Решение задач по молекулярной биологии. Образцы решения задач

Продолжение. См. № 11, 12, 13, 14, 15/2005

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

3. Соединение нуклеотидов в цепь

Нуклеотиды соединяются между собой в ходе реакции конденсации. При этом между 3"-атомом углерода остатка сахара одного нуклеотида и остатком фосфорной кислоты другого возникает сложная эфирная связь. В результате образуются неразветвленные полинуклеотидные цепи. Один конец полинуклеотидной цепи (его называют 5"-концом) заканчивается молекулой фосфорной кислоты, присоединенной к 5"-атому углерода, другой (его называют 3"-концом) – ионом водорода, присоединенным 3"-атому углерода. Цепь последовательно расположенных нуклеотидов составляет первичную структуру ДНК.

Таким образом, скелет полинуклеотидной цепочки углеводно-фосфатный, т.к. нуклеотиды соединяются друг с другом путем образования ковалентных связей (фосфодиэфирных мостиков), в которых фосфатная группа образует мостик между С 3 -атомом одной молекулы сахара и С 5 -атомом следующей. Прочные ковалентные связи между нуклеотидами уменьшают риск «поломок» нуклеиновых кислот.

Если в составе полинуклеотида, образованного четырьмя типами нуклеотидов, 1000 звеньев, то количество возможных вариантов его состава 4 1000 (это цифра с 6 тыс. нулей). Поэтому всего четыре типа нуклеотидов могут обеспечить огромное разнообразие нуклеиновых кислот и той информации, которая содержится в них.

4. Образование двухцепочечной молекулы ДНК

В 1950 г. английский физик Морис Уилкинс получил рентгенограмму ДНК. Она показала, что молекула ДНК имеет определенную структуру, расшифровка которой помогла бы понять механизм ее функционирования. Рентгенограммы, полученные на высокоочищенной ДНК, позволили Розалинд Франклин увидеть четкий крестообразный рисунок – опознавательный знак двойной спирали. Стало известно, что нуклеотиды расположены друг от друга на расстоянии 0,34 нм, а на один виток спирали их приходится 10.

Диаметр молекулы ДНК составляет около 2 нм. Из рентгенографических данных, однако, было не ясно, каким образом две цепи удерживаются вместе.

Картина полностью прояснилась в 1953 г., когда американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик, рассмотрев совокупность известных данных о строении ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания – в середине.

Д.Уотсон и Ф.Крик установили, что две полинуклеотидные цепи ДНК закручены вокруг друг друга и вокруг общей оси. Цепи ДНК – антипараллельны (разнонаправлены), т.е. против 3"-конца одной цепи находится 5"-конец другой (представьте себе двух змей скрутившихся в спираль, – голова одной к хвосту другой). Спираль обычно закручена вправо, но есть случаи образования и левой спирали.

5. Правила Чаргаффа. Сущность принципа комплементарности

Еще до открытия Уотсона и Крика, в 1950 г. австралийский биохимик Эдвин Чаргафф установил, что в ДНК любого организма количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых нуклеотидов равно количеству цитозиловых нуклеотидов (А=Т, Г=Ц), или суммарное количество пуриновых азотистых оснований равно суммарному количеству пиримидиновых азотистых оснований (А+Г=Ц+Т). Эти закономерности получили название «правила Чаргаффа».

Дело в том, что при образовании двойной спирали всегда напротив азотистого основания аденин в одной цепи устанавливается азотистое основание тимин в другой цепи, а напротив гуанина – цитозин, то есть цепи ДНК как бы дополняют друг друга. А эти парные нуклеотиды комплементарны друг другу (от лат. complementum – дополнение). Мы уже несколько раз сталкивались с проявлением комплементарности (комплиментарны друг другу активный центр фермента и молекула субстрата; комплементарны друг другу антиген и антитело).

Почему же этот принцип соблюдается? Чтобы ответить на этот вопрос, нужно вспомнить о химической природе азотистых гетероциклических оснований. Аденин и гуанин относятся к пуринам, а цитозин и тимин – к пиримидинам, то есть между азотистыми основаниями одной природы связи не устанавливаются. К тому же комплементарные основания соответствуют друг другу геометрически, т.е. по размерам и форме.

Таким образом, комплементарность нуклеотидов – это химическое и геометрическое соответствие структур их молекул друг другу .

В азотистых основаниях имеются сильноэлектроотрицательные атомы кислорода и азота, которые несут частичный отрицательный заряд, а также атомы водорода, на которых возникает частичный положительный заряд. За счет этих частичных зарядов возникают водородные связи между азотистыми основаниями антипараллельных последовательностей молекулы ДНК.

Образование водородных связей между комплементарными азотистыми основаниями

Между аденином и тимином возникают две водородные связи (А=Т), а между гуанином и цитозином – три (Г=Ц). Подобное соединение нуклеотидов обеспечивает, во-первых, образование максимального числа водородных связей, а во-вторых, одинаковое по всей длине спирали расстояние между цепями.

Из всего выше сказанного вытекает, что, зная последовательность нуклеотидов в одной спирали, можно выяснить порядок следования нуклеотидов на другой спирали.

Двойная комплементарная цепь составляет вторичную структуру ДНК. Спиральная форма ДНК является ее третичной структурой.

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала; решение задач.

Задача 1. В лаборатории исследован участок одной из цепочек молекулы ДНК. Оказалось, что он состоит из 20 мономеров, которые расположены в такой последовательности: Г-Т-Г-Т-А-А-Ц-Г-А-Ц-Ц-Г-А-Т-А-Ц-Т-Г-Т-А.
Что можно сказать о строении соответствующего участка второй цепочки той же молекулы ДНК?

Зная, что цепи молекулы ДНК комплементарны друг другу, определим последовательность нуклеотидов второй цепи той же молекулы ДНК: Ц-А-Ц-А-Т-Т-Г-Ц-Т-Г-Г-Ц-Т-А-Т-Г-А-Ц-А-Т.

Задача 2. На фрагменте одной цепи ДНК нуклеотиды расположены в последовательности: А-А-Г-Т-Ц-Т-А-Ц-Г-Т-А-Т...

1. Нарисуйте схему структуры второй цепи данной молекулы ДНК.
2. Какова длина в нм этого фрагмента ДНК, если один нуклеотид занимает около 0,34 нм?
3. Сколько (в %) содержится нуклеотидов в этом фрагменте молекулы ДНК?

1. Достраиваем вторую цепь данного фрагмента молекулы ДНК, пользуясь правилом комплементарности: Т-Т-Ц-А-Г-А-Т-Г-Ц-А-Т-А.
2. Определяем длину данного фрагмента ДНК: 12х0,34=4,08 нм.
3. Рассчитываем процентное содержание нуклеотидов в этом фрагменте ДНК.

24 нуклеотида – 100%
8А – х%, отсюда х=33,3%(А);
т.к. по правилу Чаргаффа А=Т, значит содержание Т=33,3%;
24 нуклеотида – 100%
4Г – х%, отсюда х=16,7%(Г);
т.к. по правилу Чаргаффа Г=Ц, значит содержание Ц=16,6%.

Ответ: Т-Т-Ц-А-Г-А-Т-Г-Ц-А-Т-А; 4,08 нм; А=Т=33, 3%; Г=Ц=16,7%

Задача 3. Каков будет состав второй цепочки ДНК, если первая содержит 18% гуанина, 30% аденина и 20% тимина?

1. Зная, что цепи молекулы ДНК комплементарны друг другу, определяем содержание нуклеотидов (в %) во второй цепи:

т.к. в первой цепи Г=18%, значит во второй цепи Ц=18%;
т.к. в первой цепи А=30%, значит во второй цепи Т=30%;
т.к. в первой цепи Т=20%, значит во второй цепи А=20%;

2. Определяем содержание в первой цепи цитозина (в %).

    определяем долю цитозина в первой цепи ДНК: 100% – 68% = 32% (Ц);

    если в первой цепи Ц=32%, тогда во второй цепи Г=32%.

Ответ: Ц=18%; Т=30%; A=20%; Г=32%

Задача 4. В молекуле ДНК насчитывается 23% адениловых нуклеотидов от общего числа нуклеотидов. Определите количество тимидиловых и цитозиловых нуклеотидов.

1. По правилу Чаргаффа находим содержание тимидиловых нуклеотидов в данной молекуле ДНК: А=Т=23%.
2. Находим сумму (в %) содержания адениловых и тимидиловых нуклеотидов в данной молекуле ДНК: 23% + 23% = 46%.
3. Находим сумму (в %) содержания гуаниловых и цитозиловых нуклеотидов в данной молекуле ДНК: 100% – 46% = 54%.
4. По правилу Чаргаффа, в молекуле ДНК Г=Ц, в сумме на их долю приходится 54%, а по отдельности: 54% : 2 = 27%.

Ответ: Т=23%; Ц=27%

Задача 5. Дана молекула ДНК с относительной молекулярной массой 69 тыс., из них 8625 приходится на долю адениловых нуклеотидов. Относительная молекулярная масса одного нуклеотида в среднем 345. Сколько содержится нуклеотидов по отдельности в данной ДНК? Какова длина ее молекулы?

1. Определяем, сколько адениловых нуклеотидов в данной молекуле ДНК: 8625: 345 = 25.
2. По правилу Чаргаффа, А=Г, т.е. в данной молекуле ДНК А=Т=25.
3. Определяем, сколько приходится от общей молекулярной массы данной ДНК на долю гуаниловых нуклеотидов: 69 000 – (8625х2) = 51 750.
4. Определяем суммарное количество гуаниловых и цитозиловых нуклеотидов в данной ДНК: 51 750:345=150.
5. Определяем содержание гуаниловых и цитозиловых нуклеотидов по отдельности: 150:2 = 75;
6. Определяем длину данной молекулы ДНК: (25 + 75) х 0,34 = 34 нм.

Ответ: А=Т=25; Г=Ц=75; 34 нм.

Задача 6. По мнению некоторых ученых общая длина всех молекул ДНК в ядре одной половой клетки человека составляет около 102 см. Сколько всего пар нуклеотидов содержится в ДНК одной клетки (1 нм = 10–6 мм)?

1. Переводим сантиметры в миллиметры и нанометры: 102 см = 1020 мм = 1 020 000 000 нм.
2. Зная длину одного нуклеотида (0,34 нм), определяем количество пар нуклеотидов, содержащихся в молекулах ДНК гаметы человека: (10 2 х 10 7) : 0,34 = 3 х 10 9 пар.

Ответ: 3х109 пар.

IV. Домашнее задание

Изучить параграф учебника и записи, сделанные в классе (содержание, молекулярная масса нуклеиновых кислот, строение нуклеотида, правило Чаргаффа, принцип комплементарности, образование двухцепочечной молекулы ДНК), решить задачи после текста параграфа.

Урок 16–17. Классы клеточных РНК и их функции. различия ДНК и РНК. Репликация ДНК. Синтез иРНК

Оборудование: таблицы по общей биологии; схема строения нуклеотида; модель строения ДНК; схемы и рисунки, иллюстрирующие строение РНК, процессы репликации и транскрипции.

I. Проверка знаний

Работа по карточкам

Карточка 1. Укажите принципиальные отличия строения молекулы ДНК от молекул других биополимеров (белков, углеводов).

Карточка 2. На чем основана огромная информационная емкость ДНК? Например, в ДНК млекопитающих содержится 4–6 млрд бит информации, что соответствует библиотеке в 1,5–2 тыс. томов. Как эта функция отражена в строении?

Карточка 3. При нагревании ДНК, как и белки, денатурирует. Как вы думаете, что при этом происходит с двойной спиралью?

Карточка 4. Заполните пропуски в тексте: «Две цепи молекулы ДНК обращены друг к другу... . Цепи соединены..., причем против нуклеотида, содержащего аденин всегда стоит нукдеотид, содержащий..., а против содержащего цитозин – содержащий... . Этот принцип назван принципом... . Порядок расположения... в молекуле... для каждого организма... и определяет последовательность... в... . Таким образом, ДНК является... . ДНК локализуется в основном в... клеток у эукариот и в... клеток у прокариот».

Устная проверка знаний по вопросам

1. Нуклеиновые кислоты, их содержание в живом веществе, молекулярная масса.
2. НК – непериодические полимеры. Строение нуклеотида, типы нуклеотидов.
3. Соединение нуклеотидов в цепь.
4. Образование двухцепочечной молекулы ДНК.
5. Правила Чаргаффа. Сущность принципа комплементарности.

Проверка правильности решения задач, приведенных в учебнике.

II. Изучение нового материала

1. РНК и ее значение

Основу жизни образуют белки. Функции их в клетке очень разнообразны. Однако белки «не умеют» размножаться. А вся информация о строении белков содержится в генах (ДНК).

У высших организмов белки синтезируются в цитоплазме клетки, а ДНК сокрыта за оболочкой ядра. Поэтому ДНК непосредственно не может быть матрицей для синтеза белка. Эту роль выполняет другая нуклеиновая кислота – РНК.

Молекула РНК представляет собой неразветвленный полинуклеотид, обладающий третичной структурой. Она образована одной полинуклеотидной цепочкой, и, хотя входящие в ее состав комплементарные нуклеотиды также способны образовывать между собой водородные связи, эти связи возникают между нуклеотидами одной цепочки. Цепи РНК значительно короче цепей ДНК. Если содержание ДНК в клетке относительно постоянно, то содержание РНК сильно колеблется. Наибольшее количество РНК в клетках наблюдается во время синтеза белка.

РНК принадлежит главная роль в передаче и реализации наследственной информации. В соответствии с функцией и структурными особенностями различают несколько классов клеточных РНК.

2. Классы клеточных РНК и их функции

Существует три основных класса клеточных РНК.

1. Информационная (иРНК), или матричная (мРНК). Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от 0,05х10 6 до 4х10 6) и стабильности. Составляют около 2% от общего количества РНК в клетке. Все иРНК являются переносчиками генетической информации из ядра в цитоплазму, к месту синтеза белка. Они служат матрицей (рабочим чертежом) для синтеза молекулы белка, так как определяют аминокислотную последовательность (первичную структуру) белковой молекулы.

2. Рибосомальные РНК (рРНК). Составляют 80–85% от общего содержания РНК в клетке. Рибосомальная РНК состоит из 3–5 тыс. нуклеотидов. Она синтезируется в ядрышках ядра. В комплексе с рибосомными белками рРНК образует рибосомы – органоиды, на которых происходит сборка белковых молекул. Основное значение рРНК состоит в том, что она обеспечивает первоначальное связывание иРНК и рибосомы и формирует активный центр рибосомы, в котором происходит образование пептидных связей между аминокислотами в процессе синтеза полипептидной цепи.

3. Транспортные РНК РНК ). Молекулы тРНК содержат обычно 75-86 нуклеотидов. Молекулярная масса молекул тРНК около 25 тыс. Молекулы тРНК играют роль посредников в биосинтезе белка – они доставляют аминокислоты к месту синтеза белка, то есть на рибосомы. В клетке содержится более 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Однако у всех молекул имеется несколько внутримолекулярных комплементарных участков, благодаря наличию которых все тРНК имеют третичную структуру, напоминающую по форме клеверный лист.

3. Отличия молекул ДНК и РНК

Заполнение учащимися таблицы с последующей проверкой.

Признаки сравнения

Расположение в клетке

Ядро, митохондрии, хлоропласты

Ядро, рибосомы, центриоли, цитоплазма, митохондрии и хлоропласты

Строение макромолекулы

Двойной неразветвленный линейный полимер, свернутый в спираль

Одинарная полинуклеотидная цепь

Мономеры

Дезоксирибонуклеотиды

Рибонуклеотиды

Состав нуклеотидов

Пуриновые (аденин, гуанин) и пиримидиновые (тимин, цитозин) азотистые основания; дезоксирибоза (С5); остаток фосфорной кислоты

Пуриновые (аденин, гуанин) и пиримидиновые (урацил, цитозин) азотистые основания; рибоза (С5); остаток фосфорной кислоты

Хранитель наследственной информации

Посредник в реализации генетической информации

4. Репликация ДНК

Одним из уникальных свойств молекулы ДНК является ее способность к самоудвоению – воспроизведению точных копий исходной молекулы. Благодаря этому осуществляется передача наследственной информации от материнской клетки дочерним во время деления. Процесс самоудвоения молекулы ДНК называется репликацией (редупликацией).

Репликация – сложный процесс, идущий с участием ферментов (ДНК-полимераз). Для репликации нужно сначала расплести двойную спираль ДНК. Это тоже делают специальные ферменты – геликазы , разрывающие водородные связи между основаниями. Но расплетенные участки очень чувствительны к повреждающим факторам. Чтобы они оставались в незащищенном состоянии как можно меньше времени, синтез на обеих цепочках идет одновременно.

Но в материнской ДНК две цепи двойной спирали антипараллельны – напротив 3’-конца одной цепи располагается 5’-конец другой, а фермент ДНК-полимераза может «перемещаться» только в одном направлении – от 3"-конца к 5"-концу матричной цепи. Поэтому репликация одной половины материнской молекулы, начинающейся 3’-нуклеотидом, включается после расплетания двойной спирали и идет, как полагают, непрерывно. Репликация же второй половины молекулы начинается чуть позже и не с начала (где располагается 5’-нуклеотид, препятствующий реакции), а на некотором расстоянии от него. ДНК-полимераза при этом движется в обратную сторону, синтезируя относительно короткий фрагмент. Структура, возникающая в этот момент, называется репликативной вилкой . По мере расплетания двойной спирали репликативная вилка сдвигается – на второй цепочке начинается синтез следующего участка, идущий в сторону начала предыдущего, уже синтезированного фрагмента. Затем эти отдельные фрагменты на второй матричной цепи (их называют фрагментами Оказаки ) сшиваются ферментом ДНК-лигазой в единую цепь.

Схема строения репликационной вилки ДНК

Во время репликации энергия молекул АТФ не расходуется, так как для синтеза дочерних цепей при репликации используются не дезоксирибонуклеотиды (содержат один остаток фосфорной кислоты), а дезоксирибонуклеозидтрифосфаты (содержат три остатка фосфорной кислоты). При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых фосфата отщепляются, и освободившаяся энергия используется на образование сложно-эфирной связи между нуклеотидами.

В результате репликации образуются две двойные «дочерние» спирали, каждая из которых сохраняет (консервирует) в неизменном виде одну из половин исходной «материнской» ДНК. Вторые цепи «дочерних» молекул синтезируются из нуклеотидов заново. Это получило название полуконсервативности ДНК.

5. Синтез РНК в клетке

Считывание РНК с матрицы ДНК называется транскрипцией (от лат. transcriptio – переписывание). Она осуществляется специальным ферментом – РНК-полимеразой. В клетках эукариот обнаружены три разные РНК-полимеразы, синтезирующие разные классы РНК.

Транскрипция также является примером реакции матричного синтеза. Цепочка РНК очень похожа на цепочку ДНК: также состоит из нуклеотидов (рибонуклеотидов, весьма похожи на дезоксирибонуклеотиды). РНК считывается с участка ДНК, в котором она закодирована, в соответствии с принципом комплементарности: напротив аденина ДНК становится урацил РНК, напротив гуанина – цитозин, напротив тимина – аденин и напротив цитозина – гуанин.

В пределах определенного гена только одна цепь из двух комплементарных цепей ДНК служит матрицей для синтеза РНК. Эта цепь называется рабочей.

В соответствии с принятыми соглашениями начало гена на схемах изображают слева. У нерабочей (некодирующей) цепи молекулы ДНК «левым» в этом случае будет 5"-конец, у рабочей (кодирующей) – наоборот. Фермент РНК-полимераза присоединяется к промотору (специфической последовательности нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству и который находится на 3"-конце соответствующего участка матричной цепи ДНК). Только присоединившись к промотору, РНК-полимераза способна начать синтез РНК из присутствующих в клетке свободных рибонуклеозидтрифосфатов. Энергия для синтеза РНК содержится в макроэнергетических связях рибонуклеозидтрифосфатов.

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала. Решение задачи.

Задача. Молекула ДНК состоит из двух цепей – основной, на которой синтезируется иРНК, и комплементарной. Запишите порядок нуклеотидов в синтезируемой иРНК, если порядок следования нуклеотидов в основной (рабочей) цепи ДНК следующий: Ц-Г-Ц-Т-Г-А-Т-А-Г.

Пользуясь принципом комплементарности, определяем порядок расположения нуклеотидов в иРНК, синтезируемой по рабочей цепи ДНК: Г-Ц-Г-А-Ц-У-А-У-Ц.

Ответ: Г-Ц-Г-А-Ц-У-А-У-Ц

IV. Домашнее задание

Изучить параграф учебника (РНК, ее основные классы и функции, отличия ДНК и РНК, репликация и транскрипция).

Урок 18. Обобщение знаний по теме «ДНК и РНК»

Оборудование: таблицы по общей биологии, схема строения нуклеотида, модель строения ДНК, схемы и рисунки, иллюстрирующие строение РНК, процессы репликации и транскрипции.

I. Проверка знаний

Устная проверка знаний по вопросам.

1. РНК и ее значение в клетке.
2. Классы клеточных РНК и их функции (трое учащихся ).
3. Репликация, ее механизм и значение.
4. Транскрипция, ее механизм и значение.

Биологический диктант «Сравнение ДНК и РНК»

Учитель читает тезисы под номерами, учащиеся записывают в тетрадь номера тех тезисов, которые подходят по содержанию их варианту.

Вариант 1 – ДНК; вариант 2 – РНК.

1. Одноцепочечная молекула.
2. Двухцепочечная молекула.
3. Содержит аденин, урацил, гуанин, цитозин.
4. Содержит аденин, тимин, гуанин, цитозин.
5. В состав нуклеотидов входит рибоза.
6. В состав нуклеотидов входит дезоксирибоза.
7. Содержится в ядре, хлоропластах, митохондриях, центриолях, рибосомах, цитоплазме.
8. Содержится в ядре, хлоропластах, митохондриях.
9. Участвует в хранении, воспроизведении и передаче наследственной информации.
10. Участвует в передаче наследственной информации.

Вариант 1 – 2; 4; 6; 8; 9;

Вариант 2 – 1; 3; 5; 7; 10.

Решение задач

Задача 1. Химический анализ показал, что 28% от общего числа нуклеотидов данной иРНК приходится на аденин, 6% – на гуанин, 40% – на урацил. Каков должен быть нуклеотидный состав соответствующего участка двухцепочечной ДНК, информация с которого «переписана» данной иРНК?

1. Зная, что цепь молекулы РНК и рабочая цепь молекулы ДНК комплементарны друг другу, определяем содержание нуклеотидов (в %) в рабочей цепи ДНК:

    в цепи иРНК Г=6%, значит в рабочей цепи ДНК Ц=6%;

    в цепи иРНК А=28%, значит в рабочей цепи ДНК Т=28%;

    в цепи иРНК У =40%, значит в рабочей цепи ДНК А=40%;

2. Определяем содержание в цепи иРНК (в %) цитозина.

    определяем долю цитозина в цепи иРНК: 100% – 74% = 26% (Ц);

    если в цепи иРНК Ц=26%, тогда в рабочей цепи ДНК Г=26%.

Ответ: Ц=6%; Т=28%; А=40%; Г=26%

Задача 2. На фрагменте одной цепи ДНК нуклеотиды расположены в последовательности: А-А-Г-Т-Ц-Т-А-А-Ц-Г-Т-А-Т. Нарисуйте схему структуры двухцепочечной молекулы ДНК. Какова длина этого фрагмента ДНК? Сколько (в %) содержится нуклеотидов в этой цепи ДНК?

1. По принципу комплементарности выстраивает вторую цепь данной молекулы ДНК: Т-Т-Ц-А-Г-А-Т-Т-Г-Ц-А-Т-А.

2. Зная длину одного нуклеотида (0,34 нм) определяем длину данного фрагмента ДНК (в ДНК длина одной цепи равна длине всей молекулы): 13х0,34 = 4,42 нм.

3. Рассчитываем процентное содержание нуклеотидов в данной цепи ДНК:

13 нуклеотидов – 100%
5 А – х%, х=38% (А).
2 Г – х%, х=15,5% (Г).
4 Т – х%, х=31% (Т).
2 Ц – х%, х=15,5% (Ц).

Ответ: Т-Т-Ц-А-Г-А-Т-Т-Г-Ц-А-Т-А; 4,42 нм; А=38; Т=31%; Г=15,5%; Ц=15,5%.

Проведение самостоятельной работы

Вариант 1

1. Даны фрагменты одной цепи молекулы ДНК: Ц-А-А-А-Т-Т-Г-Г-А-Ц-Г-Г-Г. Определите содержание (в %) каждого вида нуклеотидов и длину данного фрагмента молекулы ДНК.

2. В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22% от общего количества нуклеотидов этой ДНК? Определите, сколько содержится других нуклеотидов (по отдельности) в этой молекуле ДНК. Какова длина этой ДНК?

Вариант 2

1. Даны фрагменты одной цепи молекулы ДНК: А-Г-Ц-Ц-Г-Г-Г-А-А-Т-Т-А. Определите содержание (в %) каждого вида нуклеотидов и длину данного фрагмента молекулы ДНК.

2. В молекуле ДНК обнаружено 250 тимидиловых нуклеотидов, которые составляют 22,5% от общего количества нуклеотидов этой ДНК. Определите, сколько содержится других нуклеотидов (по отдельности) в этой молекуле ДНК. Какова длина этой ДНК?

IV. Домашнее задание

Повторить материал по основным классам органических веществ, обнаруживаемых в живом веществе.

Продолжение следует

ДНК (правая цепь): ГТА – АЦЦ – ТАТ – ЦЦГ

ДНК (левая цепь): ЦАТ – ТГГ – АТА - ГГЦ

иРНК: ГУА – АЦЦ – УАУ – ЦЦГ

Транскрипция

47. Какое количество молекул пентозы - дезоксирибозы на участке ДНК, если на этом участке гена закодирована информация о белке массой 10 000 дальтон. Мг (нуклеотида) =340; Мr (аминокислоты) =100)

Количество аминокислот в белке = 10000/100 = 100

Количество нуклеотидов в зрелой иРНК = 100*3 = 300 (поскольку каждая аминокислота кодируется триплетом нуклеотидов)

Количество нуклеотидов в гене ДНК = 300*2 = 600 (поскольку ДНК – двухцепочечная)

Количество остатков дезоксирибозы в гене ДНК = количество нуклеотидов в гене ДНК = 600.

Определенное на основании количества аминокислот в молекуле белка количество нуклеотидов в ДНК и соответственно количество остатков дезоксирибозы произведено без учета интронов (некодирующих фрагментов), а с учетом только кодирующих участков (экзонов)

Ответ: 600 остатков дезоксирибозы.

У мушки дрозофилы серая окраска тела доминирует над черной. При скрещивании серых мух в потомстве появилось 1390 мух серого цвета и 460 мух черного цвета. Составьте схему наследования и укажите генотипы родительских особей и потомков

А – серая окраска тела, а – черная окраска тела

F 1 1390 А_, 460 аа

серые черные

Поскольку расщепление в потомстве от скрещивания серых (с доминантным признаком) особей близко к 3:1, то согласно второму закону Менделя (закону расщепления признаков) родители являются гетерозиготами.

Следовательно, схема наследования, генотипы родителей и потомков будут:

F 1 1АА, 2Аа, 1аа

серые черные

Родители гетерозиготны по гену, определяющему окраску тела (Аа), в потомстве идет расщепление по генотипу 1 (АА): 2 (Аа): 1 (аа), а по фенотипу 3 (А_, серые) : 1 (аа, черные).

У редиса корнеплод может быть длинным, круглым и овальным. При скрещивании растений с овальными корнеплодами между собой было получено 121 растение с длинными корнеплодами, 119 - с круглыми, 243 - с овальными. Какое может быть потомство при самоопылении растений, которые имеют 1) длинный корнеплод; 2) круглый корнеплод



В связи с тем, что при скрещивании фенотипически одинаковых растений (с овальным корнеплодом) в потомстве получено расщепление, близкое к 1 (длинный корнеплод): 2 (овальный корнеплод) :1 (круглый корнеплод), то, во-первых, скрещиваемые родительские растения согласно второму закону Менделя (закону расщепления признаков) являются гетерозиготными, а, во-вторых, удлиненная форма корнеплода не полностью доминирует над круглой (неполное доминирование признака или промежуточный характер наследования), поскольку расщепление по фенотипу соответствует расщеплению по генотипу. В связи с тем, что 50% особей в потомстве имели овальный корнеплод, то гетерозиготные особи характеризуются овальной формой корнеплода.

Пусть АА – удлиненный корнеплод, Аа – овальный корнеплод, аа – круглый корнеплод.

Тогда схема наследования при скрещивании особей с овальным корнеплодом будет такой:

овальный овальный

F 1 1АА, 2Аа, 1аа

удлиненный овальный круглый

1) При самоопылении растений с длинным корнеплодом (АА) получим растения только с длинным корнеплодом:

длинный длинный

2) при самоопылении растений с круглым корнеплодом (аа) получим растения только с круглым корнеплодом:

круглый круглый

50. Какая площадь морской акватории (в м 2) необходима для того, чтобы прокормить одного тюленя массой 300 кг (на долю воды приходится 60%) в цепи питания: планктон - рыба - тюлень. Биопродуктивность планктона составляет 600 г/м 2

% сухого остатка в теле щуки = 100-60 = 40%

m сухого остатка в теле щуки = 300*40/100 = 120 кг



планктон ® рыба ® тюлень

12000 кг 1200 кг 120 кг

Исходя из продуктивности планктона (0,6 кг/м 2) определим площадь акватории моря, необходимую для прокормления тюленя:

0,6 кг ® 1 м 2

120 кг ® х м 2

Площадь поля = 12000 / 0,6 = 20000 м 2

Таким образом, для прокормления щуки необходима площадь акватории моря 20000 м 2

Фрагмент молекулы иРНК имеет следующую последовательность нуклеотидов: УГЦ-ААГ-ЦУГ-УУУ-АУА. Определите последовательность аминокислот в молекуле белка. Для этого используйте таблицу генетического кода

иРНК: УГЦ-ААГ-ЦУГ-УУУ-АУА

пептид: цистеин – лизин – лейцин – фенилаланин – изолейцин

Трансляция

Ответ: цистеин – лизин – лейцин – фенилаланин – изолейцин.

52. Молекула зрелой иРНК состоит из 240 нуклеотидов. Сколько нуклеотидов содержится в ДНК, которая была матрицей для синтеза этой молекулы иРНК, если на долю интронов приходится 20%?

% нуклеотидов экзонов в незрелой иРНК= 100-20 = 80%

Количество нуклеотидов в незрелой иРНК = 240*100/80 = 300

Количество нуклеотидов в участке ДНК, с которого скопирована данная иРНК = 300*2 = 600 (поскольку ДНК – двухцепочечная)

Экзоны – кодирующие участки генов, интроны – некодирующие полинуклеотидные последовательности в генах, они могут быть длиннее экзонов и предположительно выполняют регуляторную и структурную функции. В ходе созревания РНК из нее вырезаются некодирующие участки, скопированные с интронов (процессинг), а кодирующие, скопированные с экзонов, соединяются в нужной последовательности (сплайсинг).

Ответ: количество нуклеотидов в ДНК = 600.

При скрещивании гетерозиготных красноплодных томатов с желтоплодными получено 352 растения, имеющих красные плоды. Остальные растения имели желтые плоды. Определите, сколько растений имело желтую окраску? (красный цвет плодов - признак доминантный)

Красный цвет плодов у томатов является доминирующим. Пусть А – красный цвет плодов, а – желтый цвет плодов.

красные желтые

красные желтые

При скрещивании гетерозиготной особи с рецессивной гомозиготой (анализирующее скрещивание) расщепление в F 1 составляет 1:1 (50% гетерозиготы, у которых проявляется доминантный признак, и 50% рецессивные гомозиготы, у которых проявляется рецессивный признак). Следовательно, желтополодных растений будет примерно столько же, сколько и красноплодных (т.е. 352 растения).

Ответ: желтую окраску имело примерно 352 растения.

Гипоплазия зубной эмали наследуется как сцепленный с Х-хромосомой доминантный признак, шестипалость - как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия зубной эмали, родился пятипалый здоровый мальчик. Укажите генотипы всех членов семьи и составьте схему наследования

Пусть Х А – гипоплазия зубной эмали, Х а – нормальная эмаль, В – шестипалость, b – пятипалость (норма)

Генотипы родителей и ребенка: мать – Х - Х - Вb (шестипалая), отец – Х А У_ _ (гипоплазия эмали), сын – Х а Уbb

Р Х - Х - Вb х Х А У_ _

Шестипалая гипоплазия эмали

пятипалый, нормальная эмаль

В связи с тем, что у данных родителей родился пятипалый здоровый мальчик, то генотипы матери и отца будут следующими: Х - Х а Вb (мать), Х А У_ b (отец).

В связи с тем, что в условии задачи ничего не сказано о состоянии эмали у матери и количестве пальцев у отца, то возможно 2 варианта генотипов родителей и соответственно 2 схемы наследования:

1) Р Х а Х а Вb х Х А Уbb 2) Р Х А Х а Вb х Х А УВb

…..норм.эмаль, гипоплазия эмали гипоплазия эмали гипоплазия эмали

…….шестипалость пятипалость шестипалость ……. шестипалость

F 1 Х а Уbb F 1 Х а Уbb

норм.эмаль норм.эмаль

пятипалость пятипалость

55. Определите площадь акватории реки, которая необходима для того, чтобы прокормить судака массой 1 кг (40% сухого вещества). В цепи питания: фитопланктон -травоядная рыба - судак. Продуктивность фитопланктона составляет 500 г/м 2

% сухого остатка в теле судака = 100-60 = 40%

m сухого остатка в теле судака = 1*40/100 = 0,4 кг

Согласно правилу экологической пирамиды Чарлза Элтона суммарная биомасса организмов, заключенная в ней энергия и численность особей уменьшается по меревосхождения от низшего трофического уровня к высшему; при этом на каждый последующий уровень переходит приблизительно 10% биомассы и связанной с ней энергии. В связи с этим биомасса различных звеньев в цепи питания будет составлять:

фитопланктон ® травоядная рыба ® судак

40 кг 4 кг 0,4 кг

Исходя из продуктивности фитопланктона (0,5 кг/м 2) определим площадь акватории моря, необходимую для прокормления судака:

0,5 кг ® 1 м 2

40 кг ® х м 2

Площадь поля = 40 / 0,5 = 80 м 2

Таким образом, для прокормления судака необходима площадь акватории моря 80 м 2

56. Участок молекулы белка имеет следующую последовательность аминокислот: аспарагин-изолейцин-пролин-триптофан-лизин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК (используйте таблицу генетического кода)

пептид: аспарагин-изолейцин-пролин-триптофан-лизин

иРНК: ААУ – АУУ – ЦЦУ – УГГ – ААА

ДНК (инф.нить): ТТА – ТАА – ГГА – АЦЦ – ТТТ

ДНК (2-я нить): ААТ – АТТ – ЦЦТ – ТГГ – ААА

Транскрипция – процесс синтеза иРНК на матрице ДНК, осуществляется по принципу комплементарности нуклеиновых полипептидов : аденин нуклеотида комплиментарен (образует водородные связи) тимину нуклеотида в ДНК или урацилу нуклеотида в РНК, цитозин нуклеотида комплементарен гуанину нуклеотида в ДНК или РНК.

Трансляция – процесс синтеза белка на матрице иРНК, осуществляется на рибосомах с участием тРНК, каждая из которых доставляет для синтеза белка определенную аминокислоту. тРНК представляет собой триплет нуклеотидов (антикодон), который по принципу комплементарности взаимодействует с определенным триплетом (кодоном) иРНК.

Воссозданный на основании пептида и соответственно зрелой молекулы иРНК фрагмент молекулы ДНК не отражает наличие интронов (некодирующих фрагментов), а включает только кодирующие участки (экзоны).

Молекула ДНК состоит из 3600 нуклеотидов. Определите число полных спиральных витков в данной молекуле. Определите количество т-РНК, которые примут участие в биосинтезе белка, закодированном в этом гене

Количество пар нуклеотидов в молекуле ДНК = 3600/2 = 1800

Количество полных спиральных витков в данном фрагменте ДНК = 1800/10 = 180 (поскольку каждый виток двойной спирали ДНК включает 10 пар нуклеотидов)

Количество нуклеотидов в одной цепи ДНК = 3600/2 = 1800 (поскольку ДНК – двухцепочечна)

Количество аминокислот, закодированных в этом фрагменте ДНК (без учета возможного наличия в нем интронов) = 1800/3 = 600 (поскольку каждая аминокислота кодируется триплетом нуклеотидов)

Количество молекул тРНК, принимающих участие в биосинтезе данного белка = 600, поскольку каждая аминокислота доставляется определенной молекулой тРНК.

Транскрипция – процесс синтеза иРНК на матрице ДНК, осуществляется по принципу комплементарности нуклеиновых полипептидов : аденин нуклеотида комплиментарен (образует водородные связи) тимину нуклеотида в ДНК или урацилу нуклеотида в РНК, цитозин нуклеотида комплементарен гуанину нуклеотида в ДНК или РНК.

Трансляция – процесс синтеза белка на матрице иРНК, осуществляется на рибосомах с участием тРНК, каждая из которых доставляет для синтеза белка определенную аминокислоту. тРНК представляет собой триплет нуклеотидов (антикодон), который по принципу комплементарности взаимодействует с определенным триплетом (кодоном) иРНК.

При решении данной задачи не возможно было учесть возможное наличие интронных (некодирующих) участков в молекуле ДНК, в результате чего полученное количество аминокислот белка, закодированного в данном фрагменте ДНК, и соответственно количество тРНК, необходимых для синтеза этого белка, может оказаться завышенным.

Ответ: количество полных витков в молекуле ДНК = 180; количество тРНК = 600.

В результате скрещиваний двух животных с волнистой шерстью между собой получено 20 потомков, 15 из них с волнистой шестью, и 5 с гладкой шерстью. Сколько среди потомков гетерозигот? Напишите схему наследования

В связи с тем, что при скрещивании фенотипически одинаковых животных между собой в F1 получено расщепление 3: 1 (15 животных с волнистой шерстью и 5 – с гладкой), то согласно второму закону Менделя (или закону расщепления признаков) скрещиваемые родители были гетерозиготными и волнистая шерсть доминирует над гладкой. Пусть А – волнистая шерсть, а – гладкая шерсть.

Схема наследования:

волнистые волнистые

G А, а …….А, а

F 1 АА, 2Аа, аа

волнистые, гладкие

% гетерозиготных потомков = 50% от общего количество потомков или 2/3 от особей с волнистой шерстью, количество гетерозиготных потомков = 15*2/3 = 10.

У бабочек женский пол определяется ХУ-хромосомами, а мужской - ХХ- хромосомами. Признак «цвет кокона» сцеплен с полом. Белый цвет кокона - это признак доминантный. Каким будет потомство от скрещивания белококонной самки с темнококонным самцом?

Пусть Х А – белый кокон, тогда Х а – темный кокон

Р Х А Y х Х а Х а

белый кокон темный кокон

самка самец

G Х А, Y Х а

F 1 Х А Х а, Х а Y

белый кокон темный кокон

самец самка

Все самцы в F 1 будут иметь белый кокон, а все самки – темный кокон. В целом расщепление без учета пола составит 1:1.

60. На основании правила экологической пирамиды определите, какая площадь биоценоза прокормит сову массой 2 кг в цепи питания зерно - мыши - сова. Количества мышей и количество сов. Продуктивность растительного биоценоза 400 г/м 2

m сухого остатка в теле совы = 2 кг

Согласно правилу экологической пирамиды Чарлза Элтона суммарная биомасса организмов, заключенная в ней энергия и численность особей уменьшается по меревосхождения от низшего трофического уровня к высшему; при этом на каждый последующий уровень переходит приблизительно 10% биомассы и связанной с ней энергии. В связи с этим биомасса различных звеньев в цепи питания будет составлять:

зерно ® мыши ® сова

200 кг 20 кг 2 кг

Исходя из продуктивности биоценоза (0,4 кг/м 2) определим площадь биоценоза, необходимую для прокормления совы:

0,4 кг ® 1 м 2

200 кг ® х м 2

Площадь поля = 200 / 0,4 = 500 м 2

Таким образом, для прокормления совы необходима площадь биоценоза 500 м 2

Слабые связи , изображенные в виде пунктирных поперечных линий, соединяют цепи ДНК вместе. На рисунке видно, что каркас цепи ДНК состоит из чередующихся остатков фосфорной кислоты и дезоксирибозы, к которой сбоку присоединяются пуриновые и пиримидиновые основания. Слабые водородные связи (пунктирные линии) между пуриновыми и пиримидиновыми основаниями соединяют две цепи ДНК друг с другом. Здесь важно отметить следующее.

1. Каждая молекула пуринового основания аденина на одной цепи ДНК всегда связывается с молекулой пиримидинового основания тимина на другой цепи.
2. Каждая молекула пуринового основания гуанина всегда связывается с молекулой пиримидинового основания цитозина.

Водородные связи очень слабые, поэтому две цепи ДНК могут с легкостью отделяться одна от другой, что многократно повторяется в процессе функционирования ДНК в клетке.

Значение ДНК заключается в том, что она посредством так называемого генетического кода определяет синтез разнообразных клеточных белков. При расхождении двух цепей ДНК пуриновые и пиримидиновые основания оказываются обращенными в одну сторону. Именно эти боковые группировки и составляют основу генетического кода.

Двойная спираль ДНК. Двойной спиральный каркас молекулы представлен остатками фосфорной кислоты и молекулами дезоксирибозы.
Между двумя спиралями располагаются, соединяя их, пуриновые и пиримидиновые основания, составляющие генетический код.

Генетический код представляет собой последовательность триплетов азотистых оснований, в которой каждый триплет состоит из трех последовательных азотистых оснований, образующих кодон. Последовательность триплетов азотистых оснований в итоге определяет последовательность аминокислот в молекуле синтезируемого в клетке белка. Последовательность из трех этих триплетов отвечает за прикрепление к молекуле синтезируемого белка одной за другой трех аминокислот: пролина, серина и глутаминовой кислоты.

ДНК находится в клеточном ядре, а большинство клеточных реакций протекают в цитоплазме, поэтому должен существовать механизм, посредством которого гены могут контролировать эти реакции. Данный механизм заключается в том, что в клеточном ядре на основе ДНК синтезируется другая нуклеиновая кислота - РНК, которая также становится носителем генетического кода. Этот процесс получил название транскрипции. Через поры ядерной оболочки вновь синтезированная РНК переносится из ядра в цитоплазму, в которой на основе этой РНК происходит синтез белка.

Для синтеза РНК необходимо, чтобы две цепи ДНК на какое-то время разошлись, причем только одна из этих цепей будет использоваться в качестве матрицы для синтеза РНК. На основе каждого триплета ДНК образуется комплементарный триплет (кодон) РНК, последовательность которых, в свою очередь, определяет последовательность аминокислот в молекуле белка, синтезируемой в цитоплазме.

Основные структурные элементы ДНК . Основные структурные элементы РНК и ДНК почти одинаковы, за двумя исключениями: во-первых, вместо дезоксирибозы РНК содержит близкий по строению сахар - рибозу, имеющую дополнительный гидроксильный ион; во-вторых, вместо тимина в состав РНК входит другой пиримидин - урацил.

Образование нуклеотидов РНК . Образование нуклеотидов РНК из ее структурных элементов происходит точно так же, как образование нуклеотидов ДНК. В состав РНК также входят 4 нуклеотида, содержащие 4 азотистых основания: аденин, гуанин, цитозин и урацил. Еще раз подчеркнем, что вместо тимина РНК содержит урацил, а остальные азотистые основания у РНК и ДНК одинаковы.

Активация нуклеотидов РНК . На следующей стадии синтеза РНК происходит активация ее нуклеотидов под действием фермента РНК-полимеразы. Этот процесс заключается в присоединении к каждому нуклеотиду двух дополнительных фосфатных группировок с образованием трифосфата. Два фосфата присоединяются к нуклеотиду за счет образования макроэргинеских фосфатных связей с использованием энергии АТФ.
В результате активации каждый нуклеотид накапливает большое количество энергии, необходимой для присоединения его к растущей цепи РНК.

Основные структурные элементы ДНК. Дезоксиаденозинмонофосфат, один из нуклеотидов, составляющих ДНК.
Символическое обозначение четырех нуклеотидов, составляющих ДНК.
Каждый нуклеотид состоит из остатка фосфорной кислоты (Ф), дезоксирибозы (Д)
и одного из четырех азотистых оснований: аденина (А), тимина (Т), гуанина (Г) или цитозина (Ц).

Схема расположения дезоксирибонуклеотидов в двойной цепи ДНК.

Лекция № 2. Репликация ДНК

Согласно гипотезе Дж. Уотсона и Ф. Крика, каждая из цепей двойной спирали ДНК служит матрицей для репликации комплементарных дочерних цепей. При этом образуются две дочерние двухцепочечные молекулы ДНК, идентичные родительской, причем каждая из этих молекул содержит одну неизменную цепь родительской ДНК. Этот механизм репликации ДНК, названный полуконсервативным, был подтвержден в опытах на клетках Е. соli в 1957 г. М. Мезелсоном и Ф. Сталем. Исключены консервативный способ репликации, при котором одна дочерняя ДНК должна содержать обе исходные цепи, а вторая состоять из двух новосинтезированных цепей, и дисперсивный механизм репликации, при котором каждая дочерняя цепь ДНК состоит из участков родительской и новообразованной ДНК (рис.1, слайд 1).

DIV_ADBLOCK489">


3. процесс является симметричным: матрицами служат обе цепи родительской ДНК; также его можно назвать полуконсервативным;

4. удлинение цепи ДНК (или отдельного ее фрагмента) всегда происходит в направлении от 5’-конца к 3’-концу. Это означает, что очередной новый нуклеотид присоединяется к 3’ –концу растущей цепи. Кроме того, поскольку в любой молекуле ДНК комплементарные цепи антипараллелльны, то и растущая цепь антипараллельна матричной цепи. Следовательно, последняя считывается в направлении 3’→5’ (слайд 2 и 3).

5. неспаренная цепь ДНК, которая служит матрицей, и цепь-затравка, к которой присоединяются новые нуклеотиды;

Процесс репликации осуществляется сложным ферментным комплексом. При репликации ДНК у эукариот на каждой хромосоме работает не один, а сразу большое количество таких комплексов. Т. о. на хромосоме имеется много точек начала репликации ДНК. И удвоение ДНК совершается не последовательно от одного конца до другого, а одновременно во многих местах сразу, что значительно сокращает продолжительность процесса (слайд 5). Репликация распространяется в обе стороны от каждой точки начала репликации, при этом образуются репликативные вилки. Между вилками появляется постепенно расширяющееся «вздутие» или «глазок» - это уже реплицированные отделы ДНК. Соседние «вздутия» в конечном счете сливаются и ДНК оказывается удвоенной.

Ферментный комплекс работает так, что одна из двух синтезируемых им цепей растет с некоторым опережением по сравнению с другой цепью. Соответственно, первая цепь называется лидирующей, а вторая – запаздывающей. Лидирующая цепь образуется ферментным комлексом в виде непрерывного очень длинного фрагмента. Его длина (например для сперматогоний) 1 600 000 нуклеотидовю запаздывающая же цепь образуется в виде серии коротких фрагментов – примерно по 1 500 нуклеотидов. Это т. н. фрагменты Оказаки.

Образованию каждого фрагмента ДНК предшествует синтез короткой последовательности (из 10-15 нуклеотидов) РНК-затравки. Дело в том, что ДНК-полимераза (основной фермент синтеза ДНК) не может начинать процесс «с нуля», т. е. в отсутствие олигонуклеотидной прследовательности. А вот фермент синтеза РНК (РНК-полимераза) такой способность обладает; и этот фермент и начинает образование каждого нового фрагмента ДНК.

Ферменты и белки, участвующие в синтезе ДНК: ДНК-полимеразы, топоизомеразы (гиразы), хеликазы и лигазы, праймаза, ssb-белки. Весь комплекс, состоящий более чем из 20 репликативных ферментов и факторов, называется ДНК-репликазной системой, или реплисомой.

ДНК-зависимые ДНК-полимеразы – ключевые ферменты репликативного процесса, использующие принцип комплементарности для наращивания полинуклеотидных цепей. У прокариот есть три ДНК-полимеразы: Pol I, Pol II и Pol III. В репликации ДНК участвуют Pol I и Pol III. ДНК-полимераза I обладает полимеразной и (3’→5’, 5’→3’)-экзонуклеазной активностью, участвует в удалении праймера, застройке бреши, образовавшейся на месте праймера, коррекции ошибок при репликации, а также в репарации ДНК. В клетках E. coli насчитывается около 400 молекул этого фермента. Pol III осуществляет репаративный синтез ДНК.

Основным ферментом, катализирующим биосинтез новообразованной ДНК у прокариот, является ДНК-полимераза III (Pol III). Она обладает полимеразной и 3’→5’- экзонуклеазной активностью; синтезирует лидирующую и отстающую цепь ДНК, обладает корректорской функцией. В клетке содержится 10-20 молекул Pol III, она обладает повышенным сродством к матрице и обеспечивает высокую эффективность копирования.


Активация" href="/text/category/aktivatciya/" rel="bookmark">активации ДНК-полимеразы.

Возникает вопрос, зачем ДНК-полимеразе III 2 типа активности: полимеразная и 3¢→5¢ экзонуклеазная? Дело в том что, точность копирования при репликации ДНК очень высока - на миллиард пар оснований приходится приблизительно одна ошибка. Однако в нормальной ДНК возникают на короткое время редкие таутомерные формы всех четырех оснований. Эти формы образуют неправильные пары. Например, таутомерная форма цитозина спаривается с аденином вместо гуанина, в результате чего возникает мутация (слайд). Значит, высокая точность репликации определяется механизмом, который осуществляет коррекцию, т. е. устранение подобных ошибок. Вот здесь-то и используется 3¢→5¢-экзонуклеазная активность ДНК-полимеразы III. Вступив в контакт с молекулой ДНК, имеющей неспаренный с аденином цитозин, ДНК-полимераза III отщепляет (путем гидролиза) любые неспаренные нуклеотиды.

Имеются доказательства того, что ДНК-полимераза III катализирует сопряженный синтез ведущей (лидирующей) и отстающей цепей ДНК при репликации. ДНК-полимеразы нуждаются в затравке (праймере), поскольку они могут присоединять дезоксирибонуклеотиды только к 3’-ОН-группе. На лидирующей цепи существует 1 праймер, а на отстающей их больше одного. ДНК-полимераза на отстающей цепи синтезирует короткий фрагмент за 4 с, а затем переключается на синтез другого (следующего) фрагмента на участке матричной цепи, расположенном на некотором расстоянии от первого (слайд).

Для каждого короткого фрагмента ДНК-полимеразе требуется затравка (праймер) со спаренным 3¢-концом. Праймеры синтезируются ферментом ДНК-праймазой, которая формирует из рибонуклеозидтрифосфатов короткие РНК-затравки (праймеры), состоящие у эукариот примерно из 10 нуклеотидов (слайд). Затравки синтезируются с определенными интервалами на матрице отстающей цепи, далее их наращивает ДНК-полимераза, начиная всякий раз новый фрагмент Оказаки. Молекула ДНК-полимеразы продолжает наращивание до тех пор, пока она не достигнет затравки (праймера). Для того чтобы обеспечить непрерывность цепи ДНК из многих таких фрагментов, в действие вступает система репарации ДНК, которая удаляет РНК-затравку и заменяет ее на ДНК. Завершает процесс лигаза, соединяющая3¢-конец нового фрагмента с 5¢-концом предыдущего фрагмента.

Двойная цепь ДНК должна расплетаться по ходу продвижения репликационной вилки, для того чтобы поступающие дезоксирибонуклеозидтрифосфаты могли спариваться с родительской матричной цепью. Однако в обычных условиях двойная спираль ДНК стабильна; спаренные основания соединены настолько прочно, что для разделения двух цепей ДНК в пробирке требуются температуры, приближающиеся к точке кипения воды (90°С). Для того, чтобы двойная спираль раскрылась, необходимы два типа белков: геликазы и SSB-белки.

Белки, подготавливающие родительскую ДНК к репликации

а) Точки начала репликации на молекуле ДНК имеют специфическую последовательность оснований, богатую парами А-Т.

Процесс начинается с того, что с каждой такой последовательностью связывается несколько молекул специальных узнающих белков. В случае бактерий такие белки называются DnаА (как первые белки, инициирующие репликацию). (Поэтому на рис. узнающий белок обозначен буквой А.)

Можно представить различные причины, по которым становится возможным взаимодействие узнающих белков с точками начала репликации. Среди этих причин:

- само появление в ядре узнающих белков или их определенная модификация;

- освобождение точек начала репликации от неких блокирующих элементов;

- появление в ядре каких-то третьих факторов, необходимых для рассматриваемого взаимодействия; и т. д.

Имеющиеся данные свидетельствуют в пользу первого варианта. Но в любом случае ясно, что здесь - одно из ключевых звеньев, контролирующих начало репликации.

Узнающие белки, обеспечив связывание ДНК-реплицирующего комплекса, видимо, далее не перемещаются вместе с ним по ДНК.

б) Одним же из «первопроходцев» выступает фермент геликаза (на рис. обозначен буквой Г). Он обеспечивает расплетение в районе репликативной вилки двойной спирали родительской ДНК: последняя разъединяется на одноцепочечные участки.

На это затрачивается энергия гидролиза АТФ - по 2 молекулы АТФ на разделение 1 пары нуклеотидов.

Видимо, одновременно происходит также вытеснение данного участка ДНК из связи с гистонами и другими хромосомными белками.

в) Однако расплетение спирали на некотором участке создает суперспирализацию перед этим участком.

Дело в том, что каждая молекула ДНК в целом ряде мест зафиксирована на ядерном матриксе. Поэтому она не может свободно вращаться при расплетении какого-то своего участка. Это и вызывает суперспирализацию, а с ней - образование структурного напряжения, блокирующего дальнейшее расплетение двойной спирали.

Проблема решается с помощью ферментов топоизомераз (И на рис.). Очевидно, они функционируют на еще нерасплетенном участке ДНК, т. е. там, где возникает суперспирализация. Топоизомеразы участвуют в процессе раскручивания двойной спирали в репликативной вилке. Эти ферменты изменяют степень сверхспирализации и приводят к образованию «шарнира», который создает условия для непрерывного движения репликативной вилки. Идентифицированы два типа топоизомераз: топоизомеразы I типа надрезают одну из двух цепей ДНК, в результате чего концевой участок двойной спирали может повернуться вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Топоизомеразы типа II вносят временные разрывы в обе комплементарные цепи, изменяют степень сверхспирализации, а затем соединяют разорванные концы. Топоизомеразы помогают геликазе раскручивать ДНК для ее репликации. Имеется также топоизомераза II (бактериальная топоизомераза II называется гиразой). Этот фермент разрывает сразу обо цепи ДНК, опять-таки перенося соответствующие концы на себя. Это еще более эффективно позволяет решать проблему супервитков при расплетении ДНК.

Топоизомераза I разрывает одну из цепей ДНК, перенося ее проксимальный конец на себя (рис.). Это позволяет дистальному участку ДНК (от места расплетения до места разрыва) вращаться вокруг соответствующей связи целой цепи, что и предупреждает образование супервитков. Впоследствии концы разорванной цепи вновь замыкаются: один из них переносится с фермента на второй конец. Так что процесс разрыва цепи топоизомеразой легко обратим.

Хеликазы (от лат. helix - спираль, белок dnaB ), осуществляют образование и продвижение вдоль спирали ДНК репликативной вилки – участка молекулы с расплетенными цепями. Эти ферменты для расплетения цепей используют энергию, высвобождающуюся при гидролизе АТР. Хеликазы действуют в комплексе с ssb -белками, которые связываются с одноцепочечными участками молекулы и тем самым стабилизируют расплетенный дуплекс.

г) Итак, «поддерживаемый» топоизомеразами, фермент геликаза осуществляет локальное расплетение двойной спирали ДНК на две отдельные нити.

С каждой из этих нитей сразу связываются специальные SSB-белки. Последние обладают повышенным сродством к одноцепочечным участкам ДНК и стабилизируют их в таком состоянии.

Заметим: тем самым данные белки отличаются от гистонов, которые связываются в первую очередь с двухцепочечными участками ДНК.

Ферменты полимеризации

а) Специальный белок выполняет функции активатора праймазы (АП на рис.). После чего праймаза (П), используя в качестве матрицы соответствующий участок одноцепочечной ДНК, синтезирует короткую РНК-затравку, или праймер.

б) Далее в дело вступают ДНК-полимеразы. У эукариот известно 5 разных ДНК-полимераз. Из них β- и ε-полимеразы участвуют в репарации ДНК, γ-полимераза - в репликации митохондриальной ДНК, а α- и δ-полимеразы - в репликации ядерной ДНК.

При этом, по некоторым предположениям, α-полимераза связана и с праймазой, и с δ-полимеразой, а последняя, в свою очередь, - с белком РСNА (Р на рис.).

Данный белок выполняет роль «прищепки», которая крепит комплекс полимераз к реплицируемой цепи ДНК. Считается, что в «застегнутом» состоянии он, как кольцо, обхватывает цепь ДНК (рис.). Тем самым предупреждается преждевременная диссоциация полимераз от данной цепи.

Понятно, что ДНК-полимеразы осуществляют последовательное включение дезоксирибонуклеотидов в строящуюся цепь ДНК - комплементарно нуклотидам родительской цепи.

Но, кроме того, эти ферменты, видимо, имеют и ряд других важных активностей. Правда, для эукарио-тических ДНК-полимераз распределение данных активностей еще не вполне ясно. Поэтому приведем сведения относительно аналогичных бактериальных ферментов.

У бактерий основную «работу» по репликации ДНК выполняет ДНК-полимераза III, имеющая структуру димера. Именно с ней связан «зажим» типа белка РСNА.

Так вот, помимо ДНК-полимеразной активности, ДНК-полимераза III обладает еще одной - 3"→5"-экзонуклеазной. Последняя срабатывает в тех случаях, когда допущена ошибка и в строящуюся цепь включен «неправильный» нуклеотид. Тогда, распознав дефект спаривания оснований, фермент отщепляет с растущего (3"-) конца последний нуклеотид, после чего опять начинает работать как ДНК-полимераза.

Таким образом, происходит постоянный контроль системы за результатом своей деятельности.

в) Как мы знаем, новые цепи ДНК образуются вначале в виде фрагментов - относительно коротких (фрагментов Оказаки) и весьма длинных. И каждый из них начинается с праймерной РНК.

Когда ферментный комплекс, движущийся по родительской цепи, доходит до РНК-затравки предыдущего фрагмента, «зажим», связывающий ДНК-полимеразу III с родительской цепью ДНК, раскрывается, и данный фермент прекращает работу. В действие вступает ДНК-полимераза I (речь по-прежнему идет о бактериальных ферментах). Она присоединяется к З"-концу растущего фрагмента (рис. 1.14). При этом фермент уже не имеет устойчивой связи с данным фрагментом и с родительской цепью, но зато обладает даже не двумя, а тремя активностями.

Первая из них - «передняя», или 5"→3"-экзонуклеазная активность: последовательное отщепление нуклеотидов с 5"-конца РНК-затравки предшествующего фрагмента.

Концу «своего» фрагмента (ДНК-полимеразная активность).

И, наконец, подобно ДНК-полимеразе III, он «не забывает» проверять и при необходимости корректировать свою деятельность - с помощью «задней», или 3"→5"-экзонуклеазной, активности, направленной на удлиняемый фрагмент.

Функция ДНК-полимеразы I исчерпывается, когда растущий фрагмент вплотную доходит до дезоксирибонуклеотидов предыдущего фрагмента.

Что касается эукариот, то здесь функциональным аналогом бактериальной ДНК-полимеразы III является, видимо, комплекс α- и δ-ДНК-полимераз; при этом корректирующая 3"→5"-экзонуклеазная активность присуща δ-ДНК-полимеразе.

Функции ДНК-полимеразы I тоже распределены между двумя ферментами: 5"→3"-экзонуклеазная активность (удаление РНК-затравки) осуществляется, вероятно, специальной нуклеазой (Н на рис. 1.11), а ДНК-полимеразная активность (застраивание «брешей») - ДНК-полимеразой β (той, что участвует и в репарации).

г) Говоря о ферментах полимеризации, нельзя не сказать о самой трудной из связанных с ними проблем. Речь идет о синтезе запаздывающей цепи ДНК: как мы знаем, направление этого синтеза противоположно общему направлению распространения репликативной вилки.

Имеются, по крайней мере, две гипотезы, объясняющее это противоречие.

По одной из них (рис. 1.15, А), ферментный комплекс периодически прекращает образование лидирующей цепи, переходит на вторую родительскую цепь и синтезирует очередной фрагмент Оказаки запаздывающей цепи. Затем вновь возвращается на первую родительскую цепь и продолжает удлинять лидирующую цепь строящейся ДНК.

По другой версии (рис. 1.15, Б), на второй цепи родительской ДНК (матрице запаздывающей цепи) в процессе репликации формируется петля. Поэтому направление образования фрагмента Оказаки на внутреннем участке петли начинает совпадать с направлением движения полимеразного комплекса. Тогда последний может практически одновременно образовывать сразу обе цепи ДНК - и лидирующую, и запаздывающую.

Возможно, с этим связан тот факт, что бактериальная ДНК-полимераза III является димером, а у эукариот α- и δ-ДНК-полимеразы образуют единый комплекс. Но и при таком механизме запаздывающая цепь, как нетрудно убедиться, не может образовываться непрерывно, а только в виде фрагментов.

Ферменты, завершающие репликацию ДНК

В результате действия всех предыдущих ферментов каждая иовосинтезированная цепь оказывается состоящей из фрагментов, вплотную примыкающих друг к другу.

«Сшивание» соседних фрагментов осуществляется ДНК-лигазой (Л на рис. 1.11). Как и ДНК-полимеразы, этот фермент образует межнуклеотидную (фосфодиэфирную) связь.

Но если в полимеразной реакции одним из участников является свободный дНТФ (дезоксирибонуклеозидтрифосфат), то в ДНК-лигазной реакции оба участника - концевые дНМФ (дезоксирибонуклеозидмонофосфаты) в составе «сшиваемых» фрагментов.

По этой причине энергетика реакции иная, и требуется сопряженный гидролиз молекулы АТФ.

Заметим также, что ДНК-лигаза «сшивает» только такие одноцепочечные фрагменты, которые находятся в составе двухцепочечной ДНК.

Но и это еще не все. Молекула ДНК окажется реплицированной не полностью, если не произойдет специальный процесс репликации ее концов, или теломерных участков.

В этом процессе ключевую роль играет фермент теломераза.

Праймазы. Репликация ДНК требует РНК-праймеров. РНК-праймеры синтезируются праймазой (рис. 29.3), кодируемой dnaG геном.

Из рис 29.3 видно, что праймаза состоит из трех доменов:

■ – N-терминальный домен (110 аминокислот), содержит ДНК-связывающий мотив - цинковый палец;

■ – коровый (центральный) домен (322 аминокислоты) содержит каталитический центр;

■ – С-терминальный домен (151 аминокислота), взаимодействующий с dnaB.

Праймеры, синтезируемые праймазой E. coli, начинаются с последовательности pppAG на 5´-конце и состоят примерно из 10-12 нуклеотидов. Праймазы различаются как по структуре, так и по специфичности действия.

ДНК-лигазы катализируют процессы воссоединения фрагментов цепей ДНК, участвуя в образовании ковалентных связей между 5_-Р - и 3_-ОН-группами соседних дезоксирибонуклеотидов. Эти ферменты также используют энергию макроэргических связей, образующуюся при гидролизе АТР.

Репликация ДНК идет в три стадии: инициация, элонгация и терминация .

У бактерий инициация репликации ДНК начинается в уникальном сайте хромосомы, точке репликации – oriC, из которой репликация осуществляется двунаправлено до точки окончания (terminus). В результате образуются две репликативные вилки, которые продвигаются в противоположных направлениях, т. е. обе цепи реплицируются одновременно.

Инициаторный белок dnaA связывается с повторяющимися сайтами связывания на oriC , образуя специализированную нуклеопротеиновую структуру. Это приводит к локальному расхождению АТ-богатой последовательности oriC , которая служит зоной связывания для репликативной хеликазы (dnaB) , и белка dna C /

Далее dnaB активируется удалением dnaC , движется на определенное расстояние в направлении 5_→3_ и взаимодействует с праймазой dnaG . Праймаза синтезирует короткие РНК-праймеры для холофермента ДНК-полимеразы Ш. В месте инициации образуется промежуточный комплекс, состоящий по меньшей мере из пяти белков. Один из них – белок dnaB – может передвигаться вдоль ДНК, используя энергию гидролиза АТР, а также служит сигналом для активации праймазы (рис. 29.5).

Праймаза является компонентом праймосомы, состоящей из нескольких различных субъединиц. В состав праймосомы входит также комплекс белков DnaВ и DnaС , который вблизи репликационной вилки периодически участвует в формировании специфической вторичной структуры ДНК, подходящей для узнавания праймазой.

Инициация репликации ДНК заканчивается образованием репликативной вилки и синтезом РНК-затравки на лидирующей цепи ДНК (рис.29.5) благодаря формированию репликационного комплекса (рис.29.6).

В процессе элонгации происходит наращивание дочерних полинуклеотидных цепей ДНК. Каждая репликативная вилка включает, по крайней мере, две молекулы ДНК-полимеразы III, ассоциированные с несколькими вспомогательными белками. К последним относятся ДНК-топоизомеразы (гиразы), которые раскручивают плотно свернутую двойную спираль ДНК, и хеликазы, которые расплетают двухтяжевую ДНК на две цепи.

Ведущая цепь ДНК реплицируется непрерывно в направлении, совпадающем с движением репликативной вилки. Отстающая цепь считывается в направлении, противоположном движению репликативной вилки. Преодоление антипараллельности цепей ДНК при репликации, возможно, достигается путем образования петельной структуры (рис. 29.7).

Вначале на отстающей цепи синтезируются короткие фрагменты новой цепи ДНК, так называемые фрагменты Оказаки, названные так по имени их первооткрывателя. Каждый фрагмент начинается с короткой РНК-затравки (праймера), необходимой для функционирования ДНК-полимеразы. ДНК-полимераза III достраивает этот праймер до фрагмента ДНК длиной 1000-2000 дезоксинуклеотидных звеньев.


Зацепления двух цепей ДНК - процесс образования зацеплений цепей ДНК при ее циклизации . При замыкании пары или большего числа полимерных цепей они могут образовывать зацепления различных типов. В частности, зацепление образуют нити двойной спирали в кольцевой замкнутой форме ДНК (здесь двойная спираль ДНК будет рассматриваться, в основном, как единая полимерная цепь). Зацепленные молекулы ДНК довольно часто встречаются в природе и могут быть получены в лабораторных условиях. Зацепления двух цепей имеют, вообще говоря, бесконечно много топологически неэквивалентных типов. Понятие порядка зацепления однозначно характеризует только зацепления определенного класса, образующиеся в кольцевых замкнутых ДНК. Общая картина выглядит значительно сложнее.

При случайной циклизации полимерной цепи в растворе она может оказаться в различных топологических состояниях. В случае изолированных цепей, т.е. без учета образующихся зацеплений, этот вопрос о вероятности этих топологических состояний сводится к вероятности образования различных узлов при случайном замыкании. Если же учитывать вероятность зацеплений, следует прежде всего рассмотреть вопрос о вероятности образования зацепленного состояния (или незацепленного состояния) при случайном замыкании двух цепей с заданным расстоянием между их центрами масс, R ( Klenin K.V. ea, 1988 , Frank-Kamenetskii M.D. ea, 1975 , Вологодский А.В. и др., 1974a и Iwata K., 1983). Результаты таких расчетов для модели бесконечно тонкой цепи ( Klenin K.V. ea, 1988) приведены на . Различные кривые соответствуют разному числу сегментов в каждой из цепей (обе цепи предполагаются состоящими из одинакового числа сегментов): 1 - 20 сегментов, 2 - 40, 3 - 80 сегментов. Значительная вероятность образования зацеплений при малых R означает, что число состояний системы из двух незацепленных цепей существенно уменьшается при их сближении. В результате раствор незацепленных бесконечно тонких кольцевых полимерных цепей не будет идеальным. В нем возникает отталкивание между цепями, имеющее энтропийную природу. В статистической механике такое отталкивание принято количественно характеризовать вторым вириальным коэффициентом B ( Ландау Л. и Лифшиц Е.М., 1964). Значения B для раствора незацепленных колец можно рассчитать на основании данных на Рис. Вероятность образования зацепления двух цепей . Эти значения (см. Рис. Расчет второго вириального коэффициента) оказываются близкими к величине B, отвечающей сферическим непроницаемым друг для друга частицам, имеющим радиус, равный среднеквадратичному радиусу инерции замкнутой полимерной цепи ( Klenin K.V. ea, 1988). Таким образом, даже идеальные бесконечно тонкие замкнутые цепи должны испытывать сильное взаимное отталкивание, которое целиком обусловлено топологическими ограничениями.

Катенаны, т.е. зацепления молекул ДНК, были обнаружены в некоторых клетках ( Clayton D.A. and Vinograd J., 1967 , Hudson B. and Vinograd J., 1967). Пример топологической структуры с зацеплениями представляют собой гигантские сети из зацепленных кольцевых ДНК кинетопластов (см. обзор Borst P. and Hoeijmakers J.H.J., 1979). Эти сети включают в себя десятки тыяч кольцевых молекул ДНК, структура большей части которых идентична.

Основными методами изучения топологии двунитевой ДНК являются электронная микроскопия и электрофорез в геле. На обычной электронно - микроскопической фотографии ДНК, однако, довольно трудно анализировать топологию молекул, так как трудно судить о том, какая из нитей в точках их пересечения на подложке идет выше, а какая ниже. В значительной мере эту трудность удалось впервые преодолеть за счет связывания двойной спирали с белком recA ( Krasnow M.A. ea, 1983). При этом нить ДНК утолщается настолько, что структура пересечений сегментов ДНК на фотографиях хорошо просматривается. С другой стороны, зацепленные молекулы ДНК отличаются по подвижности в геле от незацепленных молекул, что позволяет разделять их при электрофорезе (смотри Wasserman S.A. and Cozzarelli N.R., 1986). Этот метод требует, естественно, специальной калибровки, так как заранее нельзя сказать, какое положение в геле должна занимать та или иная топологическая структура относительно незаузленной кольцевой формы ДНК. В настоящее время, однако, уже накоплен достаточно большой экспериментальный материал о подвижности различных топологических структур относительно незаузленных топоизомеров исследуемой ДНК. Естественно, что при исследовании этим методом зацепленных молекул ДНК они должны содержать однонитевые разрывы, так как иначе подвижность будет зависеть и от порядка зацепления нитей двойной спирали.