Первая формулировка периодического закона менделеева. Периодический закон Менделеева

Периодический закон Д.И. Менделеева и периодическая система химических элементов имеет большое значение в развитии химии. Окунемся в 1871 год, когда профессор химии Д.И. Менделеев, методом многочисленных проб и ошибок, пришел к выводу, что «… свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Периодичность изменения свойств элементов возникает вследствие периодического повторения электронной конфигурации внешнего электронного слоя с увеличением заряда ядра.


Современная формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Преподавая химию, Менделеев понимал, что запоминание индивидуальных свойств каждого элемента, вызывает у студентов трудности. Он стал искать пути создания системного метода, чтобы облегчить запоминание свойств элементов. В результате появилась естественная таблица , позже она стала называться периодической .

Наша современная таблица очень похожа на менделеевскую. Рассмотрим ее подробнее.

Таблица Менделеева

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы .

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n — 1) d- подуровне (или (n — 2) f- подуровне).

Все элементы в периодической таблице , в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III — VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

Высшая валентность элемента (за исключением O, F, элементов подгруппы меди и восьмой группы) равна номеру группы, в которой он находится.

Для элементов главных и побочных подгрупп одинаковыми являются формулы высших оксидов (и их гидратов). В главных подгруппах состав водородных соединений являются одинаковыми, для элементов, находящихся в этой группе. Твердые гидриды образуют элементы главных подгрупп I — III групп, а IV — VII групп образуют а газообразные водородные соединения. Водородные соединения типа ЭН 4 – нейтральнее соединения, ЭН 3 – основания, Н 2 Э и НЭ — кислоты.

Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n — одинаково).

Первый период отличается от других тем, что там находятся всего 2 элемента: водород H и гелий He.

Во втором периоде находятся 8 элементов (Li - Ne). Литий Li – щелочной металл начинает период, а замыкает его благородный газ неон Ne.

В третьем периоде, также как и во втором находятся 8 элементов (Na - Ar). Начинает период щелочной металл натрий Na, а замыкает его благородный газ аргон Ar.

В четвёртом периоде находятся 18 элементов (K - Kr) – Менделеев его обозначил как первый большой период. Начинается он также с щелочного металла Калий, а заканчивается инертным газом криптон Kr. В состав больших периодов входят переходные элементы (Sc - Zn) — d- элементы.

В пятом периоде, аналогично четвертому находятся 18 элементов (Rb - Xe) и структура его сходна с четвёртым. Начинается он также с щелочного металла рубидий Rb, а заканчивается инертным газом ксенон Xe. В состав больших периодов входят переходные элементы (Y - Cd) — d- элементы.

Шестой период состоит из 32 элементов (Cs - Rn). Кроме 10 d -элементов (La, Hf - Hg) в нем находится ряд из 14 f -элементов(лантаноиды)- Ce — Lu

Седьмой период не закончен. Он начинается с Франций Fr, можно предположить, что он будет содержать, также как и шестой период, 32 элемента, которые уже найдены (до элемента с Z = 118).

Интерактивная таблица Менделеева

Если посмотреть на периодическую таблицу Менделеева и провести воображаемую черту, начинающуюся у бора и заканчивающуюся между полонием и астатом, то все металлы будут находиться слева от черты, а неметаллы – справа. Элементы, непосредственно прилегающие к этой линии будут обладать свойствами как металлов, так и неметаллов. Их называют металлоидами или полуметаллами. Это бор, кремний, германий, мышьяк, сурьма, теллур и полоний.

Периодический закон

Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Существует четыре основных периодических закономерности:

Правило октета утверждает, что все элементы стремятся приобрести или потерять электрон, чтобы иметь восьмиэлектронную конфигурацию ближайшего благородного газа. Т.к. внешние s- и p-орбитали благородных газов полностью заполнены, то они являются самыми стабильными элементами.
Энергия ионизации – это количество энергии, необходимое для отрыва электрона от атома. Согласно правилу октета, при движении по периодической таблице слева направо для отрыва электрона требуется больше энергии. Поэтому элементы с левой стороны таблицы стремятся потерять электрон, а с правой стороны – его приобрести. Самая высокая энергия ионизации у инертных газов. Энергия ионизации уменьшается при движении вниз по группе, т.к. у электронов низких энергетических уровней есть способность отталкивать электроны с более высоких энергетических уровней. Это явление названо эффектом экранирования . Благодаря этому эффекту внешние электроны мене прочно связаны с ядром. Двигаясь по периоду энергия ионизации плавно увеличивается слева направо.


Сродство к электрону – изменение энергии при приобретении дополнительного электрона атомом вещества в газообразном состоянии. При движении по группе вниз сродство к электрону становится менее отрицательным вследствие эффекта экранирования.


Электроотрицательность — мера того, насколько сильно стремится притягивать к себе электроны связанного с ним другого атома. Электроотрицательность увеличивается при движении в периодической таблице слева направо и снизу вверх. При этом надо помнить, что благородные газы не имеют электроотрицательности. Таким образом, самый электроотрицательный элемент – фтор.


На основании этих понятий, рассмотрим как меняются свойства атомов и их соединений в таблице Менделеева.

Итак, в периодической зависимости находятся такие свойства атома, которые связанны с его электронной конфигурацией: атомный радиус, энергия ионизации, электроотрицательность.

Рассмотрим изменение свойств атомов и их соединений в зависимости от положения в периодической системе химических элементов .

Неметалличность атома увеличивается при движении в периодической таблице слева направо и снизу вверх . В связи с этим основные свойства оксидов уменьшаются, а кислотные свойства увеличиваются в том же порядке — при движении слева направо и снизу вверх. При этом кислотные свойства оксидов тем сильнее, чем больше степень окисления образующего его элемента

По периоду слева направо основные свойства гидроксидов ослабевают,по главным подгруппам сверху вниз сила оснований увеличивается. При этом, если металл может образовать несколько гидроксидов, то с увеличением степени окисления металла, основные свойства гидроксидов ослабевают.

По периоду слева направо увеличивается сила кислородосодержащих кислот. При движении сверху вниз в пределах одной группы сила кислородосодержащих кислот уменьшается. При этом сила кислоты увеличивается с увеличением степени окисления образующего кислоту элемента.

По периоду слева направо увеличивается сила бескислородных кислот. При движении сверху вниз в пределах одной группы сила бескислородных кислот увеличивается.

Категории ,

Периодический закон Дмитрия Ивановича Менделеева - один из фундаментальных законов природы, который увязывает зависимость свойств химических элементов и простых веществ с их атомными массами. В настоящее время закон уточнен, и зависимость свойств объясняется зарядом ядра атома.

Закон был открыт русским ученым в 1869-м году. Менделеев представил его научному сообществу в докладе съезду Русского химического общества (доклад был сделан другим ученым, так как Менделеев был вынужден срочно выехать по заданию Вольного экономического общества Петербурга). В этом же году вышел учебник «Основы химии», написанный Дмитрием Ивановичем для студентов. В нем ученый описал свойства популярных соединений, а также постарался дать логическую систематизацию химических элементов. Также в нем впервые была представлена таблица с периодически расположенными элементами, как графическая интерпретация периодического закона. Всее последующие годы Менделеев совершенствовал свою таблицу, например, добавил столбец инертных газов, которые были открыты спустя 25 лет.

Научное сообщество далеко не сразу приняло идеи великого русского химика, даже в России. Но после того, как были открыты три новых элемента (галлий в 1875-м, скандий в 1879-м и германий в 1886-м годах), предсказанные и описанные Менделеевым в своем знаменитом докладе, периодический закон был признан.

  • Является всеобщим законом природы.
  • В таблицу, графически представляющую закон, включаются не только все известные элементы, но и те, которые открывают до сих пор.
  • Все новые открытия не повлияли на актуальность закона и таблицы. Таблица совершенствуется и изменяется, но ее суть осталась неизменной.
  • Позволил уточнить атомные веса и другие характеристики некоторых элементов, предсказать существование новых элементов.
  • Химики получили надежную подсказку, как и где искать новые элементы. Кроме этого, закон позволяет с высокой долей вероятности заранее определять свойства еще неоткрытых элементов.
  • Сыграл огромную роль в развитии неорганической химии в 19-м веке.

История открытия

Есть красивая легенда о том, что свою таблицу Менделеев увидел во сне, а утром проснулся и записал ее. На самом деле, это просто миф. Сам ученый много раз говорил, что созданию и совершенствованию периодической таблицы элементов он посвятил 20 лет своей жизни.

Все началось с того, что Дмитрий Иванович решил написать для студентов учебник по неорганической химии, в котором собирался систематизировать все известные на этот момент знания. И естественно, он опирался на достижения и открытия своих предшественников. Впервые внимание на взаимосвязь атомных весов и свойств элементов обратил немецкий химик Дёберейнер, который попытался разбить известные ему элементы на триады с похожими свойствами и весами, подчиняющимися определенному правилу. В каждой тройке средний элемент имел вес, близкий к среднему арифметическому двух крайних элементов. Ученый смог таким образом образовать пять групп, например, Li–Na–K; Cl–Br–I. Но это были далеко не все известные элементы. К тому же, тройка элементов явно не исчерпывала список элементов с похожими свойствами. Попытки найти общую закономерность позже предпринимали немцы Гмелин и фон Петтенкофер, французы Ж. Дюма и де Шанкуртуа, англичане Ньюлендс и Одлинг. Дальше всех продвинулся немецкий ученый Мейер, который в 1864-м году составил таблицу, очень похожую на таблицу Менделеева, но она содержала лишь 28 элементов, в то время как было известно уже 63.

В отличие от своих предшественников Менделееву удалось составить таблицу, в которую вошли все известные элементы, расположенные по определенной системе. При этом, некоторые клетки он оставил незаполненными, примерно вычислив атомные веса некоторых элементов и описав их свойства. Кроме этого, русскому ученому хватило смелости и дальновидности заявить, что открытый им закон является всеобщим законом природы и назвал его «периодическим законом». Сказав «а», он пошел дальше и исправил атомные веса элементов, которые не вписывались в таблицу. При более тщательной проверке, оказалось, что его исправления верны, а открытие описанных им гипотетических элементов стало окончательным подтверждением истинности нового закона: практика доказала справедливость теории.

В 1871 году был сформулирован периодический закон Менделеева. К этому времени науке было известно 63 элемента, и Дмитрий Иванович Менделеев упорядочил их на основе относительной атомной массы. Современная периодическая таблица значительно расширилась.

История

В 1869 году, работая над учебником химии, Дмитрий Менделеев столкнулся с проблемой систематизации материала, накопленного за много лет разными учёными - его предшественниками и современниками. Ещё до работы Менделеева предпринимались попытки систематизировать элементы, что послужило предпосылками разработки периодической системы.

Рис. 1. Менделеев Д. И..

Поиски классификации элементов кратко описаны в таблице.

Менделеев упорядочил элементы по относительной атомной массе, расположив их в порядке возрастания. Всего получилось девятнадцать горизонтальных и шесть вертикальных рядов. Это была первая редакция периодической таблицы элементов. С этого начинается история открытия периодического закона.

Учёному понадобилось почти три года, чтобы создать новую, более совершенную таблицу. Шесть столбцов элементов превратились в горизонтальные периоды, каждый из которых начинался щелочным металлом, а заканчивался неметаллом (инертные газы ещё не были известны). Горизонтальные ряды образовали восемь вертикальных групп.

В отличие от своих коллег Менделеев использовал два критерия распределения элементов:

  • атомную массу;
  • химические свойства.

Оказалось, что между двумя этими критериями прослеживается закономерность. После определённого количества элементов с возрастающей атомной массой, свойства начинают повторяться.

Рис. 2. Таблица, составленная Менделеевым.

Изначально теория не выражалась математически и не могла полностью подтвердиться экспериментально. Физический смысл закона стал понятен только после создания модели атома. Смысл заключается в повторении структуры электронных оболочек при последовательном увеличении зарядов ядер, что отражается на химических и физических свойствах элементов.

Закон

Установив периодичность изменений свойств с увеличением атомной массы, Менделеев в 1871 году сформулировал периодический закон, ставший основополагающим в химической науке.

Дмитрий Иванович определил, что свойства простых веществ находятся в периодической зависимости от относительных атомных масс.

Наука XIX века не обладала современными знаниями об элементах, поэтому современная формулировка закона несколько отличается от менделеевской. Однако суть остаётся прежней.

С дальнейшим развитием науки было изучено строение атома, что повлияло на формулировку периодического закона. Согласно современному периодическому закону свойства химических элементов зависят от зарядов атомных ядер.

Таблица

Со времён Менделеева созданная им таблица значительно преобразилась и стала отражать практически все функции и характеристики элементов. Умение пользоваться таблицей необходимо для дальнейшего изучения химии. Современная таблица представлена в трёх формах:

  • короткая - периоды занимают по две строчки, а водород часто относят к 7 группе;
  • длинная - изотопы и радиоактивные элементы вынесены за пределы таблицы;
  • сверхдлинная - каждый период занимает отдельную строку.

Рис. 3. Длинная современная таблица.

Короткая таблица - наиболее устаревший вариант, который был отменён в 1989 году, но по-прежнему используется во многих учебниках. Длинная и сверхдлинная формы признаны международным сообществом и используются по всему миру. Несмотря на установленные формы, учёные продолжают совершенствовать периодическую систему, предлагая новейшие варианты.

Что мы узнали?

Периодический закон и периодическая система Менделеева были сформулированы в 1871 года. Менделеев выявил закономерности свойств элементов и упорядочил их на основе относительной атомной массы. С возрастанием массы менялись, а затем повторялись свойства элементов. Впоследствии таблица была дополнена, а закон скорректирован в соответствии с современными знаниями.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 135.

Данные о строении ядра и о распределении электронов в атомах позволяют рассмотреть периодический закон и периодическую систему элементов с фундаментальных физических позиций. На базе современных представлений периодический закон формулируется так:


Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера).

Периодическая таблица Д.И. Менделеева

В настоящее время известно более 500 вариантов изображения периодической системы: это различные формы передачи периодического закона.


Первым вариантом системы элементов, предложенным Д.И.Менделеевым 1 марта 1869 г., был так называемый вариант длинной формы. В этом варианте периоды располагались одной строкой.



В периодической системе по горизонтали имеется 7 периодов, из них первые три называются малыми, а остальные - большими. В первом периоде находится 2 элемента, во втором и третьем - по 8, в четвертом и пятом - по 18, в шестом - 32, в седьмом (незавершенном) - 21 элемент. Каждый период, за исключением первого, начинается щелочным металлом и заканчивается благородным газом (7-й период - незаконченный).


Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами.


В системе 10 рядов. Каждый малый период состоит из одного ряда, каждый большой период - из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов (четвертом, шестом, восьмом и десятом) находятся одни металлы, и свойства элементов в ряду слева направо изменяются слабо. В нечетных рядах больших периодов (пятого, седьмого и девятого) свойства элементов в ряду слева направо изменяются, как у типических элементов.


Основным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Например, в четвертом периоде степени окисления элементов от К до Mn изменяются от +1 до +7, затем следует триада Fe, Со, Ni (это элементы четного ряда), после чего наблюдается такое же возрастание степеней окисления у элементов от Cu до Br (это элементы нечетного ряда). То же мы видим в остальных больших периодах, исключая седьмой, который состоит из одного (четного) ряда. Дважды повторяются в больших периодах и формы соединений элементов.


В шестом периоде вслед за лантаном располагаются 14 элементов с порядковыми номерами 58-71, называемых лантаноидами (слово "лантаноиды" означает подобные лантану", а "актиноиды" - "подобные актинию"). Иногда их называют лантанидами и актинидами, что означает следующие за лантаном, следующие за актинием). Лантаноиды помещены отдельно внизу таблицы, а в клетке звездочкой указано на последовательность их расположения в системе: La-Lu. Химические свойства лантаноидов очень сходны. Например, все они являются реакционно-способными металлами, реагируют с водой с образованием гидроксида и водорода. Из этого следует, что у лантаноидов сильно выражена горизонтальная аналогия.


В седьмом периоде 14 элементов с порядковыми номерами 90-103 составляют семейство актиноидов. Их также помещают отдельно - под лантаноидами, а в соответствующей клетке двумя звездочками указано на последовательность их расположения в системе: Ас-Lr. Однако в отличие от лантаноидов горизонтальная аналогия у актиноидов выражена слабо. Они в своих соединениях проявляют больше различных степеней окисления. Например, степень окисления актиния +3, а урана +3, +4, +5 и +6. Изучение химических свойств актиноидов крайне сложно вследствие неустойчивости их ядер.


В периодической системе по вертикали расположены восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Как правило, высшая положительная степень окисления элементов равна номеру группы. Исключением являются фтор - его степень окисления равна -1; медь, серебро, золото проявляют степень окисления +1, +2 и +3; из элементов VIII группы степень окисления +8 известна только для осмия, рутения и ксенона.


В VIII группе размещены благородные газы. Ранее считалось, что они не способны образовывать химические соединения.


Каждая группа делится на две подгруппы - главную и побочную, что в периодической системе подчеркивается смещением одних вправо, а других влево. Главную подгруппу составляют типические элементы (элементы второго и третьего периодов) и сходные с ними по химическим свойствам элементы больших периодов. Побочную подгруппу составляют только металлы - элементы больших периодов. VIII группа отличается от остальных. Кроме главной подгруппы гелия она содержит три побочные подгруппы: подгруппу железа,подгруппу кобальта и подгруппу никеля.


Химические свойства элементов главных и побочных подгрупп значительно различаются. Например, в VII группе главную подгруппу составляют неметаллы F, СI, Вг, I, Аt, побочную - металлы Мn, Тc, Rе. Таким образом, подгруппы объединяют наиболее сходные между собой элементы.


Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения; существует всего 8 форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R 2 O, RО, R 2 O 3 , RO 2 , R 2 O 5 , RО 3 ,R 2 O 7 , RO 4 , где R - элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы (главной и побочной), кроме тех случаев, когда элементы не проявляют степени окисления, равной номеру группы.


Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения, форм таких соединений 4. Их также изображают общими формулами в последовательности RН 4 , RН 3 , RН 2 , RН. Формулы водородных соединений располагаются под элементами главных подгрупп и только к ним относятся.


Свойства элементов в подгруппах закономерно изменяются: сверху вниз усиливаются металлические свойства и ослабевают неметаллические. Очевидно, металлические свойства наиболее сильно выражены у франция, затем у цезия; неметаллические - у фтора, затем - у кислорода.


Наглядно проследить периодичность свойств элементов можно и исходя из рассмотрения электронных конфигураций атомов.

Число электронов, находящихся на внешнем уровне в атомах элементов, располагающихся в порядке увеличения порядкового номера, периодически повторяется. Периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением строения их атомов, а именно числом электронов на их внешних энергетических уровнях. По числу энергетических уровней в электронной оболочке атома элементы делятся на семь периодов. Первый период состоит из атомов, в которых электронная оболочка состоит из одного энергетического уровня, во втором периоде - из двух, в третьем - из трех, в четвертом - из четырех и т. д. Каждый новый период начинается тогда, когда начинает заполняться новый энергетический уровень.


В периодической системе каждый период начинается элементами, атомы которых на внешнем уровне имеют один электрон, - атомами щелочных металлов - и заканчивается элементами, атомы которых на внешнем Уровне имеют 2 (в первом периоде) или 8 электронов (во всех последующих) - атомами благородных газов.


Далее мы видим, что внешние электронные оболочки сходны у атомов элементов (Li, Na, К, Rb, Cs); (Ве, Mg, Са, Sr); (F, Сl, Вг, I); (Не,Nе, Аг, Kr, Хе) и т. д. Именно поэтому каждая из вышеприведенных групп элементов оказывается в определенной главной подгруппе периодической таблицы:Li, Na, К, Rb, Cs в I группе, F, Сl, Вг, I - в VII и т. д.


Именно вследствие сходства строения электронных оболочек атомов сходны их физические и химические свойства.


Число главных подгрупп определяется максимальным числом элементов на энергетическом уровне и равно 8. Число переходных элементов (элементов побочных подгрупп) определяется максимальным числом электронов на d-подуровне и равно 10 в каждом из больших периодов.


Поскольку в периодической системе химических элементов Д.И. Менделеева одна из побочных подгрупп содержит сразу три переходных элемента,близких по химическим свойствам (так называемые триады Fe-Со-Ni, Ru-Rh-Pd,Os-Ir-Pt), то число побочных подгрупп, так же как и главных, равно 8.


По аналогии с переходными элементами число лантаноидов и актиноидов, вынесенных внизу периодической системы в виде самостоятельных рядов, равно максимальному числу электронов на f-подуровне, т. е. 14.


Период начинается элементом, в атоме которого на внешнем уровне находится один s-электрон: в первом периоде это водород, в остальных - щелочные металлы. Завершается период благородным газом: первый - гелием (1s 2),остальные периоды - элементами, атомы которых на внешнем уровне имеют электронную конфигурацию ns 2 np 6 .


Первый период содержит два элемента: водород (Z = 1) и гелий (Z = 2). Второй период начинается элементом литием (Z = 3) и завершается неоном (Z = 10). Во втором периоде восемь элементов. Третий период начинается с натрия (Z = 11), электронная конфигурация которого 1s 2 2s 2 2p 6 3s 1 .С него началось заполнение третьего энергетического уровня. Завершается оно у инертного газа аргона (Z = 18), Зs- и 3p-подуровни которого полностью заполнены. Электронная формула аргона: 1s 2 2s 2 2p 6 Зs 2 3p 6 . Натрий - аналог лития, аргон - неона. В третьем периоде, как и во втором,восемь элементов.


Четвертый период начинается калием (Z = 19), электронное строение которого выражается формулой 1s 2 2s 2 2p 6 3s 2 3p64s 1 . Его 19-й электрон занял 4s-подуровень, энергия которого ниже энергии Зd-подуровня. Внешний 4s-электрон придает элементу свойства, сходные со свойствами натрия. У кальция (Z = 20) 4s-подуровень заполнен двумя электронами: 1s 2 2s 2 2p 6 3s 2 3р 6 4s 2 .С элемента скандия (Z = 21) начинается заполнение Зd-подуровня, так как он энергетически более выгоден, чем 4р-подуровень. Пять орбиталей 3d-подуровнямогут быть заняты десятью электронами, что осуществляется у атомов от скандия до цинка (Z = 30). Поэтому электронное строение Sc соответствует формуле 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 ,а цинка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .В атомах последующих элементов вплоть до инертного газа криптона (Z = 36) идет заполнение 4p-подуровня. В четвертом периоде 18 элементов.


Пятый период содержит элементы от рубидия (Z = 37) до инертного газа ксенона (Z = 54). Заполнение их энергетических уровней идет также, как у элементов четвертого периода: после Rb и Sr у десяти элементов от иттрия (Z = 39) до кадмия (Z = 48) заполняется 4d-подуровень, после чего электроны занимают 5p-подуровень. В пятом периоде как и в четвертом, 18 элементов.


В атомах элементов шестого периода цезия (Z = 55) и бария (Z = 56) заполняется 6s-подуровень. У лантана (Z = 57) один электрон поступает на 5d-подуровень, после чего заполнение этого подуровня приостанавливается, а начинает заполняться 4f-подуровень, семь орбиталей которого могут быть заняты 14 электронами. Это происходит у атомов элементов лантаноидов с Z = 58 - 71. Поскольку у этих элементов заполняется глубинный 4f-подуровеиь третьего снаружи уровня, они обладают весьма близкими химическими свойствами. С гафния (Z = 72) возобновляется заполнение d-подуровня и заканчивается у ртути (Z = 80), после чего электроны заполняют 6p-подуровень. Заполнение уровня завершается у благородного газа радона (Z = 86). В шестом периоде 32 элемента.


Седьмой период - незавершенный. Заполнение электронами электронных уровней аналогично шестому периоду. После заполнения 7s-подуровня у Франция (Z = 87) и радия(Z = 88) электрон актиния поступает на 6d-подуровень, после которого начинает заполняться 5f-подуровень 14 электронами. Это происходит у атомов элементов актиноидов с Z = 90 - 103. После103-го элемента идет заполнение б d-подуровня: у курчатовия (Z = 104), нильсбория (Z = 105), элементов Z = 106 и Z = 107. Актиноиды, как и лантаноиды, обладают многими сходными химическими свойствами.


Хотя 3 d-подуровень заполняется после 4s-подуровня, в формуле он ставится раньше, так как последовательно записываются все подуровни данного уровня.


В зависимости от того, какой подуровень последним заполняется электронами, все элементы делят на четыре типа (семейства).


1. s - Элементы: заполняется электронами s-подуровень внешнего уровня. К ним относятся первые два элемента каждого периода.


2. р - Элементы: заполняется электронами р-подуровень внешнего уровня. Это последние 6 элементов каждого периода (кроме первого и седьмого).


3. d - Элементы: заполняется электронами d-подуровень второго снаружи уровня, а на внешнем уровне остается один или два электрона (у Pd - ноль). К ним относятся элементы вставных декад больших периодов,расположенных между s- и р-элементами (их также называют переходными элементами).


4. f - Элементы: заполняется электронами f-подуровень третьего снаружи уровня, а на внешнем уровне остается два электрона. Это лантаноиды и актиноиды.


В периодической системе s-элементов 14, р-элементов 30, d-элементов 35, f-элементов 28. Элементы одного типа имеют ряд общих химических свойств.


Периодическая система Д. И. Менделеева является естественной классификацией химических элементов по электроны структуре их атомов. Об электронной структуре атома, а значит, и свойствах элемента судят по положению элемента в соответствующем периоде и подгруппе периодической системы. Закономерностями заполнения электронных уровней объясняется различное число элементов в периодах.


Таким образом, строгая периодичность расположения элементов в периодической системе химических элементов Д. И. Менделеева полностью объясняется последовательным характером заполнения энергетических уровней.

Выводы:

Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом - физический смысл периодического закона.


В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 - в первом периоде, и от 1 до 8 - во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметаллические.


В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.


В свете учения о строении атомов становится обоснованным разделение Д.И. Менделеевым всех элементов на семь периодов. Номер периода соответствует числу энергетических уровней атомов, заполняемых электронами.Поэтому s-элементы имеются во всех периодах, р-элементы - во втором и последующих, d-элементы - в четвертом и последующих и f-элементы - в шестом и седьмом периодах.


Легко объяснимо и деление групп на подгруппы, основанное на различии в заполнении электронами энергетических уровней. У элементов главных подгрупп заполняются или s-подуровни (это s-элементы), или р-подуровни (это р-элементы) внешних уровней. У элементов побочных подгрупп заполняется (d-подуровень второго снаружи уровня (это d-элементы). У лантаноидов и актиноидов заполняются соответственно 4f- и 5f-подуровни (это f-элементы). Таким образом, в каждой подгруппе объединены элементы, атомы которых имеют сходное строение внешнего электронного уровня. При этом атомы элементов главных подгрупп содержат на внешних уровнях число электронов, равное номеру группы. В побочные же подгруппы входят элементы, атомы которых имеют на внешнем уровне по два или по одному электрону.


Различия в строении обусловливают и различия в свойствах элементов разных подгрупп одной группы. Так, на внешнем уровне атомов элементов подгруппы галогенов имеется по семь электронов подгруппы марганца - по два электрона. Первые - типичные металлы, а вторые - металлы.


Но у элементов этих подгрупп есть и общие свойства: вступая в химические реакции, все они (за исключением фтора F) могут отдавать по 7 электронов на образование химических связей. При этом атомы подгруппы марганца отдают 2 электрона с внешнего и 5 электронов со следующего за ним уровня. Таким образом, у элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней в чем состоит основное различие в свойствах элементов главных и побочных подгрупп.


Отсюда же следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом - физический смысл номера группы.


Итак, строение атомов обусловливает две закономерности:


1) изменение свойств элементов по горизонтали - в периоде слева право ослабляются металлические и усиливаются неметаллические свойства;


2) изменение свойств элементов по вертикали - в подгруппе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.


В таком случае элемент (и клетка системы) находится на пересечении горизонтали и вертикали,что определяет его свойства. Это помогает находить и описывать свойства элементов, изотопы которых получают искусственным путем.

Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их различных соединений.

Работы предшественников Д.И. Менделеева:

1. Классификация Берцелиуса, не потерявшая своей актуальности и в наши дни (металлы, неметаллы)

2. Триады Деберейнера (например литий, натрий, калий)

4. Спираль-ось Шанкуртура

5. Кривая Мейера

Участие Д.И. Менделеева в Международном химическом конгрессе а г. Карслруэ (1860), где утвердились идеи атомистики и понятие «Атомный» вес, которое сейчас известно под названием «относительная атомная масса».

Личностные качества великого русского ученого Д.И. Менделеева.

Гениального русского химика отличали энциклопедичность знаний, скрупулезность химического эксперимента, величайшая научная интуиция, уверенность в истинности своей позиции и отсюда неустрашимый риск в отстаивании этой истины. Д.И. Менделеева был великим и замечательным гражданином земли русской.

Д.И.Менделеев расположил все известные ему химические элементы в длинную цепочки по возрастанию их атомных весов и отметил в ней отрезки – периоды, в которых свойства элементов и образованных ими веществ изменялись сходным образом, а именно:

1). Металлические свойства ослабевали;

2) Неметаллические свойства усиливались;

3) Степень окисления в высших оксидах увеличивалась с +1 до +7(+8);

4).Степень окисления элементов в гидроксидах, твердых солеподобных соединениях металлов с водородом возрастала от +1 до +3, а затем в летучих водородных соединениях от -4 до -1;

5) Оксиды от основных через амфотерные сменялись кислотными;

6) Гидроксиды от щелочей, через амфотерные сменялись кислотами.



Выводом его работы стала первая формулировка периодического закона (1 марта 1869 г): свойства химических элементов и образованных ими веществ находятся в периодической зависимости от их относительных атомных масс.

Периодический закон и строение атома.

Формулировка периодического закона данная Менделеевым была неточной и не полной, т.к. она отражала состояние науки на тот момент, когда о сложном строении атома еще не было известно. Поэтому современная формулировка периодического закона звучит иначе: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от заряда их атомных ядер.

Периодическая система и строение атома.

Периодическая система – это графическое отображение периодического закона.

Каждое обозначение в периодической системе отражает какую-либо особенность или закономерность в строении атомов элементов:

Физический смысл номера элемента, периода, группы;

Причины изменения свойств элементов и образованных ими веществ по горизонтали (в периодах) и по вертикале (в группах).

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические – усиливаются, т.к.:

1) Увеличиваются заряды атомных ядер;

2) Увеличивается число электронов на внешнем уровне;

3) Число энергетических уровней постоянно;

4) Радиус атома уменьшается

В пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, неметаллические - ослабевают, т.к.:

1). Увеличиваются заряды атомных ядер;

2). Число электронов на внешнем уровне постоянно;

3). Увеличивается число энергетических уровней;

4). Увеличивается радиус атома

В результате этого была дана причинно-следственная формулировка периодического закона: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от изменения внешних электронных структур их атомов.

Значение периодического закона и периодической системы:

1. Позволили установить взаимосвязь между элементами, объединить их по свойствам;

2. Расположить химические элементы в естественной последовательности;

3. Вскрыть периодичность, т.е. повторяемость общих свойств отдельных элементов и их соединений;

4. Исправить и уточнить относительные атомные массы отдельных элементов (у бериллия с 13 на 9);

5. Исправить и уточнить степени окисления отдельных элементов (бериллий +3 на +2)

6. Предсказать и описать свойства, указать путь открытия еще неоткрытых элементов (скандия, галлия, германия)

Пользуясь таблицей сравним две ведущие теории химии.

Философские основы общности Периодический закон Д.И.Менделеева Теория органических соединений А.М. Бутлерова
1. 1. Время открытия 1869 г. 1861 г.
II. Предпосылки. 1.Накопление фактологического материала 2. 2. Работа предшественников 3. Съезд химиков в г. Карлсруэ (1860) 4. Личностные качества. Ко времени открытия периодического закона было известно 63 химических элемента и описаны свойства их многочисленных соединений. Известны многие десятки и сотни тысяч органических соединений, состоящих лищь из немногих элементов: углерода, водорода, кислорода, реже – азота, фосфора и серы.
- Й. Берцеллиус (металлы и неметаллы) - И.В.Деберейнер (триады) - Д.А.Р.Ньюлендс (октавы) - Л.Мейер - Й. Берцеллиус, Ю.Либих, Ж.Дюма (теория радикалов); -Ж.Дюма, Ш.Жерара, О.Лоран (теория типов); - Й. Берцеллиус ввел а практику термин «изомерия»; -Ф.Велер, н.Н. Зинин, М.Бертло, сам А.Бутлеров(синтезы органических веществ, крах витализма); -Ф.А.Кукуле (строение бензола)
Д.И. Менделеев присутствовал в роли наблюдателя А.М.Бутлеров не участвовал, но активно изучал материалы съезда. Однако принимал участие в съезде врачей и естествоиспытателей в г. Шпейере (1861), где выступил с докладом « О строении органических тел»
Обоих авторов отличали от других химиков: энциклопедичность химических знаний, умение анализировать и обобщать факты, научное прогнозирование, русский менталитет и русский патриотизм.
III. Роль практики в становлении теории Д.И. Менделеев предсказывает и указывает пути открытия еще неизвестных науке галлия, скандия и германия А.М. Бутлеров предсказывает и объясняет изомерию многих органических соединений. Сам осуществляет многие синтезы

Тест по теме

Периодический закон и периодическая система элементов Д.И. Менделеева

1. Как меняются радиусы атомов в периоде:

2. Как меняются радиусы атомов в главных подгруппах:

а) увеличиваются б) уменьшаются в) не изменяются

3. Как определить число энергетических уровней в атоме элемента:

а) по порядковому номеру элемента б) по номеру группы

в) по номеру ряда г) по номеру периода

4. Как определяется место химического элемента в периодической системе Д.И. Менделеева:

а) количеством электронов на внешнем уровне б) количеством нейтронов в ядре

в) зарядом ядра атома г) атомной массой

5. Сколько энергетических уровней у атома скандия: а) 1 б) 2 в) 3 г) 4

6. Чем определяются свойства химических элементов:

а) величиной относительной атомной массы б) числом электронов на внешнем слое

в) зарядом ядра атома г) количеством валентных электронов

7. Как изменяются химические свойства элементов в периоде:

а) усиливаются металлические б) усиливаются неметаллические

в) не изменяются г) ослабевают неметаллические

8. Укажите элемент, возглавляющий большой период периодической системы элементов: а) Cu (№29) б) Ag (№47) в) Rb (№37) г) Au (№79)

9. У какого элемента наиболее выражены металлические свойства:

а) Магний б) Алюминий в) Кремний

10. У какого элемента наиболее выражены неметаллические свойства:

а) Кислород б) Сера в) Селен

11.В чём основная причина изменения свойств элементов в периодах:

а) в увеличении атомных масс

б) в постепенном увеличении числа электронов на внешнем энергетическом уровне

в) в увеличении числа электронов в атоме

г) в увеличении числа нейтронов я ядре

12. Какой элемент возглавляет главную подгруппу пятой группы :

а) ванадий б) азот в) фосфор г) мышьяк

13.Чему равно число орбиталей на d-подуровне: а)1 б)3 в)7 г)5

14. Чем отличаются атомы изотопов одного элемента:

а) числом протонов б) числом нейтронов в) числом электронов г) зарядом ядра

15. Что такое орбиталь:

а) определённый энергетический уровень, на котором находится электрон

б) пространство вокруг ядра, где находится электрон

в) пространство вокруг ядра, где вероятность нахождения электрона наибольшая

г) траектория, по которой движется электрон

16. На какой орбитали электрон имеет наибольшую энергию: а)1s б)2s в)3s г) 2p

17. Определите какой это элемент 1s 2 2s 2 2p 1: а) №1 б) №3 в) №5 г) №7

18. Чему равно число нейтронов в атоме +15 31 Р а)31 б)16 в)15 д)46

19. Какой элемент имеет строение наружного электронного слоя …3s 2 p 6:

а) неон б) хлор в) аргон г) сера

20. На основании электронной формулы определите, какими свойствами обладает элемент 1s 2 2s 2 2p 5 :

а) металл б) неметалл в) амфотерный элемент г) инертный элемент

21. Сколько химических элементов в шестом периоде: а)8 б)18 в)30 г)32

22. Чему равно массовое число азота +7 N который содержит 8 нейтронов:

а)14 б)15 в)16 г)17

23. Элемент, в ядре атома которого содержится 26 протонов: а)S б)Cu в)Fe г)Ca