Основные положения рентгеноструктурного анализа кристаллов. Рентгеноструктурный анализ белков

1895 год оказался исключительно важным сперва для науки, а вскоре и для всего мира - именно тогда впервые открыли рентгеновские лучи, без которых сегодня нашу жизнь представить очень сложно. Слово страшное, все его боятся: это изучение, которое убивает! А после катастроф на АЭС и вовсе кровь в жилах стынет. Впрочем, про трагедии наслышаны все, а вот о пользе, которую это открытие дало людям, знают немногие. И речь идет не только лишь о специальных снимках - едва ли единственном эффективном методе выявления многих патологий. Еще одна область применения лучей - рентгеноструктурный анализ металлов, белков, иных соединений.

О чем идет речь

Рентгеновские лучи - электромагнитные колебания. Отличительная особенность - маленькая длина, сопоставимая с атомными габаритами. Источник излучения - быстрые электроны, влияющие на атомную структуру. В настоящее время излучение нашло себе применение в научно-техническом секторе.

Особенности лучей выявили в 1912 в ходе испытаний, проводимых немецкими учеными Книппингом, Фридрихом, Лауэ. При обследовании атомной решетки был установлен факт дифракции. Если сформировать узкий лучевой пучок и направить его на кристалл, обеспечив ему неподвижность, можно получить фракционную картинку на фотографической пластинке, размещенной позади кристалла. Отражение, полученное таким образом, представляло собой упорядоченную систему пятен, каждое из которых было следом определённого луча, рассеявшегося под влиянием кристалла. Изображение было решено назвать лауэграммой. Она легла в основу рентгеноструктурного анализа кристаллов, развивающегося и совершенствующегося в современности.

Тайны vs. наука

Применённый в биологии рентгеноструктурный анализ позволил проникнуть в тайную суть жизни. Впрочем, стоит отметить, что фундаментом для всего выступила квантовая физика - именно она дает обоснование явлениям, которые мы сейчас познаем с помощью рентгеновских лучей. Известно, что окружающее пространство, тела, предметы сформированы молекулами, атомами, сложенными в разные систематизированные, упорядоченные структуры. Выявление особенностей конкретного вещества может быть проведено только экспериментальным путем. В наши дни применение рентгеноструктурного анализа - эффективный, точный, современный способ определения атомного строения.

Для получения полезной информации необходимо использовать экспериментальные установки, где «работать» заставляют волны, чья длина - десять в минус десятой степени (!) метра. Именно таков масштаб расстояний на атомарном уровне. Для обывателя, далекого от физики, даже представить себе столь крошечные величины не представляется возможным - но ученые не просто смогли их разглядеть, но и проанализировали, заставили работать и производить еще больше информации, необходимой человечеству для познания окружающего мира и законов его построения.

Структуры и методики

Эксперименты 1912 года позволили сформулировать основные принципы рентгеноструктурного анализа, так как ученые получили эффективный метод выявления положения молекул, атомов внутри кристалла. Со временем также удалось собрать информацию о внутреннем строении молекул. Новые сведения быстро привлекли внимание самых светлых умов того времени, и за работу над еще только развивающимся рентгеноструктурным анализом взялись два британских ученых, отец и сын Брэгги. Именно они создали метод, благодаря которому человечество получило возможность очень точно определять молекулярную, минеральную структуру.

Со временем в фокусе внимания ученых оказывались все более сложные объекты, но рентгеноструктурный анализ показал себя на удивление универсальным. Постепенно очередь дошла до живых молекул. Сложно вообразить, насколько значим в настоящее время метод рентгеноструктурного анализа в биологии. Практически сразу ученые столкнулись со многочисленными сложностями, и в первую очередь - проблемой выделения кристаллов. Одна молекула - это несколько десятков тысяч атомов, что давало на снимке столь запутанное изображение, что восстановление координат не представлялось возможным. Но это только поначалу: годы шли, метод совершенствовался, в настоящее время эта задача уже решена.

Рентгеноструктурный анализ белков

Наиболее значимые исследования, связанные с этой тематикой, были организованы в Кавендишской лаборатории. Руководил ими уже упомянутый выше британец Брэгг. В качестве технического задания сформулировали задачу выявления белкового пространственного строения. Такая цель была закономерной: в середине прошлого столетия бытовало мнение, что самая важная для живого мира молекула - это белок. Для объяснения идеи аргументом был факт химических реакций, провоцируемых в клетке - ферментами, стимулирующими их, бывают только белки. Из этого ученые сделали закономерный вывод, что белок представляет собой основной строительный материал живой клетки, и освоение всех особенностей его структуры дало бы ответ на любые вопросы, связанные с фактом жизни. А изучить строение должен был помочь метод рентгеноструктурного анализа.

Итак, в центре внимания оказался сложный полимер - белок, звенья которого - мономеры, остатки аминокислот. Исследования показали, что таковые всегда линейны, а структура постоянна при повышении температур даже до того уровня, когда биологическая активность полностью угнетается. На основании полученных сведений стало ясно, что только остатки аминокислот в правильной последовательности еще не могут обеспечить возможность жизни, нужна также правильная компоновка групп в пространстве.

Успех не за горами

Примененный в лабораторных условиях рентгеноструктурный анализ помог решить поставленную перед учеными задачу. Успех пришел в середине пятидесятых, а первооткрывателями стали Перуц, Кендрю. Благодаря им в настоящее время мир знает, что белок имеет трехмерную структуру. Не менее важна и прочая информация, полученная разными учеными в ходе исследований и испытаний в попытке достичь поставленной цели. Многие данные, полученные в то время, в будущем помогли избежать ошибок и сделать более простым рентгеноструктурный анализ клетки.

В настоящее время посредством разработанной технологии можно изучить атом любого вещества и определить все специфические особенности элементарной ячейки, включая расположение в пространстве, форму, габариты. Рентгеноструктурный анализ позволяет выявить кристаллическую группу симметрии. В наши дни этот способ определения структуры вещества распространён шире любых других, что обусловлено его относительно низкой стоимостью, простотой реализации.

Рентгеновские спектры

Это понятие - одно из ключевых для теории рентгеноструктурного анализа. Принято говорить о двух типах: характеристическом, тормозном излучении. Тормозное обусловлено соответствующим движением электронов. Спровоцировать в лабораторных условиях это явление можно, если активировать антикатод установки. Ученый получает доступ к ограниченному широкому спектру. Каким образом будет расположена граница, от вещества не зависит, это полностью обусловлено энергетическими запасами направленных электронов. Тормозной спектр становится интенсивнее, если направленные частицы легче, а возбуждение электронов позволяет добиться очень высоких величин.

Используемое в методе рентгеноструктурного анализа характеристическое излучение сопровождается перемещением электронов. Расположенная на внутреннем атомном слое частица выбивается, с внешнего слоя заряженная частица переходит внутрь, весь процесс сопровождается определённой характеристикой - специфическим спектром, который во многом сходен с присущими газообразным веществам. Принципиальное отличие этих спектров - в зависимости (или ее отсутствии в случае рентгеновского изучения) от элемента, провоцирующего образование явления.

Рентген, результат и объект

Как показали испытания, проведенные с использованием различных соединений, рентгеноструктурный анализ в некоторой степени определяется его особенностью, отраженной через порядковый номер менделеевской таблицы: чем это значение больше, тем сильнее смещение к коротковолновому спектру. В 1913 было доказано: извлеченный из значения частоты квадратный корень линейно привязан к атомарному номеру. В будущем эта закономерность использовалась для обоснования менделеевской таблицы.

Следует учитывать, что разные элементы обладают разным спектром. При этом не наблюдается зависимости от возбуждаемости для испускания рентгеновского свечения в свободной форме, соединении с другими химическими элементами. На основании данных стало возможным проводить рентгеноструктурный анализ применительно к сложноструктурированных объектам. Выявленные спецификации стали базовыми для определения специфичности аналитического метода, сегодня обширно применяются.

Рентгеноструктурный анализ: теория и практика

В настоящее время эту методику анализа классифицируют как химический раздел, применимый для анализа вещественного состава. Интенсивность излучения определяется числом атомов, задействованных в процессе. Возбуждение провоцируется электронной бомбардировкой, облучением. В первом случае говорят о прямом возбуждении, при воздействии рентгеновских лучей - флуоресцентном (вторичном). Квант первичной радиации должен иметь энергетические запасы, превышающие расходы на выбивание электрона с занимаемой им позиции. Бомбардировка становится причиной специфического спектра и излучения - непрерывного, с высокой интенсивностью. Если предполагается вторичное возбуждение, тогда результат содержит линейчатый спектр.

Первичная возбуждаемость сопровождается нагревом субстанции. Флуоресцентное не провоцирует такого эффекта. При первичном методе веществом наполняют трубку, где создается высокий вакуум, а для флуоресцентной методологии необходимо расположить объект на пути рентгеновского излучения. Условие вакуума здесь не играет роли. Это довольно удобно: исследовав один объект, можно убрать образец и поместить следующий, процедура простая и практически не требует времени. В то же время вторичное излучение по интенсивности в тысячи раз слабее в сравнении с первичным методом. Тем не менее метод рентгеноструктурного анализа клетки обычно производится с применением именно вторичного, флуоресцентного излучения, предполагающего наличие быстрых электронов.

Что используется?

Для проведения анализа необходимо иметь в своем распоряжении специальный прибор. Полнопрофильный рентгеноструктурный анализ реализуется при помощи дифрактометра. Существует также флуоресцентный спектрометр. Этот прибор сформирован тремя ключевыми узлами: трубкой, анализатором, детектором. Первая является источником излучения, влияющего на флуоресцентный спектр исследуемого материала. Анализатор необходим, чтобы получить спектр. Детектор передает информацию об интенсивности, следующий шаг - фиксация результатов эксперимента.

На практике довольно часто используется такой спектрометр: излучающий источник, детектор расположены на специализированной окружности, центральное место принадлежит способному вращаться вокруг собственной оси кристаллу. Фактически ось пронизывает центр окружности.

Фокусирующий спектрометр

Как можно заключить из доступной для широкого круга лиц информации, в настоящее время методы, программы полнопрофильного рентгеноструктурного анализа труднодоступны, поэтому реальное широкое применение на практике не получили. Отмечается, что гораздо более актуальный вариант - это метод отражения, изобретённый Иоганном, Иогансоном и Капицей. Предполагается применение специализированного спектрометра. Альтернативный вариант - технология, авторами которой выступаю Коуш, Дю-Монд. Этот вариант именуется «на прохождение».

Указанные широко используемые в настоящее время методики бывают с одним либо многочисленными каналами. Многоканальные квантометры, аутрометры - это эффективный метод выявления многочисленных элементов. Сама работа, связанная с анализом, при применении такой технологии автоматизируется до высокого уровня. Преимущественно приборы оснащены трубками, устройствами, благодаря которым становится достижима повышенная стабилизационная степень интенсивности изучения. Спектрометр использует волны из диапазона, определённого анализатором. Для его плоскостей характерно некоторое конкретное расстояние, и невозможно отражение таких лучей, длина которых вдвое или больше, нежели межплоскостное анализатора.

Особенности реализации

В настоящее время используются самые разные элементы в качестве кристаллов. Наибольшее распространение получили слюда, гипс, кварц. Детекторами выступают гейгеровские счетчики, а также специализированные кристаллические, пропорциональные. В последнее время все активнее используются так называемые квантовые сцинтилляционные счётчики.

Из объектов, которые исследуются разными приборами, довольно часто внимание научных сотрудников привлекают ферриты висмута. Полнопрофильный рентгеноструктурный анализ BiFeO3 уже не раз становился главной темой научных работ в области химии, предполагается, что некоторые аспекты еще только предстоит открыть.

Область применения

Рентгеноспектральный анализ позволяет определять, как много в некотором соединении содержится целевого элемента, вызывающего интерес исследователя. Допускается исследовать сложные составы, сплавы, металлы. Нередко таким образом анализируют керамические, цементные соединения, пластмассовые. Можно исследовать даже пыль либо абразивные компоненты. Химтехнологии дают доступ к широкому спектру разнообразных продуктов, изучить особенности которых можно, прибегнув к рентгеновскому излучению. Самые актуальные области применения анализа - геология, металлургия, где аппаратура используется с целью выявления микроскопических, макроскопических компонентов.

Нет предела совершенству

Не всегда стандартная установка для рентгеноспектрального анализа позволяет получить необходимые сведения относительно исследуемого объекта. Для увеличения показателей чувствительности применимой методики допускается комбинирование нескольких вариантов подходов: радиометрия прекрасно сочетается с химическими способами. Наибольшая чувствительность определяется атомным номером вещества, которое предстоит выявить, а также средним номером образца. Если речь идет о легких элементах, задача считается довольно простой. Точность - 2-5 % (относительных), вес - считанные грамы, длительность - до двух часов, но иногда необходимо всего лишь несколько минут. А вот сложной считается задача, если речь идет о мягком спектре, небольшом Z.

Анализ белков: особенности

Одно из очень важных направлений использования описываемой методики - анализ белков. Как выше было указано, для получения точной информации об исследуемом объекте его необходимо изучать в виде кристалла, но в нормальном состоянии белковая молекула не имеет такой формы. Для проведения анализа необходимо преобразование.

Как это происходит?

Почти любое исследование белка в рамках эксперимента предполагает биохимическую методику добычи исходного вещества. Биологический материал измельчают, переводят белок в растворенное состояние и из общей смеси выделяют необходимый объект, который и будут дальше исследовать. Во многом результативность мероприятия зависит от качества выделения белка.

Чтобы можно был прибегнуть к анализу с использованием рентгеновского излучения, необходимо сформировать кристаллы. Если соединение сложное, рабочий процесс затягивается надолго. Как правило, в качестве исходного состава применяют насыщенный раствор, который затем обрабатывают, и жидкость испаряется. Второй вариант предполагает температурное влияние. Получаемые в итоге компоненты можно исследовать в специальной установке.

Название аналитического метода отражает его содержание - то есть анализ структуры вещества путем воздействия на него рентгеновским излучением. Принципиальные основы метода связаны с теоретическими положениями, о дифракциях рентгеновских лучей на периодических структурах, которая была открыта М. Лауэ в 1912 году.

Рентгеновские лучи имеют электромагнитную природу. Приборы, регистрирующие кванты рентгеновского излучения, называются рентгеновские дифрактометры. Рентгеновский аппарат имеет пульт управления, ряд измерительных приборов и некоторые вспомогательные устройства.

Основными узлами рентгеновской установки служат (рис. 20):

  • - детектор (счётчик) рентгеновского излучения с соответствующей электронной схемой и регистрирующим устройством;
  • - источник излучения (рентгеновский аппарат с рентгеновской трубкой);
  • - гониометрическое устройство, в котором осуществляется движение образца и счётчика относительно первичного пучка рентгеновских лучей.

Рис. 20. Основные узлы дифрактометра ДРОН: 1 - блок электрического питания; 2 - питающее устройство; 3 - дифрактометрическая стойка; 4 - рентгеновская трубка; 5 - гониометр; 6 - гониометрическая приставка; 7 - блок детектирования; 8 - управляющий комплекс; 9 - блок регистрации; 10 - счетный комплекс; 11 - самопишущее устройство; 12 - печатное устройство; 13 - перфоратор

Детектор регистрирует в каждый момент времени интенсивность рассеянного излучения в узком угловом интервале пучка излучений. Пpи этом может использоваться неподвижный контрольный счётчик.

Источником рентгеновского излучения является рентгеновская трубка (рис. 21), а источником электрической энергии для рентгеновской трубки служит рентгеновский аппарат. В рентгеновской трубке происходит трансформация энергии электрического тока, переносимого разгоняющимися до больших скоростей электронами, в энергию электромагнитного излучения.

Объектами исследования могут быть вещества различных фазовых состояний - твердые, жидкие, газообразные, кристаллические и аморфные. Однако чаще рентгеноструктурные методы применяются для исследования твердых веществ, обладающих кристаллической структурой, т.е. таких веществ, которые характеризуются упорядоченным, закономерным расположением в пространстве входящих в их состав атомов, ионов или комплексов. Основная закономерность строения кристаллических веществ, а именно, повторяемость пространственного расположения частиц по трем (двум) направлениям с определенным периодом - отражает сущность структуры кристаллического вещества, его симметрию и элементарный состав.

Рис. 21.

Каждое вещество обладает только ему присущей кристаллической структурой, определяющей индивидуальность каждого минерального вида или соединения, и обуславливающей его кристаллофизические свойства. Несколько минералов могут иметь одинаковый состав, например, пирит и марказит (FeS), кальцит и арагонит (CaCО 3), но разное относительное расположение в пространстве атомов и ионов приводит к индивидуализации каждого минерального вида. Кристаллическая структура характеризуется системой параллельных атомных плоскостей, более или менее заселенных атомами, расстояния между этими плоскостями называются межплоскостными (d i), а плотность заселения характеризуется относительной интенсивностью отражения рентгеновских лучей (J i). Это позволяет решать обратную задачу - получив d и J качественно и количественно диагностировать минеральную структуру.

При взаимодействии рентгеновских лучей с кристаллом можно рассматривать как их отражение атомными плоскостями и интерференцию отраженных лучей. Отраженные лучи, максимальные по интенсивности, наблюдаются под определенными углами, которые зависят от межплоскостных расстояний отражающей атомной структуры и длин волн первоначального рентгеновского излучения (рис. 22).

Это соотношение выражается уравнением Вульфа-Брегга:

где и - угол (Вульфа-Брегга) максимального отражения рентгеновских лучей атомной плоскостью; d - расстояние между отражающими плоскостями (межплоскостные расстояния); л- целое число (порядок отражения); d -длина волны падающего рентгеновского излучения. Это уравнение позволяет, зная величину л и экспериментально измеренные углы и, определять межплоскостные расстояния d.

Рис. 22.

Использование этой формулы позволяет, с учетом пространственной ориентации атомных плоскостей (h, k, ?) в минералах разных сингоний, определять положение узлов атомной (ионной) решетки с указанием параметров элементарной ячейки (а, в, c), где а, в, c - расстояния между узлами в атомной плоскости и d - расстояние между плоскостями, в соответствии с формулой (для кубической сингонии):

Для получения рентгенограмм применяют следующие методы:

  • - метод Лауэ (неподвижного кристалла, облучаемого немонохроматическим излучением);
  • - метод вращения кристалла;
  • - метод порошкограмм (облучение спрессованного порошка монохроматическим излучением).

При исследовании кристаллической структуры вещества методом Лауэ получают дифракционную картину монокристалла в белом (широкого спектра) рентгеновском излучении. Монокристалл помещают под поток рентгеновских лучей, лучи отражаются от атомных плоскостей и попадают на рентгеновскую пленку (рис. 23). Рассеянные лучи дают на пленке точечные рефлексы, каждому из которых соответствует своя длина волны l из полихроматического спектра. Симметрия в расположении пятен отражает симметрию кристалла (рис. 24).

Рис. 23. Схема получения лауэграммы (а); вид дифракционной картины для кристалла (б): эллипсы, проведенные через рефлексы, пересекаются в точке, соответствующей оси симметрии 4-го порядка (hppt://s-d-p.narod.ru)

Рис. 24.

Через рефлексы можно провести эллипсы, точкой пересечения которых является ось симметрии. Дифракционную картину от монокристалла можно получить методом вращения его вокруг оси, перпендикулярной к направлению падающего монохроматического пучка и параллельной кристаллографической оси, имеющей, как правило, небольшие индексы.

Дифракционная картина будет иметь простой вид только в том случае, когда ось вращения параллельна какому-либо узловому ряду решетки. Если пленка свернута в виде цилиндра, ось которого совпадает с осью вращения кристалла, а пучок направлен перпендикулярно этой оси (рис. 25, а), то плоскости, параллельные оси вращения, дадут дифракционную картину в виде точек, расположенных вдоль прямой, проходящей через центр пленки и называемой нулевой слоевой линией первого рода. Плоскости, ориентированные наклонно по отношению к оси вращения, дадут рефлексы, образующие слоевые линии, находящиеся выше и ниже нулевой (рис. 25, б). Из расстояния между слоевыми линиями первого рода можно рассчитать кратчайшее расстояние между атомами, расположенными вдоль кристаллографического направления, параллельного оси вращения кристалла.

Рис. 25. Схема рентгеновской съёмки по методу вращения (hppt://bestreferat.ru): 1 - первичный пучок; 2 - образец (вращается по стрелке); 3 - фотоплёнка цилиндрической формы; б - типичная рентгенограмма вращения

Кристаллическая структура вещества может быть определена и по порошковым дифракционным картинам, получаемым от поликристаллических объектов. Это способ рентгеноструктурного изучения минералов называется метод дебаеграмм. Он дает менее полную структурную характеристику минерала, но при отсутствии крупных и хорошего качества монокристаллов порошковые методы очень полезны. Для исследования этим методом берут тонкий порошок измельченных кристаллов, из которого изготовляют спрессованный столбик, или спрессованные пластинки. Основы этого метода связаны с положением о том, что поликристаллический объект содержит множество разноориентированных кристаллов и необходимо создать условия для ориентации возможно большей их части в положении, удовлетворяющей уравнению Вульфа-Брегга, т.е. получить максимальные углы и интенсивности отражения (рис. 26, а). Снимок отраженных лучей носит название дебаеграммы (рис. 26, б). Анализ результатов сводится к сравнению дебаеграммы неизвестного минерала с эталонными снимками стандартов.


Рис. 26. Схема рентгеновской съёмки по методу порошка (hppt://roman.by): 1 - первичный пучок; 2 - порошковый или поликристаллический образец; 3 - фотоплёнка, свёрнутая по окружности; 4 - дифракционные конусы; 5 - "дуги" на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами; б - типичная порошковая рентгенограмма (дебаеграмма)

Вышерассмотренные методы рентгеновской съемки характеризуются регистрацией дифрагированных рентгеновских лучей на фотопленке. В приборах, которые называются дифрактометры, лучи фиксируются счетчиками, с которыми связано электронное регистрирующее устройство. Результатом исследования вещества на дифрактометре является дифрактограмма (рис. 27), на которой положение пиков по горизонтали указывает на величину угла, а их высота характеризует интенсивность. В России выпускаются дифрактометры серии ДРОН.

Рентгеноструктурный анализ, выполненный на совершенном оборудовании и при использовании качественного справочного материала для идентификации параметров кристаллической решетки позволяет:

  • - определить минеральный вид;
  • - определить минеральную разновидность; (тип кристаллической решетки);
  • - выявить структурные разновидности (подтипы);
  • - установить наличие структурных типоморфных особенностей;
  • - установить и произвести количественную оценку элементов-примесей;
  • - выявить степень упорядоченности структуры и ее совершенство.

РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ (рентгеноструктурный анализ) - методы исследования атомного строения вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентг. . Р. с. а. кристаллич. материалов позволяет устанавливать координаты атомов с точностью до 0,1-0,01 нм, определять характеристики тепловых этих атомов, включая анизотропию и отклонения от гармонич. закона, получать по эксперим. . данным распределения в пространстве плотности валентных электронов на хим. связях в кристаллах и молекулах. Этими методами исследуются металлы и сплавы, минералы, неорганич. и органич. соединения, белки, нуклеиновые кислоты, вирусы. Спец. методы Р. с. а. позволяют изучать полимеры, аморфные материалы, жидкости, газы.

Среди дифракц. методов исследования атомного строения вещества Р. с. а. является наиб. распространённым и развитым. Его возможности дополняют методы нейтронографии и электронографии .Дифракц. картина зависит от атомного строения изучаемого объекта, характера и длины волны рентг. излучения. Для установления атомного строения вещества наиб. эффективно использование рентг. излучения с длиной волны ~ 10 нм и меньше, т. е. порядка размеров атомов. Особенно успешно и с высокой точностью методами Р. с. а. исследуют атомное строение кристаллич. объектов, структура к-рых обладает строгой периодичностью, и они, т. о., представляют собой естеств. трёхмерную дифракц. решётку для рентг. излучения.

Историческая справка

В основе Р. с. а. кристаллич. вещества лежит учение о . В 1890 рус. кристаллограф Е. С. Фёдоров и нем. математик А. Шёнфлис (A. Schonflis) завершили вывод 230 пространственных групп , характеризующих все возможные способы размещения атомов в кристаллах. Дифракция рентг. лучей на кристаллах, составляющая эксперим. фундамент Р. с. а., была открыта в 1912 М. Лауэ (М. Laue) п его сотрудниками В. Фридрихом (W. Friedrich) и П. Книппингом (P. Knipping). Разработанная Лауэ теория дифракции рентг. лучей на кристаллах позволила связать длину волны излучения, линейные размеры элементарной ячейки кристалла а, b, с , углы падающего и дифракционноголучей соотношениями

где h , k, l - целые числа (индексы кристаллографические ).Соотношения (1) получили название ур-ний Лауэ, выполнение их необходимо для возникновения дифракции рентг. лучей на кристалле. Смысл ур-ний (1) в том, что между параллельными лучами, рассеянными атомами, отвечающими соседним узлам решётки, должны быть целыми кратными.

В 1913 У. Л. Брэгг (W. L. Bragg) и Г. В. Вульф показали, что дифракц. рентг. пучок можно рассматривать как отражение падающего луча от нек-рой системы кристаллографич. плоскостей с межплоскостным расстоянием d: где - угол между отражающей плоскостью и дифракц. лучом (угол Брэгга). В 1913-14 У. Г. и У. Л. Брэгги впервые использовали дифракцию рентг. лучей для эксперим. проверки предсказанного ранее У. Барлоу (W. Barlow) атомного строения кристаллов NaCl, Си, алмаза и др. В 1916 П. Дебай (P. Debye) и П. Шеррер (P. Scherrer) предложили и разработали дифракц. методы рентгеноструктурных исследований поликристаллич. материалов (Дебая - Шеррера метод ).

В качестве источника рентг. излучения использовались (и используются поныне) отпаянные рентг. трубки с анодами из разл. металлов и, следовательно, с различными соответствующего характеристич. излучения - Fe ( = 19,4 нм), Си ( = 15,4 нм), Мо ( = 7,1 нм), Ag ( = 5,6 нм). Позднее появились на порядок более мощные трубки с вращающимся анодом, для структурных исследований используют также наиб. мощный, имеющий белый (непрерывный) спектр излучения источник - рентг. синхротронное излучение . С помощью системы монохроматоров можно непрерывным образом изменять применяемого в исследовании синхретронного рентг. излучения, что имеет принципиальное значение при использовании в Р. с. а. эффектов аномального рассеяния. В качестве детектора излучения в Р. с. а. служит рентг. фотоплёнка, к-рую вытесняют сцинтилляционные и полупроводниковые детекторы. Эффективность измерит. систем резко возросла с применением координатных одномерных и двумерных детекторов.

Количество п качество информации, получаемой с помощью Р. с. а., зависят от точности измерений и обработки эксперим. данных. Алгоритмы обработки дифракц. данных определяются используемым приближением теории взаимодействия рентг. излучения с веществом. В 1950-х гг. началось применение ЭВМ в технике рентгеноструктурного эксперимента и для обработки эксперим. данных. Созданы полностью автоматизированные системы для исследования кристаллич. материалов, к-рые проводят эксперимент, обработку эксперим. данных, осн. процедуры по построению и уточнению атомной модели структуры и, наконец, графич. представление результатов исследования. Однако с помощью этих систем пока нельзя изучать в автоматич. режиме кристаллы с псевдосимметрией, двойниковые образцы и кристаллы с др. особенностями структуры.

Экспериментальные методы рентгеновского структурного анализа

Для реализации условий дифракции (1) и регистрации положения в пространстве и интенсивностей дифрагированного рентг. излучения служат рентг. камеры и рентг. дифрактометры с регистрацией излучения соответственно фотогр. методами или детекторами излучения. Характер образца (монокристалл или поликристалл, образец с частично упорядоченной структурой или аморфное тело, жидкость пли газ), его размер и решаемая задача определяют необходимую экспозицию и точность регистрации рассеянного рентг. излучения и, следовательно, определённый метод Р. с. а. Для изучения монокристаллов при использовании в качестве источника рентг. излучения отпаянной рентг. трубки достаточен объём образца ~10 -3 мм 3 . Для получения качественной дифракц. картины образец должен обладать возможно более совершенной структурой, причём его блочность не препятствует структурным исследованиям. Реальное строение крупных, почти совершенных монокристаллов исследует рентгеновская топография , к-рую иногда тоже относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентг. излучение имеет непрерывный спектр. Расположение дифракц. пятен на лауэграммах зависит от размеров элементарной ячейки и симметрии кристалла , а также и от ориентации образца относительно падающего рентг. луча. Метод Лауэ позволяет отнести монокристалл к одной из 11 лауэвских групп симметрии и установить ориентацию его кристаллографич. осей с точностью до угл. минут (см. Лауэ метод) . По характеру дифракц. пятен на лауэграммах и особенно по появлению астеризма (размытия пятен) можно выявить внутр. напряжения и нек-рые др. особенности строения образца. Методом Лауэ проверяют качество монокристаллов и проводят отбор наиб. совершенных образцов для более полного структурного исследования (рентгенгониометрич. методами; см. ниже).

Методами качания и вращения образца определяют периоды повторяемости (трансляции) вдоль заданных кристаллографич. направлений, проверяют симметрию кристалла, а также измеряют интенсивности дифракц. отражений. Образец во время эксперимента приводится в колебат. или вращат. движение относительно оси, совпадающей с одной из кристаллографич. осей образца, к-рую предварительно ориентируют перпендикулярно падающему рентг. лучу. Дифракц. картина, создаваемая монохроматич. излучением, регистрируется на рентг. плёнке, находящейся в цилиндрич. кассете, ось к-рой совпадает с осью колебания образца. Дифракц. пятна при такой геометрии съёмки на развёрнутой плёнке оказываются расположенными на семействе параллельных прямых (рис. 1). Период повторяемости Т вдоль кристаллографич. направления равен:

где D - диаметр кассеты, - расстояние между соответствующими прямыми на рентгенограмме. Т. к. постоянна, условия Лауэ (1) выполняются за счёт изменения углов при качании или вращении образца. Обычно на рентгенограммах качания и вращения образца дифракц. пятна перекрываются. Чтобы избежать этого нежелательного эффекта, можно уменьшить угл. амплитуду колебаний образца. Такой приём применяют, напр., в Р. с. а. белков, где рентгенограммы качания используют для измерения интенсивностей дифракц. отражений.

Рис. 1. Рентгенограмма качания минерала сейдозерита Na 4 MnTi(Zr,Ti) 2 0 2 (F,OH) 2 2 .

Рентгенгониометрические методы. Для полного структурного исследования монокристалла методами Р. с. а. необходимо определить положение в пространстве и измерить интегральные интенсивности всех дифракц. отражений, возникающих при использовании излучения с данной. Для этого в процессе эксперимента образец должен с точностью порядка угл. минут принимать ориентации, при к-рых выполняются условия (1) последовательно для всех семейств кристаллографич. плоскостей образца; при этом регистрируются мн. сотни и даже тысячи дифракц. рефлексов. При регистрации дифракц. картины на рентг. фотоплёнке интенсивности рефлексов определяются микроденситометром по степени почернения и размеру дифракц. пятен. В разл. типах гониометров реализуются разл. геом. схемы регистрации дифракц. картины. Полный набор интенсивностей дифракц. отражений получают на серии рентгенограмм, на каждой рентгенограмме регистрируются рефлексы, на кристаллографич. индексы к-рых наложены определ. ограничения. Напр., на разных рентгенограммах регистрируются отражения типа hk0 , hk1 (рис. 2) . Для установления атомной структуры кристалла, в элементарной ячейке к-рого содержится ~100 атомов, необходимо измерить неск. тысяч дифракц. отражений. В случае монокристаллов белков объём эксперимента возрастает до 10 4 -10 6 рефлексов.

Рис. 2. Рентгенограмма минерала сейдозерита, полученная в рентгеновском гониометре Вайсенберга. Зарегистрированные дифракционные отражения имеют индексы. Отражения, расположенные на одной кривой, характеризуются постоянным индексом k .

При замене фотоплёнки на счётчики рентг. квантов возрастают чувствительность и точность измерения интенсивностей дифракц. отражений. В совр. автоматич. дифрактометрах предусмотрены 4 оси вращения (3 у образца и 1 у детектора), что позволяет реализовать в них различные по геометрии методы регистрации дифракц. отражений. Такой прибор универсален, управление им осуществляется с помощью ЭВМ и специально разработанных алгоритмов и программ. Наличие ЭВМ позволяет ввести обратную связь, оптимизацию измерений каждого дифракц. отражения и, следовательно, естеств. образом планировать весь дифракц. эксперимент. Измерения интенсивностей производятся с необходимой для решаемой структурной задачи статистич. точностью. Однако увеличение точности измерения интенсивностей на порядок требует увеличения времени измерений на два порядка. На точность измерений накладывает ограничение качество исследуемого образца. Для белковых кристаллов (см. ниже) сокращение времени эксперимента осуществляется за счёт использования двумерных детекторов, в к-рых параллельно идёт измерение мн. десятков дифракц. отражений. При этом утрачивается возможность оптимизации измерений на уровне отд. рефлекса.

Метод исследования поликристаллов (метод Дебая - Шеррера). Для Р. с. а. кристаллич. порошков, керамич. материалов и др. поликристаллич. объектов, состоящих из большого числа мелких, случайным образом ориентированных друг относительно друга монокристаллов, используется монохроматич. рентг. излучение. Рентгенограмма от поликристаллич. образца (де-баеграмма) представляет собой совокупность концент-рич. колец, каждое из к-рых состоит из дифракц. отражений от разл. образом ориентированных в разных зёрнах систем кристаллографич. плоскостей с определённым межплоскостным расстоянием d . Набор d и соответствующие им интенсивности дифракц. отражений индивидуальны для каждого кристаллич. вещества. Метод Дебая - Шеррера используется при идентификации соединений и анализе смесей поликристаллич. веществ по качеств. и количеств. составу составляющих смеси фаз. Анализ распределения интенсивностей в дебаевских кольцах позволяет оценить размеры зёрен, наличие напряжений и преимущественных ориентации (текстурирования) в расположении зёрен (см. Рентгенография материалов, Дебая - Шеррера метод) .

В 1980 - 90-х гг. в Р. с. а. стал применяться метод уточнения атомного строения кристаллич. веществ по дифракц. данным от поликристаллич. материалов, предложенный X. М. Ритвелдом (Н. М. Rietveld) для нейтронографич. исследований. Метод Рптвелда (метод полнопрофильного анализа) используется в том случае, когда известна приближённая структурная модель изучаемого соединения, по точности результатов он может конкурировать с рентгеноструктурными методами исследования монокристаллов.

Исследование аморфных материалов и частично упорядоченных объектов . Чем ниже степень упорядоченности атомного строения анализируемого вещества, тем более размытый, диффузный характер имеет рассеянное им рентг. излучение. Однако дифракц. исследования даже аморфных объектов дают возможность получить информацию об их строении. Так, диаметр диффузного кольца на рентгенограмме от аморфного вещества (рис. 3) позволяет оценить ср. межатомные расстояния в нём. С ростом степени упорядоченности в строении объектов дифракц. картина усложняется (рис. 4) и, следовательно, содержит больше структурной информации.

Рис. 3. Рентгенограмма аморфного вещества - ацетата целлюлозы .

Рис. 4. Рентгенограммы биологических объектов: а - волоса; б - натриевой соли ДНК во влажном состоянии; в - текстуры натриевой соли ДНК .

Метод малоуглового рассеяния . В том случае, когда размеры неоднородностей в объекте исследования превышают межатомные расстояния и составляют от 0,5-1 до 10 3 нм, т. е. во много раз превышают длину волны используемого излучения, рассеянное рентг. излучение концентрируется вблизи первичного пучка - в области малых углов рассеяния. Распределение интенсивности в этой области отражает особенности строения исследуемого объекта. В зависимости от строения объекта и размеров неоднородностей интенсивность рентг. рассеяния измеряют в углах от долей минуты до неск. градусов.

Малоугл. рассеяние применяют для изучения пористых и мелкодисперсных материалов, сплавов и биол. объектов. Для молекул белка и нуклеиновых кислот в растворах метод позволяет с невысоким разрешением определять форму и размеры индивидуальной молекулы, мол. массу, в вирусах - характер взаимной укладки составляющих их компонент (белка, нуклеиновых кислот, липидов), в синтетич. полимерах - упаковку полимерных цепей, в порошках и сорбентах - распределение частиц и пор по размерам, в сплавах - фиксировать возникновение новых фаз и определять размеры этих включений, в текстурах (в частности, в жидких кристаллах) - упаковку частиц (молекул) в различного рода надмолекулярные структуры. Эффективным оказался метод малоугл. рассеяния и для исследования строения ленгмюровских плёнок. Он применяется также в пром-сти при контроле процессов изготовления катализаторов, высокодисперсных углей и т. д.

Анализ атомной структуры кристаллов

Определение атомной структуры кристаллов включает: установление формы и размеров элементарной ячейки, симметрии кристалла (его принадлежности к одной из 230 фёдоровских групп) и координат базисных атомов структуры. Прецизионные структурные исследования позволяют, кроме того, получать количеств. характеристики тепловых движений атомов в кристалле и пространственное распределение в нём валентных электронов. Методами Лауэ и качания образца определяют метрику кристаллич. решётки. Для дальнейшего анализа необходимо измерение интенсивностей всех возможных дифракц. отражений от исследуемого образца при данной l. Первичная обработка эксперим. данных учитывает геометрию дифракц. эксперимента, поглощение излучения в образце, и др. более тонкие эффекты взаимодействия излучения с образцом.

Трёхмерная периодичность кристалла позволяет разложить распределение его электронной в пространстве в ряд Фурье:

где V - объём элементарной ячейки кристалла, F hkl - коэффициенты Фурье, к-рые в Р. с. а. наз. структурными амплитудами. Каждая структурная амплитуда характеризуется целыми числами h, k, l - кристаллографич. индексами в соответствии с (1) и однозначно отвечает одному дифракц. отражению. Разложение (2) физически реализуется в дифракц. эксперименте.

Осн. сложность структурного исследования состоит в том, что обычный дифракц. эксперимент даёт возможность измерить интенсивности дифракц. пучков I hkl но не позволяет фиксировать их фазы. Для мозаичного кристалла в кинематич. приближении . Анализ эксперим. массива с учётом закономерных погасаний рефлексов позволяет однозначно установить его принадлежность к одной из 122 рентг. групп симметрии. При отсутствии аномального рассеяния дифракц. картина всегда центросимметрична. Для определения фёдоровской группы симметрии необходимо независимо выяснить, обладает ли кристалл центром симметрии. Эта задача может быть решена на основе анализа аномальной составляющей рассеяния рентг. лучей. При отсутствии последнего строят кривые статистич. распределения по их значениям, эти распределения различны для центросимметричных и ацентричных кристаллов. Отсутствие центра симметрии может быть однозначно установлено и по физ. свойствам кристалла (пироэлектрическим, сегнетоэлектрическим и др.).

Фурье-преобразование соотношения (2) позволяет получить расчётные ф-лы для вычисления величин F hkl (в общем случае - комплексных):

где - ат. фактор рассеяния рентг. излучения атомом j j , x j , y j , z j - его координаты; суммирование идёт по всем N атомам элементарной ячейки.

Задача, обратная структурному исследованию, решается следующим образом: если известна атомная модель структуры, то по (3) вычисляются модули и фазы структурных амплитуд и, следовательно, интенсивности дифракц. отражений. Дифракц. эксперимент даёт возможность измерить мн. сотни не связанных симметрией амплитуд , каждая из к-рых определяется по (3) набором координат базисных (независимых по симметрии) атомов структуры. Таких структурных параметров существенно меньше, чем модулей, следовательно, между последними должны существовать связи. Теория структурного анализа установила связи разного типа: неравенства, линейные неравенства, структурные произведения и детерминанты связи структурных амплитуд.

На основе наиб, эффективных статистич. связей развиты [Дж. Карле (J. Karle) и X. А. Хауптман (Н. A. Hauptman), Нобелевская премия, 1985] т. н. прямые методы определения фаз структурных амплитуд. Если взять тройку больших по модулям структурных амплитуд, индексы к-рых связаны простыми соотношениями h 1 + h 2 + h 3 = 0, k 1 + k 2 + k 3 = 0, l 1 + l 2 + l 3 = 0 , то наиб. вероятная сумма фаз этих амплитуд будет равна нулю:

Вероятность выполнения равенства тем выше, чем больше произведение спец. образом нормированных структурных амплитуд, входящих в это соотношение. С ростом числа атомов N в элементарной ячейке кристалла надёжность соотношения падает. На практике используются существенно более сложные статистич. соотношения и достаточно строгие оценки вероятностей выполнения этих соотношений. Вычисления по этим соотношениям весьма громоздки, алгоритмы сложны и реализуются только на мощных совр. ЭВМ. Прямые методы дают первые приближённые значения фаз и только наиб. сильных по нормированным модулям структурных амплитуд.

Для практики структурных исследований важны процедуры автоматич. уточнения фаз структурных амплитуд. На основе приближённого набора фаз сильнейших структурных амплитуд и по соответствующим эксперим. модулям по (2) вычисляется первое приближённое распределение электронной плотности в кристалле. Затем модифицируется на основе физ. и кристаллохим. информации о свойствах этого распределения. Напр., во всех точках пространства, по модифициров. распределению путём обращения Фурье вычисляются уточнённые фазы и вместе с эксперим. значениями используются для построения следующего приближения и т. д. После получения достаточно точных значенийпо (2) строится трёхмерное распределение электронной плотности в кристалле. Оно по существу является изображением исследуемой структуры, и вся сложность его получения вызвана отсутствием собирающих линз для рентг. излучения.

Правильность полученной атомной модели проверяют сравнением эксперим. и вычисленных по (3) модулей структурных амплитуд. Количеств. характеристика такого сравнения - фактор расходимости

Этот фактор даёт возможность методом проб и ошибок получить оптим. результаты. Для некристаллич. объектов это практически единств. метод интерпретации дифракц. картины.

Определение фаз структурных амплитуд прямыми методами осложняется при увеличении числа атомов в элементарной ячейке кристалла. Псевдосимметрия и нек-рые др. особенности его строения также ограничивают возможности прямых методов.

Иной подход к определению атомного строения кристаллов по рентг. дифракц. данным был предложен А. Л. Патерсоном (A. L. Paterson). Атомная модель структуры строится на основе анализа ф-ции межатомных векторов P(u,v,w )(ф-ции Патерсона), к-рая вычисляется по эксперим. значениям . Смысл этой ф-ции можно пояснить с помощью схемы её геом. построения. Атомную структуру, содержащую в элементарной ячейке N атомов, помещаем параллельно самой себе так, чтобы первый атом попал в начало координат. Если умножить атомные веса всех атомов структуры на значение атомного веса первого атома, то получим веса первых N пиков ф-ции межатомных векторов. Это т. н. изображение структуры в первом атоме. Затем в начало координат помещаем таким же образом построенное изображение структуры во втором атоме, затем в третьем и т. д. Проделав эту процедуру со всеми N атомами структуры, получим N 2 пиков ф-ции Патерсона (рис. 5). Т. к. атомы не являются точками, полученная ф-ция P(u,v,w )содержит достаточно размытые и перекрывающиеся пики:

Рис. 5. Схема построения функции межатомных векторов для структуры, состоящей из трёх атомов .

[ - элемент объёма в окрестности точки (х,у,z )]. Ф-ция межатомных векторов строится по квадратам модулей эксперим. структурных амплитуд и является свёрткой распределения электронной плотности с собой, но после инверсии в начале координат.

Рис. 6. Минерал баотит Ba 4 Ti 4 (Ti,Nb) 4 O 16 Cl; a - функция межатомных векторов, проекция на плоскость аb, линии равного уровня значений функции проведены через равные произвольные интервалы; б - проекция распределения электронной плотности на плоскость аb, полученная путём интерпретации функции межатомных векторов и уточнения атомной модели, сгущения линий равного уровня отвечают положениям атомов в структуре; в - проекция атомной модели структуры на плоскость аb в полинговских полиэдрах. Атомы Si расположены внутри тетраэдров из атомов кислорода, атомы Ti и Nb находятся в октаэдрах из атомов кислорода. Тетраэдры и октаэдры в структуре баотита соединены, как показано на рисунке. Атомы Ва и С1 показаны черными и светлыми кружками. Часть элементарной ячейки кристалла, изображённая на рисунках а и б, отвечает на рисунке в квадрату, выделенному штриховыми линиями .

Трудности интерпретации P(u,v,w )связаны с тем, что среди N 2 пиков этой ф-ции необходимо распознать пики одного изображения структуры. Максимумы ф-ции Патерсона существенно перекрываются, что ещё более осложняет её анализ. Наиб. прост для анализа случай, когда исследуемая структура состоит из одного тяжёлого атома и неск. значительно более лёгких атомов. В этом случае изображение структуры в тяжёлом атоме рельефно выступает на фоне остальных пиков P(u,v,w) . Разработан ряд методов систематич. анализа ф-ции межатомных векторов. Наиб. эффективными из них являются суперпозиц. методы, когда две или более копий P(u,v,w) в параллельном положении накладываются друг на друга с соответствующими смещениями. При этом закономерно совпадающие на всех копиях пики выделяют одно или несколько из N исходных изображении структуры. Как правило, для единств. изображения структуры приходится использовать дополнит. копии P(u,v,w) . Проблема сводится к поиску необходимых взаимных смещений этих копий. После локализации на суперпозиц. синтезе приближённого распределения атомов в структуре этот синтез может быть подвергнут обращению Фурье и т. о. он позволяет получить фазы структурных амплитуд. Последние вместе с эксперим. значениями используются для построения. Все процедуры суперпозиц. методов алгоритмизированы и реализованы в автоматич. режиме на ЭВМ. На рис. 6 изображено атомное строение кристалла, установленное суперпозиционными методами по ф-ции Патерсона.

Разрабатываются эксперим. методы определения фаз структурных амплитуд. Физ. основой этих методов служит эффект Реннингера - многолучевая рентг. дифракция. При наличии одноврем. рентг. дифракц. отражений имеет место перекачка энергии между ними, к-рая зависит от фазовых соотношений между данными дифракц. пучками. Вся картина изменения интенсивностей при этом ограничена угл. секундами и для массовых структурных исследований эта методика практич. значения пока не приобрела.

В самостоят. раздел Р. с. а. выделяют прецизионные структурные исследования кристаллов, позволяющие получать по дифракц. данным не только модели атомного строения исследуемых соединений, но и количеств. характеристики тепловых колебаний атомов, включая анизотропию этих колебаний (рис. 7) и их отклонения от гармонич. закона, а также пространственное распределение валентных электронов в кристаллах. Последнее важно для исследования связи между атомным строением и физ. свойствами кристаллов. Для прецизионных исследований разрабатываются спец. методы эксперим. измерений и обработки дифракц. данных. В этом случае необходимы учёт одноврем. отражений, отклонений от кинематичности дифракции, принятие во внимание динамич. поправок теории дифракции и др. тонких эффектов взаимодействия излучения с веществом. При уточнении структурных параметров используют метод наим. квадратов, причём важнейшее значение имеет учёт корреляции между уточняемыми параметрами.

Рис. 7. Эллипсоиды анизотропных тепловых колебаний атомов стабильного нитрон-сильного радикала C 13 H 17 N 2 O 2 .

Р. с. а. используют для установления связи атомного строения с физ. свойствами , суперионных проводников, лазерных и нелинейных оптич. материалов, высокотемпературных сверхпроводников и др. Методами Р. с. а. получены уникальные результаты при исследовании механизмов фазовых переходов в твёрдом теле и биол. активности макромолекул. Так, анизотропия поглощения акустич. волн в монокристаллах парателлурита связана с энгармонизмом тепловых колебаний атомов Те (рис. 8) . Упругие свойства тетрабората лития Li 2 B 4 О 7 , открывающие для него перспективы применения в качестве детектора акустич. волн, обусловлены характером хим. связей в этом соединении. С помощью Р. с. а. исследуют распределение в кристалле валентных электронов, реализующих межатомные связи в нём. Эти связи могут исследоваться с помощью распределения деформац. электронной плотности, представляющей собой разность

где - распределение электронной плотности в кристалле, - сумма сферически симметричных плотностей свободных (не вступивших в хим. связи) атомов данной структуры, к-рые расположены соответственно в точках с координатами x i , y i , z i . При установлении по рентг. дифракц. данным деформац. электронной плотности наиб. сложен учёт тепловых колебаний атомов, существ. образом коррелирующих с характером и направлениями хим. связей. Т. о., деформац. плотность отражает перераспределение в пространстве той части электронной плотности атомов, к-рая непосредственно участвует в образовании хим. связей (рис. 9).

Рис. 8. Ближайшее окружение теллура атомами О в структуре (a) и ангармоническая составляющая распределения плотности вероятности нахождения атома Те в данной точке пространства в процессе тепловых колебаний (б). Положительные (сплошные) и отрицательные (штриховые) линии равного уровня проведены через 0,02 -3 .

Рис. 9. Сечение синтеза деформационной электронной плотности кристалла Li 2 B 4 O 7 плоскостью, проходящей через атомы О треугольной группы ВО 3 , в центре которой находится атом В. Максимумы на отрезках В - О указывают на ковалентный характер связей между этими атомами. Штриховыми линиями выделены области, из которых электронная плотность переместилась на химические связи. Линии равного уровня проведены через 0,2 .

Рис. 10. Упорядоченное размещение атомов Sr по позициям лантана в структуре Атомы Сu

Структурные исследования высокотемпературных сверхпроводников позволили установить их атомное строение и его связь с их физ. свойствами. Было показано, что в монокристаллах темп-ра перехода в сверхпроводящее состояние Т с зависит не только от кол-ва Sr, но и от способа его статистич. размещения. Равномерное распределение атомов Sr в структуре является оптимальным для сверхпроводящих свойств. Концентрация Sr в определ. слоях структуры (рис. 10) ведёт к потере в этих слоях части кислорода и к понижению Т с . Для кристаллов методами Р. с. а. установлено упорядочение в размещении атомов О. В пределах одного кристалла установлено наличие ромбических по симметрии областей локального состава с Т с ~90 К и областей находятся в [СuО 6 ]-октаэдрах. Дефектность по кислороду показана отсутствием у одного из Cu-полиэдров одной кислородной вершины. Позиции, полностью заселённые атомами La, показаны чёрными кружками. Светлые кружки - позиции лантана, в которых сконцентрированы и статистически размещены все атомы Sr.

с Т с ~ 60 К. В кристаллах с кол-вом кислорода меньше чем 6,5 атома на элементарную ячейку, наряду с областями ромбич. симметрии локального состава появляются области тетрагональной симметрии локального состава, к-рые не переходят в сверхпроводящее состояние.

Рис. 11. Атомная модель молекулы гуанил-специфичной рибонуклеазы С 2 , построенная на основе рентгеноструктурного исследования монокристаллов этого белка с разрешением 1,55

Для решения мн. задач физики твёрдого тела, химии, молекулярной биологии и др. весьма эффективно совместное использование методов рентгеноструктурного анализа и резонансных методов (ЭПР, ЯМР и др.). При исследовании атомного строения белков, нуклеиновых к-т, вирусов и др. объектов молекулярной биологии возникают специфич. сложности. Макромолекулы или. более крупные биол. объекты необходимо прежде всего получить в монокристаллич. форме, после чего для их исследования можно применять все методы Р. с. а., развитые для изучения кристаллич. веществ. Проблема фаз структурных амплитуд для белковых кристаллов решается методом изоморфных замещений. Наряду с монокристаллами исследуемого нативного белка получают монокристаллы его производных с тяжелоатомными добавками, изоморфными кристаллам исследуемого белка. Разностные ф-ции Патерсона для производных и нативного белка дают возможность локализовать в элементарной ячейке кристалла положения тяжёлых атомов. Координаты этих атомов и наборы модулей структурных амплитуд белка и его тяжелоатомных производных используются в спец. алгоритмах для оценки фаз структурных амплитуд. В белковой кристаллографии применяются поэтапные методы установления атомного строения макромолекул с последоват. переходом от низкого к более высокому разрешению (рис. 11). Разработаны и спец. методы уточнения атомного строения макромолекул по рентг. дифракц. данным. Объёмы вычислений при этом столь велики, что эффективно могут быть реализованы только на самых мощных ЭВМ.

Вопросы Р. с. а., связанные с изучением реального строения твёрдого тела по дифракц. данным, рассмотрены в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Б о к и й Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, 2 изд., т. 1, М., 1964; Липсон Г., К о к р е н В., Определение структуры кристаллов, пер. с англ., М., 1956; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Г и н ь е А., Рентгенография кристаллвв. Теория и практика, пер. с франц., М., 1961; Stout G, Н., J е n s е n L. Н., X-ray structure determination, N. Y.- L., 1968; X е и к е р Д. М., Рентгеновская дифрактометрия монокристаллов, Л., 1973; Бландел Т., Джонсон Л., Кристаллография белка, пер. с англ., М., 1979; Вайнштейн Б. К., Симметрия кристаллов. Методы структурной кристаллографии, М., 1979; Electron and magnetization densities in molecules and crystals, ed. by P. Becker, N. Y.- L., 1980; Кристаллография и кристаллохимия, М., 1986; Structure and physical properties of crystals, Barselona, 1991. В. И. Симонов .

В природе встречается примерно 10 12 различных белков, выполняющих самые разнообразные функции. Это и белки-ферменты, катализирующие биохимические процессы в живой клетке; и белки-переносчики, позволяющие другим молекулам проходить через ядерные или клеточные мембраны или перемещаться между клетками всего организма; и иммуноглобулярные белки, отличающиеся высокой специфичностью взаимодействия с антигенами, что приводит к активации сигнальных путей, обеспечивающих иммунный ответ клеток. Это лишь несколько примеров уникальных свойств белковых молекул. По образному выражению Фрэнсиса Крика, белки важны прежде всего потому, что они могут выполнять самые разнообразные функции, причем с необыкновенной легкостью и изяществом.

При всем своем структурном и функциональном многообразии все природные белки построены из 20 аминокислот, соединенных в соответствии с кодом белкового синтеза. В зависимости от последовательности аминокислотных остатков в полипептидной цепи формируется определенная стабильная трехмерная структура белка, определяющая его структурные и функциональные свойства. Например, для каждого фермента характерна вполне определенная конформация активного центра, обеспечивающего специфическое взаимодействие с молекулами субстратов и осуществляющего каталитический акт. Причем для эффективного образования фермент-субстратного комплекса большое значение имеет не только геометрическое соответствие (комплементарность) молекул фермента и субстрата, но и образование водородных связей, электростатические и гидрофобные взаимодействия между атомами активного центра фермента и молекулы субстрата. Таким образом, любая белковая молекула характеризуется уникальностью структуры, которая определяет уникальность ее функции.

Выяснение пространственной организации белков – одно из основных направлений современной биохимии. Во многих случаях знание структуры белка и его комплекса с ингибиторами является решающим фактором при создании лекарственных препаратов.

Одним из важнейших экспериментальных методов, позволяющих с атомарной точностью узнать, что представляет собой трехмерная структура белка, т.е. определить пространственные координаты всех атомов исследуемого объекта, является рентгеноструктурный, или кристаллографический, анализ. Зная положение каждого атома, можно вычислить межатомные расстояния, валентные углы, углы вращения вокруг связей, распределение поверхностного заряда и другие детали молекулярной геометрии. Эти данные нужны химикам, биохимикам и биологам, изучающим зависимости между структурными характеристиками и функциональными свойствами, а также специалистам, занимающимся изучением электронной структуры молекул и молекулярных взаимодействий. Особое место рентгеноструктурного анализа среди других экспериментальных методов отражает тот факт, что с момента открытия рентгеновских лучей в 1901 г. по настоящее время работы в этой области 12 раз отмечались Нобелевскими премиями.

Применение рентгеноструктурного анализа для исследования сложноорганизованных биологических объектов началось после 1953 г., когда сотрудник Кавендишской лаборатории Кембриджского университета Макс Перутц нашел способ определения структуры крупных молекул, таких как миоглобин и гемоглобин. С тех пор рентгеноструктурный анализ молекул белка помогает нам понять химию биологических реакций. На сегодняшний день известны структуры около 15 тыс. белков и их комплексов с биологически важными молекулами.

Рентгеновские лучи являются электромагнитными волнами с длинами в диапазоне 0,01–10 нм. С коротковолновой стороны они соседствуют с -лучами (длины волн менее 0,1 нм), с длинноволновой – с ультрафиолетовыми (длины волн примерно 10–380 нм).

Для проведения рентгеновского эксперимента необходимо монохроматическое рентгеновское излучение (т.е. строго определенной длины волны). Для этой цели используются различные фильтры и монохроматоры.

Обычно, когда человек слышит о рентгеновском исследовании, он вспоминает рентгеновский кабинет в поликлинике. На самом деле рентгеноструктурный анализ не имеет ничего общего с медицинскими исследованиями. Медицинская рентгеноскопия основана на различии в степени поглощения рентгеновских лучей разными тканями, а рентгеновская кристаллография – на рассеянии рентгеновских лучей электронами атомов. Если в медицине мы получаем рентгеновский снимок исследуемого объекта, то в рентгеновской кристаллографии снимки не содержат никакого изображения чего бы то ни было.

Как же ставится рентгеновский эксперимент? Принципиальная схема проста (рис. 1): исследуемый объект помещают в пучок рентгеновских лучей и измеряют интенсивность рассеянного в различных направлениях излучения. Самый простой способ – поместить на пути пучка лучей фотопленку и по степени потемнения пятна после проявления судить об интенсивности рассеяния в этом направлении. Конечно, на сегодняшний день существуют и более совершенные методы, но сейчас это не важно. В данном случае важно то, что мы смотрим не на интенсивность лучей, прошедших сквозь объект, а на интенсивность лучей, возникших там, где их вроде бы и не должно было быть.

Рис. 1. Схема рентгеновского эксперимента

Итак, на входе мы имеем неизвестный объект, на выходе – набор интенсивностей рассеянных в различных направлениях лучей, или дифракционную картину. Теперь необходимо связать полученную в эксперименте информацию с атомной структурой исследуемого объекта. Перечислим основные положения, на которых строится простейшая математическая модель рассеяния рентгеновских лучей:

1) пучок рентгеновских лучей является плоской монохроматической электромагнитной волной;
2) под воздействием этой электромагнитной волны каждый электрон приходит в движение, которое может быть описано уравнениями для свободных зарядов;
3) движущийся электрон является, в свою очередь, источником новой рассеянной сферической электромагнитной волны, распространяющейся во всех направлениях;
4) эти новые волны суммируются и определяют интенсивность излучения в интересующем нас направлении.

Такая модель называется кинематической теорией рассеяния . Ее основной недочет заключается в том, что на электрон действует не только первичный пучок, но и рассеянные волны, и их влияние может изменять характер его движения. Попытка учесть эти поправки делается в более изощренной динамической теории рассеяния, однако для практических приложений более простая кинематическая теория рассеяния оказывается, как правило, вполне достаточной.

Метод рентгеноструктурного анализа основан на дифракции рентгеновских лучей на кристаллической решетке и поэтому применим только к веществам в кристаллическом состоянии. Это связано с тем, что для регистрации дифракционной картины рассеяния необходимо иметь достаточное количество рассеивающих электронов. Но если образец состоит из большого числа произвольно ориентированных идентичных молекул (раствор), то картина рассеяния будет определяться какими-то усредненными по всевозможным ориентациям характеристиками и вряд ли позволит получить детальную информацию об атомной структуре. Другое дело, если большое количество одинаковых молекул ориентированы одинаково. Такую возможность дают нам кристаллические образцы.

Говоря простыми словами (и не вдаваясь в сложные математические формулировки), кристалл – это такой образец исследуемого вещества, в котором много (~10 12) идентичных молекул находятся в одинаковой ориентации и их центры образуют правильную трехмерную решетку.

Основная особенность структуры каждого кристалла состоит в том, что он построен из регулярно расположенных в пространстве отдельных атомов или групп атомов. Если каждую повторяющуюся структурную единицу заменить точкой, или узлом, то получится трехмерная кристаллическая решетка (рис. 2). Решетку можно представить себе как систему одинаковых параллелепипедов. Каждый такой параллелепипед носит название «элементарная ячейка кристалла» и описывается шестью параметрами: длинами ребер (a, b, c) и углами между ними (, , ).

Одна из основных претензий к методу рентгеноструктурного анализа с самого начала исследования структур белков – это то, что в жизни белки находятся в растворе, а при исследовании мы их кристаллизуем. Возникает логичный вопрос: не происходит ли принципиальных искажений структуры молекул белка при кристаллизации? Принято считать, что сильных искажений все-таки не происходит. Доводы в пользу такой позиции следующие.

Во-первых, ряд белков сохраняют ферментативную активность и в закристаллизованном состоянии, т.е. структура изменяется не настолько, чтобы белок стал «неработоспособен». Другое соображение: в кристаллах биомакромолекул значительный объем (от 30 до 80%) занимает растворитель, т.е. упаковка молекул белка в кристалле не плотная и вряд ли вызывает существенные искажения. Некоторые искажения в свободных петлях возможны, но структура активного центра сохраняется. Еще одно подтверждение: альтернативное определение структур некоторых белков методом двумерного ядерного магнитного резонанса не дало существенных расхождений со структурами, расшифрованными рентгеновскими методами.

Монохроматическое рентгеновское излучение, проходя через кристалл, рассеивается в основном на электронных оболочках периодически повторяющихся атомов и образует дифракционную картину, или рентгенограмму (рис. 3). Поэтому экспериментальные рентгеновские данные позволяют судить об особенностях расположения электронов в элементарных кристаллических ячейках. Электрон обладает волновыми свойствами, и его положение в пространстве характеризуется не точными координатами, а функцией распределения электронной плотности (r), которая дает среднее по времени число электронов, приходящееся на 1 3 (кубический ангстрем). На основании этой функции можно судить о расположении атомов в элементарных ячейках, т.к. каждому атому соответствует сгусток электронной плотности определенной величины. Таким образом, при обработке данных рентгеновского эксперимента нужно решить две задачи.

Рис. 3. В дифракционной картине заключена вся информация о структуре белка

1. Из данных рентгенограммы получить карту распределения электронной плотности (r) в кристалле исследуемого объекта. На этом этапе возникает принципиальная трудность (о которой речь пойдет ниже), связанная с невозможностью получить из эксперимента всю информацию, необходимую для восстановления исследуемой структуры. Для получения недостающей части информации используют различные обходные пути. Но универсального пути нет, и в каждом случае исследователь выбирает наиболее подходящий, основываясь на своем опыте и интуиции.

2. На основании карты распределения электронной плотности (r) определить положения атомов в исследуемом объекте. Для решения этой задачи структура многократно подвергается программной обработке и ручной доводке для достижения наилучшего совпадения с электронной плотностью.

Основные этапы определения структуры белка

Выделение, очистка

С этого этапа начинаются практически все экспериментальные исследования белковых структур. Для получения нужного белка используют различные биохимические методы. Последовательность операций по выделению белков обычно сводится к измельчению биологического материала (гомогенизация), извлечению из него белков, а точнее – переводу белков в растворенное состояние (экстракция) и выделению исследуемого белка из смеси других белков, т.е. очистке и получению индивидуального белка. На этом этапе наибольшая сложность заключается в наработке достаточного для эксперимента количества чистого белка.

Кристаллизация

Получение кристаллов, пригодных для рентгеноструктурного анализа, зачастую процесс трудоемкий и далеко не тривиальный, особенно для сложных соединений, таких как белки и нуклеиновые кислоты. Наличие пересыщенного раствора – необходимое условие кристаллизации. Для получения такого раствора используют различные способы. Один из них заключается в постепенном удалении растворителя обычным испарением, что приводит к росту концентрации вещества в растворе, который в какой-то момент становится пересыщенным. Другой способ связан с использованием зависимости растворимости от температуры. Например, если растворимость с увеличением температуры повышается, можно приготовить насыщенный раствор при более высокой температуре, а затем медленно охладить его. Благодаря понижению растворимости в процессе охлаждения получается пересыщенный раствор. Третий способ связан с введением в раствор какого-либо вещества, вызывающего понижение растворимости. В качестве таких веществ используют либо соли, либо органические растворители. Кроме того, растворимость белков и нуклеиновых кислот сильно зависит от pH раствора, это тоже можно использовать для получения пересыщенных растворов.

На практике все намного сложнее. До сих пор не существует универсальных способов подбора оптимальных условий кристаллизации. Для каждого конкретного белка исследователь ищет эти условия, меняя тип буфера, значения pH, температуры, концентрации самого белка, осаждающей соли и т.д. В этой работе важно найти такие условия, при которых получится именно кристалл, а не выпадет соль. Поэтому выращивание биологических кристаллов не только научное направление, но и искусство. Иногда, чтобы заставить белок кристаллизоваться, его центрифугируют или даже отправляют в невесомость.

Выбор кристаллов для рентгеновского эксперимента проводят с помощью микроскопа. Для этой цели особенно полезен поляризационный микроскоп, позволяющий с помощью поляризационного света установить наличие дефектов в кристалле. Оптимальными считаются монокристаллы с размером каждой из сторон 0,2–0,6 мм. Кристаллы должны быть без дефектов и, по возможности, с хорошей огранкой. Наличие дефектов приводит к ошибкам при экспериментальном измерении дифракционной картины и, как следствие, к неточности (а часто и к невозможности) расшифровки кристаллической структуры. При повышении сложности исследуемого объекта требования к качеству кристаллов повышаются. Как выглядят кристаллы белков, показано на рис. 4.

Рис. 4. Кристаллы белков: а – кристаллы зеленого флуоресцентного белка zGFP506; б – кристаллы мутанта белка zGFP506 с аминокислотной заменой N66D

К сожалению, далеко не всегда удается получить кристалл изучаемого белка, поэтому этот этап является главным ограничением метода рентгеноструктурного анализа белков.

Рентгеновский эксперимент, обработка результатов

В качестве источника рентгеновских лучей в настоящее время стараются использовать синхротронный ускоритель. Это довольно дорогое сооружение. Лабораторные рентгеновские установки тоже используются, но синхротронное излучение имеет существенные преимущества.

Во-первых, это мощность пучка. Здесь два плюса. Первый понятен – сокращается время эксперимента. Второй – биологические кристаллы имеют тенденцию разрушаться под действием рентгеновского излучения. Процесс разрушения занимает определенное время, и если пучок мощный, то можно успеть зарегистрировать нужную картину, пока кристалл не разрушился.

Во-вторых, это возможность получить желаемую длину волны. Рентгеновские трубки дают мощный пучок только фиксированной длины волны (обычно около 1,57), в то время как при проведении эксперимента зачастую необходимо иметь возможность выбора длины волны. Это позволяет сделать синхротрон.

Обработка результатов рентгеновского эксперимента базируется на мощном математическом аппарате, который здесь мы рассматривать не будем. Когда монохроматический рентгеновский луч падает на определенным образом ориентированный кристалл, то рассеяние происходит в дискретных направлениях, определяемых кристаллической решеткой. Дифракционная картина, возникающая на пленке детектора (рис. 3), представляет собой набор пятен, или рефлексов. Измерив интенсивность рефлексов, можно получить значения модулей т.н. структурных факторов (комплексных чисел), описывающих распределение электронной плотности в кристалле (r). Но чтобы однозначно определить (r), нужно знать еще и соответствующие значения фаз этих факторов, информация о которых не содержится в дифракционной картине. Если для какого-либо кристалла фазы определены, то расчет положений атомов этого кристалла не составляет принципиальных трудностей.

Таким образом, центральная проблема метода рентгеноструктурного анализа, называемая фазовой проблемой , заключается в невозможности получения всех необходимых для расчета данных непосредственно из эксперимента.

Общего решения фазовой проблемы на сегодня не существует. Каждый случай требует специального подхода. Здесь важно понимать, что новая информация не берется ниоткуда. Для того чтобы получить значения фаз, мы должны либо сделать какие-то новые предположения о структуре и особенностях объекта, либо провести новые эксперименты. Ниже приведены основные подходы к решению «фазовой проблемы», применяемые в белковой кристаллографии.

Изоморфное замещение

Можно попытаться внедрить в молекулы кристалла некую метку – один или несколько тяжелых атомов (например, ионы тяжелых металлов), которые могут быть либо добавлены к нативной структуре, либо могут замещать часть ее атомов (рис. 5).

Под изоморфным внедрением тяжелых атомов подразумевается, что они присоединяются к каждому экземпляру молекулы в одном и том же месте, и структура молекулы белка при этом не изменяется. Затем, проведя дополнительно рентгеновский эксперимент с таким модифицированным соединением и определив изменения интенсивностей рефлексов по сравнению с нативным белком, можно получить дополнительную информацию о значениях фаз. Трудность этого метода заключается в том, что не всегда удается получить хорошее изоморфное производное, а также в необходимости проведения дополнительного рентгеновского эксперимента.

Метод изоморфного замещения является основным методом решения фазовой проблемы при определении структуры биологических макромолекул. Сам этот метод возник достаточно давно, но именно при работе с белками он приобрел исключительно важную роль. Причин этому две:

1) долгое время он являлся единственным методом, позволяющим решать фазовую проблему для белков;

2) именно для белков удается «достаточно просто» получать изоморфные производные. Последнее связано с тем, что кристаллы белка довольно рыхлые – в них от 30 до 70% объема занято растворителем, т.е. в кристаллах есть «пустоты», куда могут поместиться дополнительные атомы.

Использование эффекта аномального рассеяния

Этот метод основан на варьировании длины волны падающего на кристалл рентгеновского излучения вблизи значений, при которых наблюдается эффект резонанса (и соответствующее аномальное рассеяние) для нескольких «специальных» атомов, содержащихся в структуре макромолекулы. Если аномально рассеивающих атомов в белке нет, иногда можно попытаться присоединить их химическим путем. Дифракционные картины получают для нескольких значений длины волны падающего луча и на основании анализа разностей интенсивностей соответствующих рефлексов оценивают значения фаз.

Успех метода аномального рассеяния, как и изоморфного замещения, во многом зависит от возможности экспериментального получения производных с требуемыми свойствами.

Упомянутые два способа отвечают попытке решить фазовую проблему за счет дополнительной информации, получаемой из дополнительных экспериментов. Следующий способ применяют в ситуации, когда нам известна структура близкого (гомологичного) белка.

Метод молекулярного замещения

В биологии распространена ситуация, когда существуют ряды объектов, похожих друг на друга, т.е. имеющих структурную гомологию. Такой гомологией могут обладать, например, белки одного типа, выделенные из разных организмов. В этом случае можно надеяться, что фазы структурных факторов, рассчитанные по известной атомной модели гомологичного белка, будут достаточно хорошим начальным приближением к значениям неизвестных фаз, отвечающих исследуемому объекту. Комбинируя их далее с измеренными в эксперименте модулями структурных факторов для исследуемого объекта, мы можем получить хорошее приближение к искомому распределению электронной плотности.

Однако для того чтобы надеяться на успех на этом пути, надо, как минимум, для начала «разместить» известный гомологичный объект на том же месте и в той же ориентации, что и исследуемый белок. Процедуру создания такого «компьютерного гибрида», в котором внутри элементарной ячейки кристалла одного белка размещается молекула другого, называют методом молекулярного замещения. Судить о том, насколько полученное размещение близко к действительности, можно, сравнивая рассчитанные по модели модули структурных факторов с величинами, полученными в эксперименте. Разумеется, такое замещение – всего лишь умозрительная процедура, и никакого химического замещения не происходит.

«Прямые» методы

В отличие от предыдущих подходов, эти методы опираются не на дополнительный эксперимент или информацию о структуре гомологичного объекта, а на почти философскую идею об атомности изучаемого объекта. Под «прямыми» методами в кристаллографии понимаются стратегии определения структур, использующие в качестве стартовой информации только набор интенсивностей рефлексов, полученный в рентгеновском эксперименте. Для определения фаз структурных факторов в них используют вероятностный подход. «Прямые» методы более объективны в том смысле, что они зависят только от применения математических соотношений.

На основе «прямых» методов определяют структуры большинства низкомолекулярных соединений. Эти методы не требуют ни дополнительных экспериментов, ни тонкой биохимической работы по получению изоморфных производных, ни наличия известных гомологичных структур, но к сожалению, пока не применимы к структурам белков из-за принципиальных ограничений на количество атомов исследуемой структуры.

Если известны и модуль, и фаза структурных факторов, то мы можем восстановить распределение (r), рассчитав обратное преобразование Фурье. Это не сложная с современной точки зрения вычислительная задача, и этот шаг выделяется потому, что он подводит итог важного этапа работ. Мы, наконец, получаем возможность «взглянуть» на интересующий нас объект. И по тому, насколько «четким» получилось изображение, – судить об успешности всех предыдущих этапов работы. А в случае неудачи – повторить все сначала.

Следующий этап заключается в построении приближенной атомной модели по рассчитанным картам распределения электронной плотности. Эта работа требует максимального использования интеллекта человека и осуществляется квалифицированными специалистами.

С помощью специальных компьютерных программ, исследователь вручную вписывает атомы белковой структуры в полученную на предыдущем этапе карту электронной плотности (рис. 6).

Является методом исследования структурного строения веществ. В его основе лежит дифракция рентгеновского луча на специальных кристаллических трехмерных решетках. При исследовании используют которых составляет примерно 1А, что соответствует размерам атома. Надо сказать, что рентгеноструктурный анализ вместе с нейтронно-и электронографией относится к дифракционным методам определения структуры исследуемого вещества.

Он помогает исследовать атомное строение, пространственные группы ее размер и форму, а также группу симметрии кристаллов. С помощью этой методики изучают металлы и их различные сплавы, органические и неорганические соединения, минералы, аморфные материалы, жидкости, а также газы. В некоторых случаях применяется рентгеноструктурный анализ белков, нуклеиновых кислот и других веществ.

Данный анализ помогает установить атомную материалов, которые имеют четко определенное строение и являются естественной для рентгеновских лучей. Стоит отметить, что при исследовании других веществ рентгеноструктурный анализ требует наличия кристаллов, что является важной, но достаточно сложной задачей.

Обнаружил Лауэ, теоретические основы разработаны Вульфом и Брэггом. Применять обнаруженные закономерности в роли анализа предложили Дебай и Шеррер. Надо сказать, что в настоящее время рентгеноструктурный анализ остается одним из распространенных методик определения структуры веществ, поскольку он прост в исполнении и не требует значительных материальных затрат.

Он позволяет исследовать различные классы веществ, а ценность полученной информации обусловливает внедрение все новых методик. Так, сперва начали изучать при использовании функции межатомных векторов, позже были разработаны прямые методы определения кристаллической структуры. Стоит отметить, что первыми веществами, которые исследовались с помощью рентгеновских лучей, были хлориды натрия и калия.

Изучение пространственного началось в 30-х годах прошлого века в Великобритании. Полученные данные дали начало молекулярной биологии, которая позволила выявить важные физико-химические свойства белков, а также создать первую модель ДНК.

С 50-х годов активно начали развиваться компьютерные методы сборки информации, которая была получена при рентгеновском структурном анализе.

На сегодняшний день используются синхротроны. Они являются монохромными источниками которые применяются для облучения кристаллов. Наиболее эффективными данные приборы оказываются при методе многоволновой аномальной дисперсии. Стоит отметить, что они применяются только в государственных научных центрах. В лабораториях используют менее мощную технику, которая служит только для проверки качества кристаллов, а также для получения грубого анализа веществ.