения реакций, соответствующих следующим схемам:
а) HgO Hg + O 2 (t ); б) Li 2 O + SO 2 Li 2 SO 3 ; в) Cu(OH) 2 CuO + H 2 O (t );
г) Al + I 2 AlI 3 ; д) CuCl 2 + Fe FeCl 2 + Cu; е) Mg + H 3 PO 4 Мg 3 (PO 4) 2 + H 2 ;
ж) Al + O 2 Al 2 O 3 (t ); и) KClO 3 + P P 2 O 5 + KCl (t ); к) CuSO 4 + Al Al 2 (SO 4) 3 + Cu;
л) Fe + Cl 2 FeCl 3 (t ); м) NH 3 + O 2 N 2 + H 2 O (t ); н) H 2 SO 4 + CuO CuSO 4 + H 2 O.
Укажите традиционный тип реакции. Отметьте окислительно-восстановительные и кислотно-основные реакции. В окислительно-восстановительных реакциях укажите, атомы каких элементов меняют свои степени окисления.

9.2. Окислительно-восстановительные реакции

Рассмотрим окислительно-восстановительную реакцию, протекающую в доменных печах при промышленном получении железа (точнее, чугуна) из железной руды:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

Определим степени окисления атомов, входящих в состав как исходных веществ, так и продуктов реакции

Fe 2 O 3 + = 2Fe +

Как видите, степень окисления атомов углерода в результате реакции увеличилась, степень окисления атомов железа уменьшилась, а степень окисления атомов кислорода осталась неизменной. Следовательно, атомы углерода в этой реакции подверглись окислению, то есть потеряли электроны (окислились ), а атомы железа – восстановлению, то есть присоединили электроны (восстановились ) (см. § 7.16). Для характеристики ОВР используют понятия окислитель и восстановитель .

Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).
В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.
Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO 3 (N +V), KMnO 4 (Mn +VII), CrO 3 (Cr +VI), KClO 3 (Cl +V), KClO 4 (Cl +VII) и др.
Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H 2 S и сульфиды (S –II), SO 2 и сульфиты (S +IV), йодиды (I –I), CO (C +II), NH 3 (N –III) и др.
В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:
SO 2 + Cl 2 = S + Cl 2 O 2 (SO 2 – сильный восстановитель);
SO 2 + C = S + CO 2 (t) (SO 2 – слабый окислитель);
C + O 2 = CO 2 (t) (C – восстановитель);
C + 2Ca = Ca 2 C (t) (С – окислитель).
Вернемся к реакции, разобранной нами в начале этого параграфа.

Fe 2 O 3 + = 2Fe +

Обратите внимание, что в результате реакции атомы-окислители (Fe +III) превратились в атомы-восстановители (Fe 0), а атомы-восстановители (C +II) превратились в атомы-окислители (C +IV). Но CO 2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.
Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:
а) метод электронного баланса и
б) метод электронно-ионного баланса .
Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.
Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.
Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.
Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl 2 FeCl 3 .

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями :
Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I .

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I
2Fe – 6e – = 2Fe +III ,
3Cl 2 + 6e – = 6Cl –I .

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:
2Fe + 3Cl 2 = 2FeCl 3 .

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

+V –I
P 4 + Cl 2 PCl 5 .

Молекулы белого фосфора отдают электроны (окисляются), а молекулы хлора их принимают (восстанавливаются):

P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
1
10
2
20
P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
P 4 – 20e – = 4P +V
10Cl 2 + 20e – = 20Cl –I

Полученные первоначально множители (2 и 20) имели общий делитель, на который (как будущие коэффициенты в уравнении реакции) и были разделены. Уравнение реакции:

P 4 + 10Cl 2 = 4PCl 5 .

Пример 3. Составим уравнение реакции, протекающей при обжиге сульфида железа(II) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

В этом случае окисляются и атомы железа(II), и атомы серы(– II). В состав сульфида железа(II) атомы этих элементов входят в отношении 1:1 (см. индексы в простейшей формуле).
Электронный баланс:

4 Fe +II – e – = Fe +III
S –II – 6e – = S +IV
Всего отдают 7е
7 O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Пример 4 . Составим уравнение реакции, протекающей при обжиге дисульфида железа(II) (пирита) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

Как и в предыдущем примере, здесь тоже окисляются и атомы железа(II), и атомы серы, но со степенью окисления – I. В состав пирита атомы этих элементов входят в отношении 1:2 (см. индексы в простейшей формуле). Именно в этом отношении атомы железа и серы вступают в реакцию, что и учитывается при составлении электронного баланса:

Fe +III – e – = Fe +III
2S –I – 10e – = 2S +IV
Всего отдают 11е
O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Встречаются и более сложные случаи ОВР, с некоторыми из них вы познакомитесь, выполняя домашнее задание.

АТОМ-ОКИСЛИТЕЛЬ, АТОМ-ВОССТАНОВИТЕЛЬ, ВЕЩЕСТВО-ОКИСЛИТЕЛЬ, ВЕЩЕСТВО-ВОССТАНОВИТЕЛЬ, МЕТОД ЭЛЕКТРОННОГО БАЛАНСА, ЭЛЕКТРОННЫЕ УРАВНЕНИЯ.
1.Составьте электронный баланс к каждому уравнению ОВР, приведенному в тексте § 1 этой главы.
2.Составьте уравнения ОВР, обнаруженных вами при выполнении задания к § 1 этой главы. На этот раз для расстановки коэффициентов используйте метод электронного баланса. 3.Используя метод электронного баланса, составьте уравнения реакций, соответствующие следующим схемам: а) Na + I 2 NaI;
б) Na + O 2 Na 2 O 2 ;
в) Na 2 O 2 + Na Na 2 O;
г) Al + Br 2 AlBr 3 ;
д) Fe + O 2 Fe 3 O 4 (t );
е) Fe 3 O 4 + H 2 FeO + H 2 O (t );
ж) FeO + O 2 Fe 2 O 3 (t );
и) Fe 2 O 3 + CO Fe + CO 2 (t );
к) Cr + O 2 Cr 2 O 3 (t );
л) CrO 3 + NH 3 Cr 2 O 3 + H 2 O + N 2 (t );
м) Mn 2 O 7 + NH 3 MnO 2 + N 2 + H 2 O;
н) MnO 2 + H 2 Mn + H 2 O (t );
п) MnS + O 2 MnO 2 + SO 2 (t )
р) PbO 2 + CO Pb + CO 2 (t );
с) Cu 2 O + Cu 2 S Cu + SO 2 (t );
т) CuS + O 2 Cu 2 O +SO 2 (t );
у) Pb 3 O 4 + H 2 Pb + H 2 O (t ).

9.3. Экзотермические реакции. Энтальпия

Почему происходят химические реакции?
Для ответа на этот вопрос вспомним, почему отдельные атомы объединяются в молекулы, почему из изолированных ионов образуется ионный кристалл, почему при образовании электронной оболочки атома действует принцип наименьшей энергии. Ответ на все эти вопросы один и тот же: потому, что это энергетически выгодно. Это значит, что при протекании таких процессов выделяется энергия. Казалось бы, что и химические реакции должны протекать по этой же причине. Действительно, можно провести множество реакций, при протекании которых выделяется энергия. Энергия выделяется, как правило, в виде теплоты.

Если при экзотермической реакции теплота не успевает отводиться, то реакционная система нагревается.
Например, в реакции горения метана

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)

выделяется столько теплоты, что метан используется как топливо.
Тот факт, что в этой реакции выделяется теплота, можно отразить в уравнении реакции:

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.

Это так называемое термохимическое уравнение . Здесь символ "+Q " означает, что при сжигании метана выделяется теплота. Эта теплота называется тепловым эффектом реакции .
Откуда же берется выделяющаяся теплота?
Вы знаете, что при химических реакциях рвутся и образуются химические связи. В данном случае рвутся связи между атомами углерода и водорода в молекулах СН 4 , а также между атомами кислорода в молекулах О 2 . При этом образуются новые связи: между атомами углерода и кислорода в молекулах СО 2 и между атомами кислорода и водорода в молекулах Н 2 О. Для разрыва связей нужно затратить энергию (см. "энергия связи" , "энергия атомизации"), а при образовании связей энергия выделяется. Очевидно, что, если "новые" связи более прочные, чем "старые" , то энергии выделится больше, чем поглотится. Разность между выделившейся и поглощенной энергией и составляет тепловой эффект реакции.
Тепловой эффект (количество теплоты) измеряется в килоджоулях, например:

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Такая запись означает, что 484 килоджоуля теплоты выделится, если два моля водорода прореагируют с одним молем кислорода и при этом образуется два моля газообразной воды (водяного пара).

Таким образом, в термохимических уравнениях коэффициенты численно равны количествам вещества реагентов и продуктов реакции .

От чего зависит тепловой эффект каждой конкретной реакции?
Тепловой эффект реакции зависит
а) от агрегатных состояний исходных веществ и продуктов реакции,
б) от температуры и
в) от того, происходит ли химическое превращение при постоянном объеме или при постоянном давлении.
Зависимость теплового эффекта реакции от агрегатного состояния веществ связана с тем, что процессы перехода из одного агрегатного состояния в другое (как и некоторые другие физические процессы) сопровождаются выделением или поглощением теплоты. Это также может быть выражено термохимическим уравнением. Пример – термохимическое уравнение конденсации водяного пара:

Н 2 О (г) = Н 2 О (ж) + Q.

В термохимических уравнениях, а при необходимости и в обычных химических уравнениях, агрегатные состояния веществ указываются с помощью буквенных индексов:
(г) – газ,
(ж) – жидкость,
(т) или (кр) – твердое или кристаллическое вещество.
Зависимость теплового эффекта от температуры связана с различиями в теплоемкостях исходных веществ и продуктов реакции.
Так как в результате экзотермической реакции при постоянном давлении всегда увеличивается объем системы, то часть энергии уходит на совершение работы по увеличению объема, и выделяющаяся теплота будет меньше, чем в случае протекания той же реакции при постоянном объеме.
Тепловые эффекты реакций обычно рассчитывают для реакций, протекающих при постоянном объеме при 25 ° С и обозначают символом Q o .
Если энергия выделяется только в виде теплоты, а химическая реакция протекает при постоянном объеме, то тепловой эффект реакции (Q V ) равен изменению внутренней энергии (D U ) веществ-участников реакции, но с противоположным знаком:

Q V = – U .

Под внутренней энергией тела понимают суммарную энергию межмолекулярных взаимодействий, химических связей, энергию ионизации всех электронов, энергию связей нуклонов в ядрах и все прочие известные и неизвестные виды энергии, " запасенные" этим телом. Знак " – " обусловлен тем, что при выделении теплоты внутренняя энергия уменьшается. То есть

U = – Q V .

Если же реакция протекает при постоянном давлении, то объем системы может изменяться. На совершение работы по увеличению объема также уходит часть внутренней энергии. В этом случае

U = – (Q P + A ) = –(Q P + P V ),

где Q p – тепловой эффект реакции, протекающей при постоянном давлении. Отсюда

Q P = – U – P V .

Величина, равная U + P V получила название изменение энтальпии и обозначается D H .

H = U + P V .

Следовательно

Q P = – H .

Таким образом, при выделении теплоты энтальпия системы уменьшается. Отсюда старое название этой величины: " теплосодержание" .
В отличие от теплового эффекта, изменение энтальпии характеризует реакцию независимо от того, протекает она при постоянном объеме или постоянном давлении. Термохимические уравнения, записанные с использованием изменения энтальпии, называются термохимическими уравнениями в термодинамической форме . При этом приводится значение изменения энтальпии в стандартных условиях (25 °С, 101,3 кПа), обозначаемое H о . Например:
2Н 2(г) + О 2(г) = 2Н 2 О (г) H о = – 484 кДж;
CaO (кр) + H 2 O (ж) = Сa(OH) 2(кр) H о = – 65 кДж.

Зависимость количества теплоты, выделяющейся в реакции (Q ) от теплового эффекта реакции (Q o) и количества вещества (n Б) одного из участников реакции (вещества Б – исходного вещества или продукта реакции) выражается уравнением:

Здесь Б – количество вещества Б, задаваемое коэффициентом перед формулой вещества Б в термохимическом уравнении.

Задача

Определите количество вещества водорода, сгоревшего в кислороде, если при этом выделилось 1694 кДж теплоты.

Решение

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Q = 1694 кДж, 6.Тепловой эффект реакции взаимодействия кристаллического алюминия с газообразным хлором равен 1408 кДж. Запишите термохимическое уравнение этой реакции и определите массу алюминия, необходимого для получения 2816 кДж теплоты с использованием этой реакции.
7.Определите количество теплоты, выделяющейся при сгорании на воздухе 1 кг угля, содержащего 90 % графита, если тепловой эффект реакции горения графита в кислороде равна 394 кДж.

9.4. Эндотермические реакции. Энтропия

Кроме экзотермических реакций возможны реакции, при протекании которых теплота поглощается, и, если ее не подводить, то реакционная система охлаждается. Такие реакции называют эндотермическими .

Тепловой эффект таких реакций отрицательный. Например:
CaCO 3(кр) = CaO (кр) +CO 2(г) – Q,
2HgO (кр) = 2Hg (ж) + O 2(г) – Q,
2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.

Таким образом, энергия, выделяющаяся при образовании связей в продуктах этих и им подобных реакций, меньше, чем энергия, необходимая для разрыва связей в исходных веществах.
Что же является причиной протекания таких реакций, ведь энергетически они невыгодны?
Раз такие реакции возможны, значит существует какой-то неизвестный нам фактор, являющийся причиной их протекания. Попробуем его обнаружить.

Возьмем две колбы и заполним одну из них азотом (бесцветный газ), а другую – диоксидом азота (бурый газ) так, чтобы и давление, и температура в колбах были одинаковыми. Известно, что эти вещества между собой не вступают в химическую реакцию. Герметично соединим колбы горлышками и установим их вертикально, так, чтобы колба с более тяжелым диоксидом азота была внизу (рис. 9.1). Через некоторое время мы увидим, что бурый диоксид азота постепенно распространяется в верхнюю колбу, а бесцветный азот проникает в нижнюю. В результате газы смешиваются, и окраска содержимого колб становится одинаковой.
Что же заставляет газы смешиваться?
Хаотическое тепловое движение молекул.
Приведенный опыт показывает, что самопроизвольно, без какого бы то ни было нашего (внешнего) воздействия может протекать процесс, тепловой эффект которого равен нулю. А он действительно равен нулю, потому что химического взаимодействия в данном случае нет (химические связи не рвутся и не образуются), а межмолекулярное взаимодействие в газах ничтожно и практически одинаково.
Наблюдаемое явление представляет собой частный случай проявления всеобщего закона Природы, в соответствии с которым системы, состоящие из большого числа частиц, всегда стремятся к наибольшей неупорядоченности.
Мерой такой неупорядоченности служит физическая величина, называемая энтропией .

Таким образом,

чем БОЛЬШЕ ПОРЯДКА – тем МЕНЬШЕ ЭНТРОПИЯ,
чем МЕНЬШЕ ПОРЯДКА – тем БОЛЬШЕ ЭНТРОПИЯ.

Уравнения связи между энтропией (S ) и другими величинами изучаются в курсах физики и физической химии. Единица измерений энтропии [S ] = 1 Дж/К.
Энтропия возрастает при нагревании вещества и уменьшается при его охлаждении. Особенно сильно она возрастает при переходе вещества из твердого в жидкое и из жидкого в газообразное состояние.
Что же произошло в нашем опыте?
При смешении двух разных газов степень неупорядоченности возросла. Следовательно, возросла энтропия системы. При нулевом тепловом эффекте это и послужило причиной самопроизвольного протекания процесса.
Если теперь мы захотим разделить смешавшиеся газы, то нам придется совершить работу, то есть затратить для этого энергию. Самопроизвольно (за счет теплового движения) смешавшиеся газы никогда не разделятся!
Итак, мы с вами обнаружили два фактора, определяющих возможность протекания многих процессов, в том числе и химических реакций:
1) стремление системы к минимуму энергии (энергетический фактор ) и
2) стремление системы к максимуму энтропии (энтропийный фактор ).
Посмотрим теперь, как влияют на возможность протекания химических реакций различные комбинации этих двух факторов.
1. Если в результате предполагаемой реакции энергия продуктов реакции оказывается меньше, чем энергия исходных веществ, а энтропия больше (" под гору к большему беспорядку"), то такая реакция может протекать и будет экзотермической.
2. Если в результате предполагаемой реакции энергия продуктов реакции оказывается больше, чем энергия исходных веществ, а энтропия меньше (" в гору к большему порядку"), то такая реакция не идет.
3. Если в предполагаемой реакции энергетический и энтропийный факторы действуют в разные стороны (" под гору, но к большему порядку" или " в гору, но к большему беспорядку"), то без специальных расчетов сказать что-либо о возможности протекания такой реакции нельзя (" кто перетянет"). Подумайте, к какому из этих случаев относятся эндотермические реакции.
Возможность протекания химической реакции можно оценить, рассчитав изменение в ходе реакции физической величины, зависящей как от изменения энтальпии, так и от изменения энтропии в этой реакции. Такая физическая величина называется энергией Гиббса (в честь американского физикохимика XIX в. Джозайя Уилларда Гиббса).

G = H – T S

Условие самопроизвольного протекания реакции:

G < 0.

При низких температурах фактором, определяющим возможность протекания реакции в большей степени является энергетический фактор, а при высокой – энтропийный. Из приведенного уравнения, в частности, видно, почему не протекающие при комнатной температуре реакции разложения (энтропия увеличивается) начинают идти при повышенной температуре.

ЭНДОТЕРМИЧЕСКАЯ РЕАКЦИЯ, ЭНТРОПИЯ, ЭНЕРГЕТИЧЕСКИЙ ФАКТОР, ЭНТРОПИЙНЫЙ ФАКТОР, ЭНЕРГИЯ ГИББСА.
1.Приведите примеры известных вам эндотермических процессов.
2.Почему энтропия кристалла хлорида натрия меньше, чем энтропия расплава, полученного из этого кристалла?
3.Тепловой эффект реакции восстановления меди из ее оксида углем

2CuO (кр) + C (графит) = 2Cu (кр) + CO 2(г)

составляет –46 кДж. Запишите термохимическое уравнение и рассчитайте, какую энергию нужно затратить для получения 1 кг меди по такой реакции.
4.При прокаливании карбоната кальция было затрачено 300 кДж теплоты. При этом по реакции

CaCO 3(кр) = CaO (кр) + CO 2(г) – 179кДж

образовалось 24,6 л углекислого газа. Определите, какое количество теплоты было израсходовано бесполезно. Сколько граммов оксида кальция при этом образовалось?
5.При прокаливании нитрата магния образуется оксид магния, газообразный диоксид азота и кислород. Тепловой эффект реакции равен –510 кДж. Составьте термохимическое уравнение и определите, какое количество теплоты поглотилось, если выделилось 4,48 л кислорода. Какова масса разложившегося нитрата магния?

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Сибирский государственный индустриальный университет»

Кафедра общей и аналитической химии

Окислительно-восстановительные реакции

Методические указания для выполнения лабораторных и практических занятий

по дисциплинам «Химия», «Неорганическая химия»,

«Общая и неорганическая химия»

Новокузнецк

УДК 544.3(07)

Рецензент

кандидат химических наук, доцент,

зав. кафедрой физхимии и ТМП СибГИУ

А.И. Пошевнева

О-504 Окислительно-восстановительные реакции: метод. указ. / Сиб. гос. индустр. ун-т; сост. : П.Г. Пермяков, Р.М. Белкина, С.В. Зенцова. – Новокузнецк: Изд. центр СибГИУ 2012. – 41 с.

Приведены теоретические сведения, примеры решения задач по теме «Окислительно-восстановительные реакции» по дисциплинам «Химия», «Неорганическая химия», «Общая и неорганическая химия». Представлены лабораторные работы и разработанные авторским коллективом вопросы для самоконтроля, контрольные и тестовые задания для выполнения контрольной и самостоятельной работы.

Предназначено для студентов первого курса всех направлений подготовки.

Предисловие

Методические указания по химии составлены согласно программе для технических направлений высших учебных заведений, предназначены для организации самостоятельной работы по теме «Окислительно-восстановительные реакции» над учебным материалом в аудиторное и неаудиторное время.

Самостоятельная работа при изучении темы «Окислительно-восстановительные реакции» состоит из нескольких элементов: изучение теоретического материала, выполнение контрольных и тестовых заданий по данному методическому указанию и индивидуальные консультации с преподавателем.

В результате самостоятельной работы необходимо освоить основные термины, определения, понятия и овладеть техникой химических расчетов. К выполнению контрольных и тестовых заданий следует приступать только после глубокого изучения теоретического материала и тщательного разбора примеров типовых заданий, приведенных в теоретическом разделе.

Авторы надеются, что методические указания позволят студентам не только успешно освоить предложенный материал по теме «Окислительно-восстановительные реакции», но и станут для них полезными в учебном процессе при освоении дисциплин «Химия», «Неорганическая химия».

Окислительно-восстановительные реакции Термины, определения, понятия

Окислительно-восстановительные реакции – это реакции, сопровождающиеся переходом электронов от одних атомов или ионов к другим, другими словами – это реакции, в результате которых изменяются степени окисления элементов.

Степень окисления – это заряд атома элемента в соединении, вычисленный из условного предположения, что все связи в молекуле являются ионными.

Степень окисления принято указывать арабской цифрой над символом элемента со знаком плюс или минус перед цифрой. Например, если связь в молекуле HCl ионная, то водород и хлор ионы с зарядами (+1) и (–1), следовательно
.


Используя выше указанные правила, рассчитаем степени окисления хрома в K 2 Cr 2 O 7 , хлора в NaClO, серы в H 2 SO 4 , азота в NH 4 NO 2:

2(+1) + 2·х + 7(–2) = 0, х = +6;

+1 + х + (–2) = 0, х = +1;

2(+1) + х + 4(–2) = 0, х = +6;

х+4(+1)=+1, у + 2(–2) = –1,

х = –3, у = +3.

Окисление и восстановление. Окислением называется отдача электронов, в результате чего степень окисления элемента повышается. Восстановлением называется присоединение электронов, в результате чего степень окисления элемента понижается.

Окислительные и восстановительные процессы тесно связаны между собой, так как химическая система только тогда может отдавать электроны, когда другая система их присоединяет (окислительно-восстановительная система ). Присоединяющая электроны система (окислитель ) сама восстанавливается (превращается в соответствующий восстановитель), а отдающая электроны система (восстановитель ), сама окисляется (превращается в соответствующий окислитель).

Пример 1. Рассмотрим реакцию:

Число электронов, отдаваемых атомами восстановителя (калия), равно числу электронов, присоединяемых молекулами окислителя (хлора). Поэтому одна молекула хлора может окислить два атома калия. Уравнивая число принятых и отданных электронов, получаем:

К типичным окислителям относят:

    Элементарные вещества – Cl 2 , Br 2 , F 2 , I 2 , O, O 2 .

    Соединения, в которых элементы проявляют высшую степень окисления (определяется номером группы) –

    Катион Н + и ионы металлов в их высшей степени окисления – Sn 4+ , Cu 2+ , Fe 3+ и т. д.

К типичным восстановителям относят:

Окислительно-восстановительная двойственность. Соединения высшей степени окисления , присущей данному элементу, могут в окислительно-восстановительных реакциях выступать только в качестве окислителей, степень окисления элемента может в этом случае только понижаться. Соединения низшей степени окисления могут быть, наоборот, только восстановителями; здесь степень окисления элемента может только повышаться. Если же элемент находится в промежуточной степени окисления, то его атомы могут, в зависимости от условий, принимать электроны, выступая в качестве окислителя или отдавать электроны, выступая в качестве восстановителя.

Так, например, степень окисления азота в соединениях изменяется в пределах от (– 3) до (+5) (рисунок 1):

NH 3 , NH 4 OH только

восстановители

HNO 3 , соли HNO 3

только окислители

Соединения с промежуточными степенями окисления азота могут выступать в качестве окислителей, восстанавливаясь до низших степеней окисления, или в качестве восстановителей, окисляясь до высших степеней окисления

Рисунок 1 – Изменение степени окисления азота

Метод электронного баланса уравнивания окислительно-восстановительных реакций заключается в выполнении следующего правила: число электронов, отданных всеми частицами восстановителей, всегда равно числу электронов, присоединенных всеми частицами окислителей в данной реакции.

Пример 2. Проиллюстрируем метод электронного баланса на примере окисления железа кислородом:
.

Fe 0 – 3ē = Fe +3 – процесс окисления;

O 2 + 4ē = 2O –2 – процесс восстановления.

В системе восстановителя (полуреакция процесса окисления) атом железа отдает 3 электрона (Приложение А).

В системе окислителя (полуреакция процесса восстановления) каждый атом кислорода принимает по 2 электрона – в сумме 4 электрона.

Наименьшее общее кратное двух чисел 3 и 4 равно 12. Отсюда железо отдает 12 электронов, а кислород принимает 12 электронов:

Коэффициенты 4 и 3, записанные левее полуреакций в процессе суммирования систем, умножаются на все компоненты полуреакций. Суммарное уравнение показывает, сколько молекул или ионов должно получиться в уравнении. Уравнение составлено верно, когда число атомов каждого элемента в обеих частях уравнения одинаково.

Метод полуреакций применяется для уравнивания реакций, протекающих в растворах электролитов. В таких случаях в реакциях принимают участие не только окислитель и восстановитель, но и частицы среды: молекулы воды (Н 2 О), Н + и ОН – – ионы. Более правильным для таких реакций является применение электронно-ионных систем (полуреакций). При составлении полуреакций в водных растворах вводят, при необходимости, молекулы Н 2 О и ионы Н + или ОН – , учитывая среду протекания реакции. Слабые электролиты, малорастворимые (Приложение Б) и газообразные соединения в ионных системах записываются в молекулярной форме (Приложение В).

Рассмотрим в качестве примеров взаимодействия сульфата калия и перманганата калия в кислой и щелочной среде.

Пример 3. Взаимодействие сульфата калия и перманганата калия в кислой среде :

Определим изменение степени окисления элементов и указываем их в уравнении. Высшая степень окисления марганца (+7) в KMnO 4 указывает, что KMnO 4 – окислитель. Сера в соединении K 2 SO 3 имеет степень окисления (+4) – это восстановленная форма по отношению к сере (+6) в соединении K 2 SO 4 . Таким образом, K 2 SO 3 – восстановитель. Реальные ионы, в которых находятся элементы изменяющие степень окисления и их исходные полуреакции принимают следующий вид:

Цель дальнейших действий заключатся в том, чтобы в данных полуреакциях вместо стрелок, отражающих возможное направление реакции, поставить знаки равенства. Это можно будет сделать тогда, когда в левой и правой частях каждой полуреакции будут совпадать виды элементов, число их атомов и суммарные заряды всех частиц. Чтобы добиться этого, используют дополнительные ионы или молекулы среды. Обычно это ионы Н + , ОН – и молекулы воды. В полуреакции
число атомов марганца одинаково, однако не равно число атомов кислорода, поэтому в правую часть полуреакции вводим четыре молекулы воды: . Проведя аналогичные действия (уравнивая кислород) в системе
, получаем
. В обеих полуреакциях появились атомы водорода. Их число уравнивают соответствующим добавлением в другой части уравнений эквивалентным числом ионов водорода.

Теперь уравнены все элементы, входящие в уравнения полуреакций. Осталось уравнять заряды частиц. В правой части первой полуреакции сумма всех зарядов равна +2, в то время как слева заряд +7. Равенство зарядов осуществляется добавлением в левой части уравнения пяти отрицательных зарядов в виде электронов (+5 ē). Аналогично, в уравнении второй полуреакции необходимо вычесть слева 2 ē. Теперь можно поставить знаки равенства в уравнениях обеих полуреакций:

–процесс восстановления;

–процесс окисления.

В рассматриваемом примере отношение числа электронов, принимаемых в процессе восстановления, к числу электронов, высвобождающихся при окислении, равно 5 ׃ 2. Для получения суммарного уравнения реакции надо, суммируя уравнения процессов восстановления и окисления, учесть это соотношение – умножить уравнение восстановления на 2, а уравнение окисления – на 5.

Умножая коэффициенты на все члены уравнений полуреакций и суммируя между собой только правые и только левые их части, получаем окончательное уравнение реакции в ионно-молекулярной форме:

Сокращая подобные члены, методом вычитания одинакового количества ионов Н + и молекул Н 2 О, получаем:

Суммарное ионное уравнение записано правильно, есть соответствие среды с молекулярным. Полученные коэффициенты переносим в молекулярное уравнение:

Пример 4. Взаимодействия сульфата калия и перманганата калия в щелочной среде :

Определяем степени окисления элементов, изменяющих степень окисления (Mn +7 → Mn +6 , S +4 → S +6). Реальные ионы, куда входят данные элементы (
,
). Процессы (полуреакции) окисления и восстановления:

2
– процесс восстановления

1 – процесс окисления

Суммарное уравнение:

В суммарном ионном уравнении есть соответствие среды. Переносим коэффициенты в молекулярное уравнение:

Реакции окисления-восстановления делятся на следующие типы:

    межмолекулярного окисления-восстановления;

    самоокисления-самовосстановления (диспропорционирования);

    внутримолекулярного окисления – восстановления.

Реакции межмолекулярного окисления-восстановления – это реакции, когда окислитель находится в одной молекуле, а восстановитель – в другой.

Пример 5. При окислении гидроксида железа во влажной среде происходит следующая реакция:

4Fe(OH) 2 + OH – – 1ē = Fe(OH) 3 – процесс окисления;

1 О 2 + 2Н 2 О + 4ē = 4OH – – процесс восстановления.

Для того чтобы убедиться в правильности записи электронно-ионных систем необходимо произвести проверку: левая и правая части полуреакций должны содержать одинаковое количество атомов элементов и зарядность. Затем, уравнивая количество принятых и отданных электронов, суммируем полуреакции:

4Fe(OH) 2 + 4OH – + O 2 +2H 2 O = 4Fe(OH) 3 + 4OH –

4Fe(OH) 2 + O 2 +2H 2 O = 4Fe(OH) 3

Реакции самоокисления-самовосстановления (реакции диспропорционирования) – это реакции, в ходе которых часть общего количества элемента окисляется, а другая часть – восстанавливается, характерно для элементов, имеющих промежуточную степень окисления.

Пример 6. При взаимодействии хлора с водой получается смесь соляной и хлорноватистой (НСlО) кислот:

Здесь и окисление и восстановление претерпевает хлор:

1Cl 2 + 2H 2 O – 2ē = 2HClO +2H + – процесс окисления;

1 Cl 2 + 2ē = 2Cl – – процесс восстановления.

2Cl 2 + 2H 2 O = 2HClO + 2HCl

Пример 7 . Диспропорционирование азотистой кислоты:


В данном случае окисление и восстановление претерпевает в составеHNO 2:

Суммарное уравнение:

HNO 2 + 2HNO 2 + H 2 O + 2H + = NO + 3H + + 2NO + 2H 2 O

3HNO 2 = HNO 3 + 2NO + H 2 O

Реакции внутримолекулярного окисления-восстановления – это процесс, когда одна составная часть молекулы служит окислителем, а другая – восстановителем. Примерами внутримолекулярного окисления-восстановления могут быть многие процессы термической диссоциации.

Пример 8. Термическая диссоциация NH 4 NO 2:

Здесь ион NH окисляется, а ион NO восстанавливается до свободного азота:

12NH– 6 ē = N 2 + 8H +

1 2NО + 8Н + + 6 ē = N 2 + 4H 2 O

2NH+ 2NO+ 8H + = N 2 + 8H + + N 2 + 4H 2 O

2NH 4 NO 2 = 2N 2 + 4H 2 O

Пример 9 . Реакция разложения бихромата аммония:

12NH– 6 ē = N 2 + 8H +

1 Сr 2 О + 8Н + + 6 ē = Cr 2 O 3 + 4H 2 O

2NH + Сr 2 О + 8H + = N 2 + 8H + + Cr 2 O 3 + 4H 2 O

(NH 4) 2 Сr 2 О 7 = N 2 + Cr 2 O 3 + 4H 2 O

Окислительно-восстановительные реакции с участием более двух элементов изменяющих степень окисления.

Пример 10. Примером служит реакция взаимодействия сульфида железа с азотной кислотой, где в ходе реакции три элемента (Fe, S, N) изменяют степень окисления:

FeS 2 + HNO 3
Fe 2 (SO 4) 3 + NO + …

Уравнение записано не до конца и использование электронно-ионных систем (полуреакций) позволит закончить уравнение. Рассматривая степени окисления участвующих в реакции элементов, определяем, что в FeS 2 два элемента (Fe, S) окисляются, а окислителем является
(), который восстанавливается до NO:

S –1 → ()

Записываем полуреакцию окисления FeS 2:

FeS 2 → Fe 3+ +

Наличие двух ионов Fe 3+ в Fe 2 (SO 4) 3 предполагает удвоения числа атомов железа при дальнейшей записи полуреакции:

2FeS 2 → 2Fe 3+ + 4

Одновременно уравниваем число атомов серы и кислорода, получаем:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
.

32 атома водорода, введением в левую часть уравнения в составе 16 молекул Н 2 О уравниваем добавлением эквивалентного числа ионов водорода (32 Н +) в правую часть уравнения:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
+ 32Н +

Зарядность правой части уравнения +30. Для того чтобы в левой части было тоже самое (+30) необходимо вычесть 30 ē:

1 2FeS 2 + 16Н 2 O – 30 ē = 2Fe 3+ + 4
+ 32Н + – окисление;

10 NО + 4Н + + 3 ē = NО + 2H 2 O – восстановление.

2FeS 2 +16Н 2 O+10NО+40Н + = 2Fe 3+ + 4
+ 32Н + + 10NО + 20H 2 O

2FeS 2 +10НNО 3 + 30Н + = Fe 2 (SO 4) 3 + 10NО +
+ 32Н + + 4H 2 O

Н 2 SO 4 +30Н +

Сокращаем обе части уравнения на одинаковое число ионов (30 Н +) методом вычитания и получаем:

2FeS 2 +10НNО 3 = Fe 2 (SO 4) 3 + 10NО + Н 2 SO 4 + 4H 2 O

Энергетика окислительно-восстановительных реакций . Условием самопроизвольного протекания любого процесса, в том числе и окислительно-восстановительной реакции является неравенство ∆G < 0, где ∆G – энергия Гиббса и чем меньше ∆G, т.е. чем больше его отрицательное значение, тем более реакционноспособнее окислительно-восстановительная система. Для реакций окисления-восстановления:

∆G = –n·F·ε,

где n – число электронов, передаваемое восстановителем окислителю в элементарном акте окисления-восстановления;

F – число Фарадея;

ε – электродвижущая сила (Э.Д.С.) окислительно-восстановительной реакции.

Электродвижущая сила окислительно-восстановительной реакции определяется разностью потенциалов окислителя и восстановителя:

ε = Е ок – Е в,

В стандартных условиях:

ε ° = Е ° ок – Е ° в.

Итак, если условием самопроизвольного протекания процесса является неравенство ∆G ° < 0, то это возможно, когда n·F·ε ° > 0. Если n и F числа положительные, то необходимо, чтобы ε ° > 0, а это возможно, когда Е ° ок > Е ° в. Отсюда следует, что условием самопроизвольного протекания окислительно-восстановительной реакции является неравенство Е ° ок > Е ° в.

Пример 11. Определите возможность протекания окислительно-восстановительной реакции:

Определив степени окисления элементов, изменяющих степень окисления, запишем полуреакции окислителя и восстановителя с указанием их потенциалов:

Сu – 2ē = Сu 2+ Е ° в = +0,34 В

2Н + + 2ē = Н 2 Е ° ок = 0,0 В

Из полуреакций видно, что Е ° ок < Е ° в, это говорит о том, что рассматриваемый процесс термодинамически невозможен (∆G ° > 0). Данная реакция возможна только в обратном направлении, для которого ∆G ° < 0.

Пример 12. Рассчитайте энергию Гиббса и константу равновесия реакции восстановления перманганата калия сульфатом железа (II).

Полуреакции окислителя и восстановителя:

2 Е ° ок = +1,52В

5 2Fe 2+ – 2 ē = 2Fe 3+ Е ° в = +0,77 В

∆G ° = –n·F·ε ° = –n·F(Е ° ок – Е ° в),

где n = 10, так как восстановитель отдает 10 ē, окислитель принимает 10 ē в элементарном акте окисления-восстановления.

∆G ° = –10·69500(1,52–0,77) = –725000 Дж,

∆G ° = –725 кДж.

Учитывая, что стандартное изменение энергии Гиббса связано с ее константой равновесия (К с) соотношением:

∆G ° = –RTlnК с или n·F·ε = RTlnК с,

где R = 8,31 Дж·моль –1 ·К –1 ,

F
96500 Кл·моль –1 , Т = 298 К.

Определяем константу равновесия для данной реакции, проставив в уравнении постоянные величины, переведя натуральный логарифм в десятичный:

К с = 10 127 .

Полученные данные говорят о том, что рассматриваемая реакция восстановления перманганата калия реакционноспособна (∆G ° = – 725 кДж), процесс протекает слева направо и практически необратима (К с = 10 127).










Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Рудзитис Г.Е, Фельдман Ф.Г. Химия: учебник для 9 класса общеобразовательных учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – 12-е изд. – М.: Просвещение, ОАО “Московские учебники”, 2009. – 191 с

Цель: сформировать представление учащихся о окислительно-восстановительных процессах, их механизме

Ожидаемые результаты

Предметные:

В ходе работы учащиеся

приобретут

  • способность анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды
  • умение устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, объяснять причины многообразия веществ, зависимость свойств веществ от их строения;

овладеют научным подходом к составлению уравнению окислительно-восстановительных реакций

Метапредметные

В ходе работы учащиеся смогут

  • определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  • создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
  • применять экологическое мышление в познавательной, коммуникативной, социальной практике и профессиональной ориентации

Личностные

В ходе работы учащиеся приобретут

  • основы экологической культуры соответствующей современному уровню экологического мышления, опыт экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

2.1. Химическая реакция. Условия и признакипротекания химических реакций. Химическиеуравнения.

2.2. Классификация химических реакций по изменению степеней окисления химических элементов

2.6. Окислительно-восстановительные реакции. Окислитель и восстановитель.

Умения и виды деятельности, проверяемые КИМ ГИА

Знать/понимать

  • химическую символику: формулы химических веществ, уравнения химических реакций
  • важнейшие химические понятия:, степень окисления, окислитель и восстановитель, окисление и восстановление, основные типы реакций в неорганической химии

1.2.1. характерные признаки важнейших химических понятий

1.2.2. о существовании взаимосвязи между важнейшими химическими понятиями

Составлять

2.5.3. уравнения химических реакций.

Форма проведения: урок с использованием ИКТ, включением парных, индивидуальных форм организации учебно-познавательной деятельности учащихся.

Продолжительность учебного занятия: 45 минут.

Использование педагогических технологий: метод эвристического обучения, обучение в сотрудничестве

Ход урока

I. Проблематизация, актуализация, мотивация – 10 мин.

Фронтальная беседа

  • Что такое атомы и ионы.
  • Чем они отличаются?
  • Что такое электроны?
  • Что такое степень окисления?
  • Как рассчитывается степень окисления?

На доске учащимся предлагается расставить степени окисления в следующих веществах:

Сl 2 O 7 , SO 3 , H 3 PO 4 , P 2 O 5 , Na 2 CO 3 , CuSO 4 , Cl 2 , HClO 4 , K 2 Cr 2 O 7 , Cr 2 (SO 4) 3 , Al(NO 3) 3, CaSO 4 ,

NaMnO 4 , MnCl 2 , HNO 3 , N 2 , N 2 O, HNO 2 , H 2 S, Ca 3 (PO 4) 2

II. Изучение нового материала. Объяснение учителя. 15 мин.

Основные понятия (слайд 2):

Окислительно-восстановительные реакции – это реакции, в которых изменяются степени окисления двух элементов, один из которых является восстановителем, а другой – окислителем

Восстановитель – это тот элемент, который в процессе реакции отдает электроны, и сам при этом окисляется

Окислитель – это тот элемент, который в процессе реакции принимает электроны, и сам при этом восстанавливается

Правила составления окислительно-восстановительных уравнений (слайд 3)

1. Запишем уравнение реакции (слайд 4).

CuS+HNO 3 ->Cu(NO 3) 2 + S + NO+H 2 O

2. Расставим степени окисления всех элементов

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

3. Выделим элементы, которые поменяли степени окисления

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

Видим, что в результате реакции поменяли степени окисления два элемента –

  • сера (S) поменяла полностью (от – 2 до 0 )
  • aзот (N) поменял частично (от +5 до +2 поменял), часть осталась +5

4. Выпишем те элементы, которые поменяли степени окисления и покажем переход электронов (слайд 5.)

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + S 0 + N +2 O+H 2 O

S -2 - 2e S 0

5. Составим электронный баланс, найдем коэффициенты

6. Подставим в уравнение коэффициенты, найденные в балансе (коэффициенты ставятся у веществ, элементы в которых поменяли степень окисления) (слайд 6).

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + 3 S 0 + 2 N +2 O+H 2 O

7. Доставим недостающие коэффициенты методом уравнивания

3CuS -2 +8HN +5 O 3 -> 3Cu(N +5 O 3) 2 + 3S 0 + 2N +2 O+4H 2 O

8. По кислороду проверим правильность составления уравнения (слайд 7).

До реакции кислорода 24 атома = После реакции кислорода 24 атома

9. Выдели окислитель и восстановитель и процессы – окисления и восстановления

S -2 (в CuS) является восстановителем, т.к. отдает электроны

N +5 (в HNO 3) является окислителем, т.к. отдает электроны

III. Закрепление изученного материала (25 мин)

Учащимся предлагается выполнить задание в парах.

Задание 1. 10 мин. (слайд 8)

Учащимся предлагается составить уравнение реакции в соответствии с алгоритмом.

Mg+H 2 SO 4 -> MgSO 4 + H 2 S + H 2 O

Проверка задания

4Mg 0 +5H 2 +1 S +6 O 4 -2 -> 4Mg +2 S +6 O 4 -2 + H 2 +1 S -2 + 4H 2 +1 O -2

Переход е Число электронов НОК Коэффициенты
2 4
1

Задание 2. 15 мин. (слайды 9, 10)

Учащимся предлагается выполнить тест (в парах). Задания теста проверяются и разбираются на доске.

Вопрос № 1

Какое уравнение соответствует окислительно-восстановительной реакции?

  1. CaCO 3 = CaO + CO 2
  2. BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl
  3. Zn + H 2 SO 4 = ZnSO 4 + H 2
  4. Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

Вопрос № 2

В уравнении реакции 2Al + 3Br 2 =2AlBr 3 коэффициент перед формулой восстановителя равен

Вопрос № 3

В уравнении реакции 5Сa + 12HNO 3 = 5Ca(NO 3) 2 + N 2 + 6H 2 O окислителем является

  1. Ca(NO 3) 2
  2. HNO 3
  3. H 2 O

Вопрос № 4

Какая из предложенных схем будет соответствовать восстановителю

  1. S 0 > S -2
  2. S +4 -> S +6
  3. S -2 > S -2
  4. S +6 -> S +4

Вопрос № 5

В уравнении реакции 2SO 2 + O 2 -> 2 SO 3 сера

  1. окисляется
  2. восстанавливается
  3. ни окисляется, ни восстанавливается
  4. и окисляется, и восстанавливается

Вопрос № 6

Какой элемент является восстановителем в уравнении реакции

2KClO 3 -> 2KCl + 3O 2

  1. калий
  2. кислород
  3. водород

Вопрос № 7

Схема Br -1 -> Br +5 соответствует элементу

  1. окислителю
  2. восстановителю
  3. и окислителю, и восстановителю

Вопрос № 8

Соляная кислота является восстановителем в реакции

  1. PbO 2 + 4HCl = PbCl 2 + Cl 2 + 2H 2 O
  2. Zn + 2HCl = ZnCl 2 + H 2
  3. PbО + 2HCl = PbCl 2 + H 2 О
  4. Na 2 CO 3 + 2HCl = 2NaCl+ CO 2 + H 2 O

Ответы на вопросы теста .

номер вопроса 1 2 3 4 5 6 7 8
ответ 3 1 3 2 1 3 2 1

Домашнее задание: параграф 5 упр. 6,7,8 стр. 22 (учебник).

Конспект урока по химии в 9 классе: «Окислительно-восстановительные реакции»

Цель урока:

Рассмотреть сущность ОВР, повторить основные понятия о степени окисления, об окислении и восстановлении.

Оборудование и реактивы: Набор пробирок, растворы: CuSO4 , H2SO4, NaOH, H2O, Na2SO3.

Ход урока по химии в 9 классе

Организационный момент.

Сегодня на уроке мы продолжим ознакомление с окислительно-восстановительными реакциями , закрепим знания приобретенные на предыдущих занятиях, ознакомимся с реакциями окисления-восстановления, узнаем какую роль оказывает среда на протекание окислительно-восстановительные процессы. ОВР принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. ОВ процессы сопровождают круговороты веществ в природе, с ними связаны процессы обмена веществ, протекающие в живом организме, гниение, брожение, фотосинтез. Их можно наблюдать при сгорании топлива, в процессе выплавке металлов, при электролизе, в процессах коррозии. (слайды 1-7).

Тема окислительно-восстановительные реакции не нова, учащимся предлагалось повторить некоторые понятия и умения. Вопрос к классу? Что таксе степень окисления? (без этого понятия и умения расставлять степень окисления химических элементов не возможно рассмотрение данной темы.) Учащимся предлагается определить степень окисления в следующих соединениях:KCIO3, N2, K2Cr2O7, P2O5, KH, HNO3. Проверяют свои задания с записями на доске. Во всех ли случаях происходит изменение степени окисления. Для этого мы проведем лабораторную работу (на столах инструкции по выполнению опытов, инструктаж по т.б).

Провести опыты :1. CuSO4 + 2NaOH= Na2SO4 + Cu(OH)2

CuSO4 + Fe= Cu FeSO4

Расставляют со делают записи. Вывод: не все реакции относят к ОВР. (слайд 8).

В чем же заключается суть ОВР?(слайд 9).

ОВР-представляет собой единство двух противоположных процессов окисления и восстановления. В этих реакциях число отданных электронов восстановителем равно числу электронов присоединенных окислителем. Восстановитель повышает свою степень окисления, окислитель понижает.(не случайно выбран девиз урока.)Рассмотрим химическую реакцию(она имеет большое значение с точки зрения экологии т.к. позволяет при обычных условиях собрать случайно пролитую ртуть.

Н g0 + 2Fe+3Cl3-=2Fe+2Cl2-1 + Hg+2Cl2-1

Hg0 - 2ē → Hg+2

Fe+3+ē→ Fe+2

Учащимся предлагается решить задачу. Как среда влияет на поведение одного и того же окислителя, например: KMnO4

Выполняется лабораторная работа 2 по вариантам:

2KMnO4+ 5Na2SO3 +3H2SO4 = 2MnSO4 + 5Na2SO4 + K2SO4 +3H2O

2KMnO4+ Na2SO3 2KOH= 2K2Mn04+Na2SO4 H2O

2KMnO4 +3Na2SO3 +H2O= 2KOH +3Na2SO4+ 2MnO2

Вывод: среда влияет на окислительные свойства веществ.(слайд 10)

KMnO4 в кислой среде-Mn+2 -бесцветный раствор.

В нейтральной среде -MnO2 -бурый осадок,

В щелочной среде -MnO4-2 -зеленого цвета.

В зависимости от РН раствора KMnO4 окисляет различные вещества, восстанавливаясь до соединений Mn разной степени окисления.

Подводятся итоги урока. Выставляются оценки.

Рефлексия.

Класс высказывает свое мнение о работе на уроке.

Домашнее задание

Скачать презентацию к уроку по химии: «Окислительно-восстановительные реакции»

Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.

Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.

Окислитель

Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.

Окислитель принимает то в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).

Восстановитель

Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).

В качестве типичных восстановителей можно привести атомы металлов.

Процессы в ОВР

Чем еще характеризуются характеризуются изменением степеней окисления у исходных веществ.

Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).

Алгоритм разбора

Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.

Для того чтобы успешно справиться с предлагаемые в ОГЭ и ЕГЭ заданиями, важно владеть алгоритмом составления и разбора окислительно-восстановительных процессов.

  1. В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
  2. Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
  3. При повышении степени окисления используется знак «-», а при понижении «+».
  4. Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
  5. При делении НОК на электроны, получаем стереохимические коэффициенты.
  6. Расставляем их перед формулами в уравнение.

Первый пример из ОГЭ

В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.

Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.

Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.

Например, предлагается с помощью электронного баланса выявить коэффициенты в реакции:

На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.

В бинарных соединениях, к которым относится оксид меди (2) и оксид железа (2), сумма степеней окисления равна нулю, учитывая, что у кислорода она -2, у меди и железа данный показатель +2. Простые вещества не отдают (не принимают) электроны, поэтому для них характерна нулевая величина степени окисления.

Составим электронный баланс, показав знаком "+" и "-" количество принятых и отданных в ходе взаимодействия электронов.

Fe 0 -2e=Fe 2+ .

Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.

Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).

Второй пример с ОГЭ

Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.

Допустим, предлагается расставить коэффициенты в уравнении:

Na+HCl=NaCl+H 2 .

Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.

В соляной кислоте водород имеют положительную, а хлор - отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

Первый из ЕГЭ

Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.

Например, нужно электронным балансом дополнить реакцию:

H 2 S+ HMnO 4 = S+ MnO 2 +…

Определите восстановитель и окислитель в предложенной схеме.

Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.

Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.

Далее нужно проанализировать, какое вещество может стать неизвестным продуктом в данном процессе. Поскольку в здесь присутствует окислитель (в его роли выступает марганец), восстановитель (им является сера), в искомом продукте не меняются степени окисления, следовательно, это вода.

Рассуждая о том, как правильно решать окислительно-восстановительные реакции, отметим, что следующим этапом будет составление электронного соотношения:

Mn +7 принимает 3 e= Mn +4 ;

S -2 отдает 2e= S 0 .

Катион марганца является восстановителем, а анион серы - типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.

Последним этапом будет постановка коэффициентов в исходное уравнение.

3H 2 S+ 2HMnO 4 = 3S+ 2MnO 2 + 4H 2 O.

Второй образец ОВР в ЕГЭ

Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.

Предлагается методом электронного баланса заполнить пропуски в реакции:

PH 3 + HMnO 4 = MnO 2 +…+…

Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.

Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.

P -3 отдает 8 e и превращается в P +5 ;

Mn +7 принимает 3e, переходя в Mn +4 .

НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.

Ставим коэффициенты в полученный процесс, получаем:

3 PH 3 + 8 HMnO 4 = 8 MnO 2 + 4H 2 O+ 3 H 3 PO 4 .

Третий пример из ЕГЭ

Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.

KMnO 4 + MnSO 4 +…= MnO 2 +…+ H2SO 4 .

По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением - сульфат калия. Получаем схему реакции, для которой составим электронный баланс.

Mn +2 -2 e= Mn +4 3 восстановитель;

Mn +7 +3e= Mn +4 2 окислитель.

Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.

2KMnO 4 + 3MnSO 4 + 2H 2 O= 5MnO 2 + K 2 SO 4 + 2H 2 SO 4 .

Заключение

Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.

Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.

Для составления окислительно-восстановительного процесса в органической или необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.

При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.

Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.