Теорема сложения вероятностей и ее следствия. Теория вероятностей

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Тип задания: 4

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Вероятность того, что ручка бракованная, равна 0,05 . Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.

Показать решение

Решение

Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A \cap B, его вероятность равна P(A \cap B) = P(A) \cdot P(B) = 0,4 \cdot 0,4 = 0,16 (так как события A и B независимы).

Искомая вероятность равна 1 - P(A \cap B) = 1 - 0,16 = 0,84.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

В гостинице стоят два кулера. Каждый из них может быть неисправен с вероятностью 0,2 независимо от другого кулера. Определите вероятность того, что хотя бы один из этих кулеров исправен.

Показать решение

Решение

Сначала найдём вероятность события «оба кулера неисправны», противоположного событию из условия задачи. Обозначим через A и B события «первый кулер неисправен» и «второй кулер неисправен». По условию P(A) = P(B) = 0,2. Событие «оба кулера неисправны» — это A \cap B , пересечение событий A и B , его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,2\cdot 0,2 = 0,04 (так как события A и B независимы). Искомая вероятность равна 1-P(A \cap B)=1-0,04=0,96.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 4
Тема: Сложение и умножение вероятностей событий

Условие

На экзамене по физике студент отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что этот вопрос на тему «Механика», равна 0,25 . Вероятность того, что этот вопрос на тему «Электричество», равна 0,3 . Вопросов, которые относились бы сразу к двум темам, нет. Найдите вероятность того, что студенту попадётся вопрос по одной из этих двух тем.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

Основные понятия
События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае они называются совместными.
Полной группой называют совокупность событий, объединение которых есть событие достоверное.
Противоположными называют два единственно возможных события, образующих полную группу.
События называются зависимыми, если вероятность появления одного из них зависит от наступления или ненаступления других событий.
События называются независимыми, если вероятность одного из них не зависит от наступления или ненаступления других.
Теорема сложения вероятностей несовместных событий
Р(A+B)=Р(A)+Р(B),
где А, В - несовместные события.

Теорема сложения вероятностей совместных событий
Р(A+B)=Р(A)+Р(B)-P(AB), где А и В - совместные события.

Теорема умножения вероятностей независимых событий
,
где А и В независимые события.
Теорема умножения вероятностей зависимых событий
Р(АВ)=Р(А)Р A (B),
где Р A (B) - вероятность наступления события В при условии, что произошло событие А; А и В- зависимые события.

Задача 1.
Стрелок производит два выстрела по мишени. Вероятность попадания при каждом выстреле 0,8. Составить полную группу событий и найти их вероятности. Решение.
Испытание - Производится два выстрела по мишени.
Событие А - оба раза промахнулся.
Событие В - попал один раз.
Событие С - оба раза попал.
.

Контроль: P(A) + P(B) + P(C) = 1.
Задача 2.
Согласно прогнозу метеорологов Р(дождь)=0,4; Р(ветер)=0,7; Р(дождь и ветер)=0,2. Какова вероятность того, что будет дождь или ветер? Решение. По теореме сложения вероятностей и в силу совместности предложенных событий имеем:
Р(дождь или ветер или то и другое)=Р(дождь) +Р(ветер) –Р(дождь и ветер)=0,4+0,7-0,2=0,9.
Задача 3.
На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны? Решение. Событие А – первый взятый наугад заказ – внутри страны. Событие В – второй тоже предназначен для внутреннего потребления. Нам необходимо найти вероятность Тогда по теореме об умножении вероятностей зависимых событий имеем

Задача 4.
Из партии изделий товаровед наудачу отбирает изделия высшего сорта. Вероятность того, что выбранная вещь окажется высшего сорта равна, 0,8; первого сорта – 0,7; второго сорта – 0,5. Найти вероятность того, что из трех наудачу отобранных изделий будут:
а) только два высшего сорта;
б) все разные. Решение. Пусть событие - изделие высшего сорта; событие - изделие первого сорта; событие - изделие второго сорта.
По условию задачи ; ; События - независимы.
а) Событие А – только два изделия высшего сорта будет выглядеть так тогда

б) Событие В – все три изделия различны - выразим так:, тогда .
Задача 5.
Вероятности попадания в цель при стрельбе из трех орудий таковы: p1= 0,8; p2 =0,7; p3 =0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий. Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям (т.е. вероятности промахов), соответственно равны:

Искомая вероятность
Задача 6.
В типографии имеется 4 печатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А ). Решение. События «машина работает» и «машина не работает» (в данный момент) – противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Искомая вероятность . Задача 7. В читальном зале имеется 6 учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

Решение. Рассмотрим следующие события:
А1- первый взятый учебник в переплете;
A2- второй взятый учебник в переплете.
Событие, состоящее в том, что оба взятых учебника в переплете . События А1 и А2 являются зависимыми, так как вероятность наступления события А2 зависит от наступления события А1. Для решения указанной задачи воспользуемся теоремой умножения вероятностей зависимых событий: .
Вероятность наступления события А1 p(A1) в соответствии с классическим определением вероятности:
P(A1)=m/n=3/6=0,5.
Вероятность наступления события А2 определяется условной вероятностью наступления события А2 при условии наступления события А1 , т.е. (A2)==0,4.
Тогда искомая вероятность наступления события:
P(A)=0,5*0,4=0,2.