Роль сил трения кратко. «Сила трения в нашей жизни

МБОУ Грузиновская СОШ

Исследовательская работа

Трение и его значение в жизни человека

Выполнил: учащийся 7 класса

Тришечкин Дмитрий

Руководитель:

Учитель физики

Петрова Татьяна Ивановна

Грузинов, Морозовский район

Ростовской области

20142015 год

Содержание

Введение………………………………………………………………………………….. 3 - 4

Виды силы трения……………………………………………………………… 4 - 6 Использование трения человеком ………………………………………… 6 - 11

Практическая часть……………………………………………………………… 11 - 29

Зависимость силы трения скольжения от нагрузки ……………………………… 12 - 15 Зависимость силы трения от площади соприкосновения трущихся поверхностей:………………………………………………. 15 -18

Зависимость силы трения скольжения от качества обработанной поверхности……………………………………………….. 18 - 19

Зависимость силы трения качения от материала из которого изготовлены трущиеся тела……………. 19 - 21

Вычисление коэффициента трения скольжения для следующих материалов:

дерево по дереву, дерево по металлу, дерево по пластику…………………………………………………………… 21 - 22

Сравнение силы трения скольжения и силы трения качения……………………………………………. 23 - 25

Определение коэффициента трения скольжения школьной обуви о различные поверхности.………………………………………………… 25 - 29

……………………………………………………………

Заключение…………………………………………………………………… 29

Список литературы…………………………………………………………… 30

Приложение. 30

Введение

Наша жизнь связана с движением в различных средах: по суше, воздуху и воде . Простейшим видом этого движения является механическое движение. В реке течет вода, по которой плывет лодка, по небу бегают облака, а среди них летают птицы и самолеты, по дорогам мчатся машины, а по рельсам поезда. Но во всех этих проявлениях движения есть общая черта – при всех таких движениях тела соприкасаются либо с другими телами, либо с окружающей средой. Такое соприкосновение не может не оказывать влияния на движение. Например, когда санки катятся по снегу, то они останавливаются под действием силы трения, даже если на дороге нет никаких неровностей и преград. Точно так же останавливаются и мяч, и бильярдный шар, и бочка, и детский шар. Благодаря трению фигуристы танцуют на льду, выполняя сложные пируэты, благодаря ему же люди ходят по земле и не падают, стоят в квартирах шкафы и серванты, наполненные домашней утварью, текут реки, ездят машины, не выпадают из стен забитые гвозди.

Трение присутствует во множестве окружающих нас явлений, играя при этом как полезную, так и вредную роль. Как разгоняется автомобиль, и какая сила замедляет его при торможении? Почему автомобиль «заносит» на скользкой дороге? Что служит причиной быстрого износа деталей? Почему автомобиль, разогнавшись до больших скоростей, не может резко остановиться? Как удерживаются растения в почве? Почему живую рыбу трудно в руке удержать? Чем объяснить высокий процент травматизма и дорожно-транспортных происшествий во время гололедицы в зимний период?

Ответы на эти и многие другие вопросы, связанные с движением тел, дают законы трения.

Поэтому возникает проблема: от чего зависит величина силы трения?

Недостаточность знаний по этому вопросу и желание определить особенности силы трения обусловили выбор темы исследования «Трение и его значение в жизни человека».

Объектом исследования является сила трения.

В качестве предмета исследования выступают факторы, влияющие на величину силы трения.

Целью исследования является изучение влияния силы давления, рода соприкасающихся поверхностей, площади соприкасающихся поверхностей, качества обработки поверхностей на величину силы трения скольжения; сравнение силы трения скольжения и силы трения качения; расчет коэффициента трения скольжения подошв школьной обуви о различные поверхности.

Для достижения этой цели решались следующие задачи :

    подбор литературы по проблеме;

    изучение, анализ, обобщение литературы по проблеме;

    изучение влияния силы давления, рода и площади соприкасающихся поверхностей на величину силы трения скольжения;

    анализ полученных результатов.

Гипотеза исследования: сила трения скольжения зависит от силы давления, рода соприкасающихся поверхностей и площади соприкасающихся поверхностей.

В ходе работы использовались следующие методы исследования:

    Теоретические (изучение, анализ, обобщение литературы).

    Эмпирические (наблюдения, беседы, измерения).

    Интерпретационные (количественная и качественная обработка результатов).

Новизной работы является постановка простейших опытов, позволяющих изучить влияние силы давления, рода и площади соприкасающихся поверхностей, качества обработки поверхностей на величину силы трения скольжения. В повседневной жизни мы каждый день сталкиваемся с тем, что об истинной природе практически ничего не знаем. Сила трения – одно из самых распространенных явлений на Земле, без нее не обходится ни одно движение. И, конечно, сила трения играет важную роль в нашей жизни.

Виды силы трения

Трение - взаимодействие, препятствующее относительному движению тел, возникающее при соприкосновении одного тела с другим.

При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:

*Трение скольжения - сила, возникающая при поступательном перемещении одного из взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения;

Из-за чего постепенно останавливаются санки, скатившиеся с горы? Из-за трения скольжения. Почему замедляет свое движение шайба, скользящая по льду? Вследствие трения скольжения, направленного всегда в сторону, противоположную направлению движения тела. Сила трения скольжения рассчитывается по формуле:

по известному коэффициенту трения скольжения и силе давления на поверхность.

Причины возникновения силы трения:

    Шероховатость поверхностей соприкасающихся тел. Даже те поверхности, которые выглядят гладкими, на самом деле всегда имеют микроскопические неровности (выступы, впадины). При скольжении одного тела по поверхности другого эти неровности зацепляются друг за друга и тем самым мешают движению;

2) межмолекулярное притяжение, действующее в местах контакта трущихся тел. Между молекулами вещества на очень малых расстояниях возникает притяжение. Молекулярное притяжение проявляется и в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы.

*Трение качения - c ила, возникающая при качении одного из двух взаимодействующих тел относительно другого и противодействующий вращению движущегося тела.

Если тело не скользит по поверхности другого тела, а, подобно колесу или цилиндру, катится, то возникающее в месте их контакта трение называют трением качения.

Катящееся колесо несколько вдавливается в полотно дороги, и потому перед ним всё время оказывается небольшой бугорок, который необходимо преодолевать. Именно тем, что катящемуся колесу постоянно приходится наезжать на появляющийся впереди бугорок, и обусловлено трение качения.
При отсутствии относительного движения двух контактирующих тел и наличии сил, стремящихся осуществить такое движение, в ряде ситуаций возникает

*Трение покоя - сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.

Положим брусок на наклонную доску, при не слишком большом угле наклона доски. Брусок может остаться на месте. Что будет удерживать его от соскальзывания вниз? Трение покоя.

Прижмем свою руку к лежащей на столе тетради и передвинем ее. Тетрадь будет двигаться относительно стола, но покоиться по отношению нашей ладони. С помощью чего мы заставили эту тетрадь двигаться? С помощью трения покоя тетради о руку. Трение покоя перемещает грузы, находящиеся на движущейся ленте транспортера, препятствует развязыванию шнурков, удерживает гвозди, вбитые в доску, и т. д.

Использование трения человеком

Впервые человек сознательно применил трение при получении огня. Для добывания огня люди брали острую деревянную палочку, упирали ее в деревянный брусок и быстро-быстро вращали. При этом благодаря трению выделялось тепло, и сухой мох, положенный в лунку вспыхивал. Многие современнее способы получения огня также связаны с трением.

Трение даёт нам возможность ходить, сидеть, работать без опасения, что книги и тетради упадут со стола, что стол будет скользить, пока не упрётся в угол, а ручка выскользнет из пальцев. Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, где их поставили. Маленькое трение на льду может быть успешно использовано технически. Свидетельство этому так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге, имеющей гладкие ледяные рельсы, две лошади тащат сани, нагруженные 70 тоннами брёвен.

Появление колеса также связано с существованием силы трения. Сначала тяжелые грузы просто волочили по земле, но потом люди заметили, что гладкие предметы передвигать легче, чем шероховатые, поэтому грузы стали класть на пару гладких бревен. Появились сани. Вскоре люди заметили, что сани везти легче, если под них подложить круглые бревна-катки. Но перевозить с помощью катков было очень неудобно, ведь их нужно было постоянно перекладывать вперед. Чтобы катки не выкатывались их стали прикреплять к самим саням. Так катки начали превращаться в колеса, а сани – в повозки: телеги, тачанки, кареты, т.е. в колесные экипажи.

Трение – не только тормоз для движения. Это и ещё и главная причина изнашивания технических устройств, проблема, с которой человек столкнулся также на самой заре цивилизации. Так, ножки тяжелых предметов, например, кроватей, роялей и т. п., снабжают роликами. В технике для уменьшения трения в машинах широко пользуются подшипниками качения, иначе называемыми шариковыми и роликовыми подшипниками. Трение поршней, скользящих по стенкам цилиндров двигателей, уменьшается со временем. Причина этого в том, что при нагревании чугунных стенок цилиндра, углерод, содержащийся во всяком чугуне, выделяется на их поверхности в виде тонкой пленки графита – чёрного блестящего вещества, из которого делают карандашные грифели. Этот графит и играет роль смазки. Его частицы легко скользят друг по другу, понижая трение скольжения.

Но используется человеком и искусственная смазка, например, для еще большего уменьшения трения лыж о снег их поверхность смазывают особой мазью. Трение сухого снега о слой смазки меньше, чем о деревянные лыжи

Сила трения останавливает автомобиль при торможении, но без трения покоя он не смог бы и начать движение. Чтобы увеличить трение, поверхность шин у автомобиля делают с ребристыми выступами Зимой, когда дорога бывает особенно скользкая, её посыпают песком, очищают ото льда.

Трение служит искусству. Так, без трения смычка о струны была бы невозможна игра на скрипке или виолончели.

Трение служит спорту. Без трения невозможны были бы известные нам виды спорта:



В результате трения истираются трущиеся поверхности, поэтому трение широко используется в процессах заточки инструментов, шлифовки и полировки поверхностей металлов, стекла, алмазов, дерева и других материалов.

В жизни человека, природе и технике трение имеет большое значение. В одних случаях трение может быть полезным и его стараются увеличить, в других случаях трение может быть вредным и тогда его стремятся уменьшить.

Практическая часть.

Исследуем факторы, от которых зависит сила трения:

    Зависимость силы трения скольжения от силы, прижимающей данное тело к поверхности другого тела, т.е. от силы нормального давления;

    Зависимость силы трения скольжения от площади соприкасающихся тел;

    Зависимость силы трения скольжения от материала, из которого изготовлены тела;

    Зависимость силы трения скольжения от качества обработки трущихся поверхностей.

    Сравнение модулей сил трения скольжения и трения качения

Эксперимент №1 Зависимость силы трения скольжения от нагрузки

Определяю цену деления шкалы лабораторного динамометра, и измеряю вес деревянного бруска с крючком.

С помощью динамометра измеряю силу трения скольжения бруска по деревянной поверхности линейки.

На брусок помещаю сначала один, затем два, затем три груза массой по 100 г (весом по 1 Н) и каждый раз определяю величину силы трения скольжения с помощью динамометра при равномерном перемещении бруска с грузами по деревянной поверхности линейки.

Количество брусков

Вес

Сила трения скольжения, Н

1,7

0,5

2.7

0,8

3,7

1.2

Вывод: Из экспериментов видно, что, чем больше сила давления, тем сила трения скольжения больше.

Строю диаграмму зависимости силы трения скольжения от нагрузки

Сила трения скольжения, Н

Эксперимент №2 Зависимость силы трения скольжения от площади соприкосновения трущихся поверхностей.

Н а деревянную линейку помещаю деревянный брусок большой гранью. На него помещаю три груза весом по 1 Н.

При помощи динамометра брусок с грузом перемещаю равномерно по поверхности линейки.

Измеряю динамометром силу трения скольжения бруска по поверхности линейки.

На деревянную линейку помещаю деревянный брусок с тремя грузами средней по величине гранью, затем самой малой гранью и снова с помощью динамометра измеряю силу трения скольжения.

Измерения представлены в таблице:

Площадь грани бруска, см 2

Сила трения скольжения, Н

168

1,2

1,1

1,2

Вывод: Из эксперимента видно, что сила трения скольжения не изменяется с увеличением площади соприкасающихся поверхностей. Значит, она не зависит от площади поверхности.

Строю диаграмму зависимости силы трения скольжения от площади соприкасающихся поверхностей.

Сила трения скольжения, Н

Площадь грани, см 2

Эксперимент №3 Зависимость силы трения скольжения от качества обработанной поверхности: дерево по дереву (различные способы обработки поверхности)

По отшлифованной деревянной поверхности линейки я равномерно перемещаю деревянный брусок с тремя грузами.

Отшлифованная деревянная поверхность заменялась сначала гладкой деревянной поверхностью, затем шероховатой деревянной поверхностью и каждый раз измерялась сила трения скольжения при равномерном перемещении по ним деревянного бруска с тремя грузами. Измерения представлены в таблице:

шероховатая

гладкая

отшлифованная

1, 6 Н

0, 8 Н

0, 3 Н

Вывод: Сила трения скольжения больше там, где шероховатость поверхности больше.

Строю диаграмму зависимости силы трения скольжения от качества обработанной поверхности

Сила трения скольжения, Н

Качество поверхности

Эксперимент №4 Зависимость силы трения скольжения от материала, из которого изготовлены трущиеся тела.

По деревянной поверхности линейки равномерно я перемещал деревянный брусок с тремя грузами.

С помощью динамометра измеряю силу трения скольжения, возникающую между деревянной поверхностью линейки и деревянной поверхностью бруска.

Деревянная поверхность заменялась сначала металлической поверхностью, затем картонной поверхностью листа и каждый раз измерялась сила трения скольжения при равномерном перемещении по ним деревянного бруска с тремя грузами. Измерения представлены в таблице:

Сила трения скольжения при движении деревянного бруска по поверхности

Деревянная поверхность

Металлическая поверхность

Картонная поверхность

1,2 Н

1,5 Н

1 Н

Вывод: Сила трения скольжения меняется при движении бруска по поверхностям из различного материала. Значит, величина силы трения скольжения зависит от рода взаимодействующих поверхностей.

Вычисление коэффициента трения скольжения.

При исследовании силы трения скольжения от материалов трущихся поверхностей использовали деревянный брусок, на котором помещали от 1 до 3 грузов по 100г и разные контактные поверхности. Использовали формулу:

Сила трения

Рассчитываю коэффициенты трения скольжения для следующих материалов:

Трущиеся материалы

Сила давления, Н

Сила трения c кольжения,Н

Дерево по дереву

1,7

0.5

0.29

0,3

2,7

0.8

0.3

3,7

1.2

0.32

Дерево по металлу

1.7

0.7

0.41

0, 4 2

2.7

1.2

0.44

3.7

1.5

0.4

Дерево по пластику

1.7

0.4

0.235

0, 24

2.7

0.7

0.259

3.7

0.9

0.243

Составлю диаграмму сравнения коэффициентов трения скольжения для различных материалов

Коэффициент трения скольжения

Материал

Вывод:

Проанализировав полученные значения коэффициента трения скольжения (μ), можно сделать вывод, что μ характеризует поверхность. Таким образом, чем больше значение μ, тем больше сила трения скольжения.

Эксперимент №5. Сравним силу трения скольжения и силу трения качения.

В эксперименте заменяю деревянный брусок катком такой же массы. Перемещаю грузы по деревянной поверхности. С помощью динамометра измеряю силу трения скольжения и силу трения качения. Измерения представлены в таблице.

Предмет

Сила трения, Н

Брусок

0,3

Каток

0,1

Вывод: При движении бруска по деревянной поверхности сила трения скольжения больше, чем при движении катка такой же массы.

Сводная таблица.

Сила трения

зависит

Не зависит

От силы давления на поверхность

От площади поверхности

От рода трущихся поверхностей

От качества обработанной поверхности

Сила трения скольжения больше силы трения качения

Знания, полученные при изучении силы трения, я применю для расчета коэффициента трения скольжения подошв школьной обуви о различные поверхности.

В школе я могу носить обувь с подошвой из резины, микрофибры, полиуретана. В кабинетах пол покрыт линолеумом, в спортзале - крашеный деревянный, в вестибюле – напольная плитка.

Определение коэффициента трения скольжения подошв школьной обуви о различные поверхности

Ход эксперимента:

1.Измеряю силу тяжести, действующую на ботинок с резиновой подошвой.

2.Кладу ботинок на поверхность из линолеума и протяну его с постоянной скоростью при помощи динамометра. Измеряю силу трения скольжения.

3.Для более точных вычислений, проделаю опыт несколько раз и вычислю среднее значение коэффициента трения скольжения резиновой подошвы о линолеум.

Материал подошвы обуви

Покрытие пола

Сила тяжести, Н

Сила трения скольжения, Н

Коэффициент трения скольжения

Среднее значение коэффициента трения скольжения

резина

линолеум

2 , 3

0,8

0,35

0,36

2 , 3

0,8

0,36

2 , 3

0,8

0,36

резина

плитка

2 , 3

0,6

0,27

0,27

2 , 3

0,6

0,28

2 , 3

0,6

0,27

резина

дерево

2 , 3

0,45

0,45

2 , 3

1,1

0,46

2 , 3

0,44

Аналогично провожу эксперимент с обувью, где материалом подошвы является полиуретан и микрофибра.

Материал подошвы обуви

Покрытие пола

Сила тяжести, Н

Сила трения скольжения, Н

Коэффициент трения скольжения

Среднее значение коэффициента трения скольжения

полиуретан

линолеум

2,5

1,2

0,46

0,45

2,5

1,1

0,45

2,5

1,1

0,45

полиуретан

плитка

2,5

0,7

0,28

0,28

2,5

0,8

0,29

2,5

0,7

0,28

полиуретан

дерево

2,5

1,1

0,45

0,4 6

2,5

1,2

0,47

2,5

1,1

0,4 6

Материал подошвы обуви

Покрытие пола

Сила тяжести, Н

Сила трения скольжения, Н

Коэффициент трения скольжения

Среднее значение коэффициента трения скольжения

микрофибра

линолеум

2,2

0,8

0,38

0,38

2,2

0,8

0,38

2,2

0,8

0,37

микрофибра

плитка

2,2

0,8

0,36

0,35

2,2

0,7

0,34

2,2

0,8

0,36

микрофибра

дерево

2,2

1,2

0,56

0,55

2,2

1,2

0,56

2,2

1,1

0,54

Составлю сравнительные диаграммы зависимости среднего значения коэффициента трения подошвы школьной обуви о пол.

Коэффициент трения скольжения (полиуретан)

Материал

Материал

Коэффициент трения скольжения (микрофибра)

Коэффициент трения скольжения (резина)

Материал

Таким образом, проведя опыт, я делаю вывод, что наибольший коэффициент трения скольжения у подошвы сделанной из микрофибры, затем из полиуретана, а наименьший коэффициент у резиновой подошвы. Из этого следует, что при покупке обуви следует учитывать особенности подошв и погодных условий, в которых вы будете носить данную обувь. Итак, сменную обувь для школы следует покупать с подошвой из микрофибры, так как она имеет наибольший коэффициент трения по различным поверхностям, и это поможет избежать падений и травм. Также полиуретан обладает хорошей устойчивостью к различным температурам и прочностью.

Кроме этого, замена линолеумной поверхности на напольную плитку уменьшила трение незначительно для всех видов подошв. Я предполагаю, что это связано с новизной плитки и через некоторое время трение подошв обуви о напольную плиточную поверхность увеличится.

Заключение

Работая над проектом, я пришел к выводу, что сила трения играет огромную роль в жизни не только человека (в быту, технике), но и в природе.

Мы можем писать на бумаге, вещи, стоящие на столе, не улетают от малейшего сквозняка, одежда, может висеть на стуле или плечиках в шкафу, я могу водить компьютерной мышкой по коврику, мы с трудом двигаем шкаф, т.к. есть сила трения, но если случайно разлить подсолнечное масло на кухне, любой входящий будет скользить, т.к. уменьшится сила трения.

Мы можем ходить по земле, белки прыгают по веткам деревьев, ленивец висит на ветке, птичка может присесть на провод, вода точит камень, образование планет и комет, идет дождь и вода стекает в низину, огромные валуны лежат на краях скал и не падают вниз - их держит сила трения.

Автомобиль может тормозить; на севере люди передвигаются на санках и лыжах - так быстрее, т.к. меньше сила трения; мы можем ездить на велосипеде; любые смазанные детали работают лучше; в шарикоподшипниках возникает сила трения качения; для безопасной езды зимой применяют колеса с шипами или даже с цепями; существуют механизмы для передачи или преобразования движения с помощью трения, т.н. фрикционные механизмы.

Я выяснил, что человек издавна использует знания о явлении трения, полученные опытным путем. Начиная с XV - XVI веков, знания об этом явлении становятся научными: ставятся опыты по определению зависимостей силы трения от многих факторов, выясняются закономерности.

Теперь я точно знаю, от чего зависит сила трения, а что не влияет на нее. Если говорить более конкретно, то сила трения зависит: от нагрузки или массы тела; от рода соприкасающихся поверхностей; от размера неровностей или шероховатостей поверхностей. А вот от площади соприкосновения она не зависит. Сила трения качения всегда меньше силы трения скольжения.

Теперь я могу объяснить все наблюдаемые в практике закономерности связанные с возникновением силы трения.

Я провел серию экспериментов, проделал примерно такие же опыты, как и ученые, и получил примерно такие же результаты. Получилось, что экспериментально я подтвердил все утверждения, высказанные ими.

Но, наверное, самое главное – я понял, как здорово добывать знания самому, а потом делиться ими с другими.

Список использованной литературы.

1. Элементарный учебник физики:Учебное пособие. В 3-хт. /Под ред.Г.С.Ландсберга. Т.1 Механика.Молекулярная физика.М.:Наука, 1985.

2. Иванов А.С., Проказа А.Т. Мир механики и техники: Кн.для учащихся. – М.: Просвещение, 1993.

3. Бытько Н.Д. Физика, ч.1 и 2. Механика. Молекулярная физика и теплота.М.: Высшая школа, 1972.

4. Энциклопедия для детей. Том 16. Физика Ч.1 Биография физики. Путешествие в глубь материи. Механическая картина мира/Глав. Ред. В.А.Володин. – М.:Аванта+,\

Приложение

Не бегать по помытым полам и другим скользким поверхностям, потому что, чем больше гладкость поверхности, тем меньше сила трения, значит, можно поскользнуться и упасть, при этом нанеся себя различные увечья.

При передвижении какого-либо тяжелого предмета желательно на пути движения располагать округлые предметы, например, бревна, т.к. сила трения качения меньше силы трения скольжения.

При «буксовании» же машины силу трения, наоборот, надо увеличивать, поэтому стоит подсыпать камни и гравий.

Для увеличения долговечности разных вещей можно использовать

Еще в школьные годы, в седьмом или восьмом классе, каждый человек знакомится с новым понятием динамической физики, - трением. Однако многие, повзрослев, забывают, и каким образом действует эта сила. Давайте попробуем разобраться в этой теме.

Определение понятия

Трение - это явление, которое заключает в себе следующий смысл: когда два тела соприкасаются друг с другом, на месте их контакта образуется особое взаимодействие, препятствующее телам продолжать движение относительно друг друга. Ясно, что можно подсчитать значение взаимодействия этих тел. как раз таки и характеризует данное взаимодействие количественно. Если трение происходит между твердыми телами (например, взаимодействие книги с книжной полкой или яблока со столом), то такое взаимодействие называется сухим трением.

Следует понимать, что трение - это сила, имеющая электромагнитную природу. Это означает, что причиной возникновения данной силы является взаимодействие между частицами, из которых состоит то или иное тело.

Каким бывает трение?

Благодаря разнообразию существующих в нашем мире предметов можно определить, что каждый из них имеет свою структуру и обладает индивидуальными свойствами. Это означает, что и взаимодействие между различными предметами будет отличаться. Для правильного понимания сути и грамотного решения многих задач в физике принято условно разделять три вида трения. Итак, разберем каждый по отдельности:

  • Первое трение - это трение покоя, которое возникает при отсутствии относительного перемещения двух тел. Мы можем наблюдать его примеры повсюду, ведь сила, возникающая при этом трении, удерживает предметы в равновесии. Например, товары на движущейся ленте транспортера, вбитый в стену гвоздь или человек, стоящий на полу.
  • Трение скольжения - это условно второе трение. Значение скольжения определяется таким образом: когда к телу, находящемуся в равновесии, прикладывают силу, которая больше, чем сила трения покоя, начинает действовать сила трения скольжения, и тело сдвигается с места.
  • И наконец, трение качения , объясняющее взаимодействие двух тел, одно из которых перекатывается по поверхности другого. Разница в и скольжения объясняется тем, что при любом движении площади тела смещаются по длине поверхности соприкосновения, и вместо разорванных межмолекулярных связей образуются новые. А в случае когда колесо катится без проскальзывания, молекулярные связи при подъеме участков колеса разрываются гораздо быстрее, чем при скольжении. Получается, что сила трения качения меньше силы скольжения.

Где и как можно использовать трение?

Трение - это незаменимое явление, без которого мы бы не смогли делать элементарные вещи: ходить, сидеть или же просто держать предметы в руках. Поэтому не стоит недооценивать значение трения. Как говорил французский физик Гильом: "Не будь трения, наша Земля была бы без единой шероховатости, она была бы подобна жидкой капле".

Пожалуй, лучший пример, который наиболее точно характеризует трение, - это работа колеса. Еще в древности было замечено, что силы трения качения гораздо меньше сил трения скольжения. Именно неоспоримая польза трения качения послужила причиной того, что люди стали подкладывать бревна или катки для перемещения тяжелых и габаритных грузов. С течением времени люди совершенствовали знания об удивительных свойствах трения качения, наблюдали за движением предметов под воздействием сил трения и, наконец, изобрели колесо! В современном мире невозможно представить жизни без этих незаменимых деталей, ведь колеса - это вторые "двигатели" любого транспорта!

Как вычислить значение силы трения?

Как и любая другая обладает целочисленными значениями. Для того чтобы точно определить, сколько силы потребуется для перемещения или других видов работ, необходимо подсчитать силу трения покоя. Этим обычно занимаются инженеры, когда, например, строят заводы или же изобретают новые устройства. Однако даже обычные школьники сталкиваются с определенными задачами, где требуется вычислить силу трения. Итак, чтобы подсчитать его значение, нужно просто воспользоваться несложной формулой: F трения = K * N, где k - это коэффициент трения. Значение всех коэффициентов зависит всегда от поверхности предмета, по которому движется или с которым взаимодействует тело. "N" в нашей формуле означает силу на тело. Она зависит в первую очередь от массы тела, которое соприкасается с поверхностью опоры.

Вычисляем значение силы в задаче

Допустим, тело массой m = 3 кг находится на горизонтальной доске. между деревянной доской и телом равен 0,3. Как же найти значение силы трения? Очень просто, всего-то нужно подставить наши значения в формулу. Только нужно учесть, что N в данном случае равен весу тела (по 3-му закону Ньютона). Итак, искомая сила равна (m * g) * k = (3 кг * 10 м/с 2) * 0,3 = 9 H.

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Пробовали ли вы ездить на автомобиле в гололед? Удовольствие не из приятных. Так же, впрочем, как и быть пешеходом в такую же пору года. Когда дорога покрыта коркой льда, мы говорим: плохое сцепление. Что это означает?

Это означает, что трение между колесами и дорогой очень маленькое. И если это полезно в случае перемещения грузов волоком, например, на санках, то очень вредно в ситуации, когда необходимо резко затормозить или сменить направление движения. Роль силы трения в жизни человека огромна, этого нельзя отрицать. И наша задача сводится к тому, чтобы максимально эффективно использовать силу трения в быту и в технике для облегчения жизни.

Роль силы трения в быту

Роль силы трения в быту сводится к тому, что мы можем ходить и ездить, что предметы не выскальзывают у нас из рук, что полки и картины висят на стенах, а не падают, даже одежду мы носим благодаря трению, которое удерживает волокна в составе нитей, а нити в структуре тканей. Но трение может играть и отрицательную роль. Именно из-за него нагреваются и изнашиваются движущиеся части различных механизмов. В таких случаях его стараются уменьшить. Существует несколько способов уменьшения трения. Один из них - это введение смазки между трущимися поверхностями. Смазка уменьшает соприкосновение тел, и трутся не тела, а слои жидкости. А трение в жидкости намного меньше, чем сухое трение.

Сила трения в технике

Еще одним способом уменьшить трение является применение шариковых и роликовых подшипников. Внутреннее кольцо подшипника одевается на вал какого-либо механизма, а наружное кольцо закрепляют в корпусе машины или станка. И когда вал начинает вращаться, то он не скользит, а катится на шариках или роликах между кольцами подшипника. А мы знаем, что сила трения качения значительно меньше трения скольжения. Поэтому вращающиеся части изнашиваются гораздо медленнее. Применяют также воздушную подушку, уменьшение площади соприкасающихся тел, а также шлифовку. Например, чтобы уменьшить силу трения между льдом и коньками, коньки точат, делая поверхность соприкосновения меньше, а лед шлифуют, делая его максимально гладким. Так же уменьшают трение при резке чего-либо в быту и на производстве, затачивая ножи как можно острее. Роль силы трения в технике не всегда отрицательна, как могло показаться. Ведь, например, когда мы заменяем силу трения скольжения трением качения, чтобы уменьшить взаимодействие трущихся поверхностей, то следует помнить, что если бы трение отсутствовало совсем, то колеса или шарики в подшипниках просто-напросто прокручивались бы, не приводя тело в движение.

Роль силы трения в природе

Стоит упомянуть и о роли силы трения в природе. Пример - это шероховатые лапки насекомых для улучшения сцепления с поверхностью, или, наоборот, это гладкие тела рыб, покрытые слизью для уменьшения трения о воду. В природе животные и растения давно научились приспосабливаться и использовать силу трения себе во благо. То же необходимо делать и человеку, дабы обеспечить себе комфортное существование на планете Земля.

>>Физика: Роль сил трения

Еще один вид сил, с которыми имеют дело в механике, - это силы трения . Эти силы действуют вдоль поверхности тел при их непосредственном соприкосновении.
Силы трения во всех случаях препятствуют относительному движению соприкасающихся тел. При некоторых условиях силы трения делают это движение невозможным. Однако силы трения не только тормозят движение тел. В ряде практически важных случаев движение тела не могло бы возникнуть без действия сил трения.
Значение сил трения можно проследить на примере движущегося автомобиля (рис.4.13 ). Сила трения , действующая со стороны поверхности Земли на ведомые колеса, и сила сопротивления воздуха направлены назад и способны только затормозить движение . Единственной внешней силой, способной увеличить скорость автомобиля, является сила трения , действующая на ведущие колеса. Если бы не было этой силы, автомобиль буксовал бы на месте, несмотря на вращение ведущих колес.

Точно так же сила трения, действующая на ступни ног, сообщает нашему телу ускорение, необходимое для того, чтобы начать движение или остановиться.
Работа двигателя, приводящего во вращение ведущие колеса, и усилия мышц ног вызывают появление сил трения.
Препятствуя проскальзыванию, сила трения совершает полезное дело, ускоряя машину или наше собственное тело. Но без усилия со стороны двигателя или мышц ног увеличение скорости за счет силы трения невозможно.
Таким образом, с одной стороны, нужно принимать все меры к уменьшению сил трения, препятствующих движению, смазывая трущиеся части двигателя и придавая машине форму, при которой сопротивление воздуха минимально, а с другой стороны, приходится увеличивать полезное трение, посыпая, к примеру, дорогу песком в гололед.
Силы трения зависят от состояния трущихся твердых поверхностей, а при движении твердого тела в воде или воздухе - от относительной скорости движения, от размеров и формы этого тела.
Трение - явление, сопровождающее нас везде и повсюду. В одних случаях оно полезно, и мы всячески стараемся его увеличить. В других - вредно, и мы ведем с ним

???
1. Посмотрите вокруг себя. Видите ли вы полезное действие сил трения?
2. Зачем на губках тисков и плоскогубцев делают насечки?
3. Для чего на автомобильных шинах делают рельефный рисунок (протектор)?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,