Арифметический способ решения текстовых задач по математике. Решение задач алгебраическим способом

Решение задач алгебраическим способом (с помощью уравнений) По учебнику И.И. Зубаревой, А.Г. Мордковича

учитель математики МОУ «ЛСОШ №2»

г. Лихославль Тверской области


Цели: - показать правило решения задач алгебраическим способом; - формировать умение решать задачи арифметическим и алгебраическим способами.


Способы

решения задач

Арифметический (решение задачи по действиям)

Алгебраический (решение задачи с помощью уравнения)


Задача №509

Прочитайте задачу.

Постарайтесь найти разные способы решения.

В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше, чем в другой.

1 способ решения

(смотреть)

3 способ решения

(смотреть)

2 способ решения

4 способ решения


1 способ (арифметический)

  • 16 – 4 = 12 (кг) – печенья останется в двух коробках, если из первой коробки достать 4 кг печенья.
  • 12: 2 = 6 (кг) – печенья было во второй коробке.
  • 6 + 4 = 10 (кг) – печенья было в первой коробке.

Ответ

В решении использован способ уравнивания .

Вопрос : почему он получил такое название?

Назад )


2 способ (арифметический)

  • 16 + 4 = 20 (кг) – печенья станет в двух коробках, если во вторую коробку добавить 4 кг печенья.
  • 20: 2 = 10 (кг) – печенья было в первой коробке.
  • 10 - 4 = 6 (кг) – печенья было во второй коробке.

Ответ : масса печенья в первой коробке – 10 кг, а во второй 6 кг.

В решении использован способ уравнивания .

Назад )


3 способ (алгебраический)

Обозначим массу печенья во второй коробке буквой х кг. Тогда масса печенья в первой коробке будет равна (х +4) кг, а масса печенья в двух коробках – ((х +4)+ х ) кг.

(х +4)+ х =16

х +4+ х =16

2 х +4=16

2 х =16-4

2 х =12

х =12:2

Во второй коробке было 6 кг печенья.

6+4=10 (кг) – печенья было в первой коробке.

В решении использован алгебраический способ.

Задание : Объясните, в чем отличие арифметического способа от алгебраического?

Назад )


4 способ (алгебраический)

Обозначим массу печенья в первой коробке буквой х кг. Тогда масса печенья во второй коробке будет равна (х -4) кг, а масса печенья в двух коробках – (х +(х -4)) кг.

По условию задачи, в двух коробках было 16 кг печенья. Получаем уравнение:

х +(х -4)=16

х + х -4=16

2 х -4=16

2 х =16+4

2 х =20

х =20:2

В первой коробке было 10 кг печенья.

10-4=6 (кг) – печенья было во второй коробке.

В решении использован алгебраический способ.

Назад )


  • Какие два способа решения задачи были использованы?
  • Что собой представляет способ уравнивания?
  • Чем первый способ уравнивания отличается от второго?
  • В одном кармане на 10 рублей больше, чем в другом. Как можно уравнять количество денег в обоих карманах?
  • В чем заключается алгебраический способ решения задачи?
  • Чем отличается 3 способ решения задачи от 4-го?
  • В одном кармане на 10 рублей больше, чем в другом. Известно, что меньшее количество денег обозначили переменной х . Как будет выражаться через х
  • Если за х обозначить большее количество денег в кармане, тогда как будет выражаться через х количество денег в другом кармане?
  • В магазине шампунь стоит на 25 руб дороже, чем в супермаркете. Обозначьте одну переменную буквой у и выразите другую стоимость через эту переменную.

Задача №510

Решите задачу арифметическим и алгебраическим способами.

С трех участков земли собрали 156 ц картофеля. С первого и второго участков картофеля собрали поровну, а с третьего – на 12 ц больше, чем с каждого из двух первых. Сколько картофеля собрали с каждого участка.

Алгебраический способ

(смотреть)

Арифметический способ

(смотреть)

выход )


Арифметический способ

  • 156 - 12 = 144 (ц) – картофеля собрали бы с трех участков, если бы урожайность всех участков была бы одинаковой.
  • 144: 3 = 48 (ц) – картофеля собрали с первого и собрали со второго участков.
  • 48 + 12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ

Назад )


Алгебраический способ

Пусть с первого участка собрали х ц картофеля. Тогда со второго участка собрали тоже х ц картофеля, а с третьего участка собрали (х +12) ц картофеля.

По условию со всех трех участков собрали 156 ц картофеля.

Получаем уравнение:

х + х + (х +12) =156

х + х + х + 12 = 156

3 х +12 = 156

3 х = 156 – 12

3 х = 144

х = 144: 3

С первого и второго участков собрали по 48 ц картофеля.

48 +12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ : с первого и второго участков собрали по 48 ц картофеля, а с третьего участка собрали 60 ц картофеля.

Назад


Обобщение опыта.

Текстовые задачи в школьном курсе математики.

Арифметические способы решения задач.

Солдатова Светлана Анатольевна

учитель математики первой категории

МОУ Угличский физико-математический лицей

2017 г.

«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

А.В.Шевкин

С термином «задача» мы постоянно сталкиваются в повседневной жизни. Каждый из нас решает те или иные проблемы, которые мы называем задачами. В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и решения человеком .

Задачи, в которых объекты - математические (доказательство теорем, вычислительные упражнения, свойства и признаки изучаемого математического понятия, геометрической фигуры), часто называют математическими задачами . Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми. В начальном обучении математике велика роль текстовых задач.

Решая текстовые задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления.

Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический, практический и т. д. В основе каждого метода лежат различные виды математических моделей. Например, при алгебраическом методе решения задачи составляются уравнения или неравенства, при геометрическом - строятся диаграммы или графики. Решение задачи логическим методом начинается с составления алгоритма.

Следует иметь в виду, что практически каждая задача в рамках выбранного метода допускает решение с помощью различных моделей. Так, используя алгебраический метод, ответ на требование одной и той же задачи можно получить, составив и решив совершенно разные уравнения, используя логический метод - построив разные алгоритмы. Ясно, что в этих случаях мы так же имеем дело с различными методами решения конкретной задачи, которые называю способы решения.

Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту де задачу во многих случаях можно решить различными арифметическими способами. Задача считается решенной различными способами, если ее решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью этих связей.

В традиционном российском школьном обучении математике текстовые задачи всегда занимали особое место. С одной стороны, практика применения текстовых задач в процессе обучения во всех цивилизованных государствах идет от глиняных табличек Древнего Вавилона и других древних письменных источников, то есть имеет родственные корни. С другой - пристальное внимание обучающих к текстовым задам, которое было характерно для России, - почти исключительно российский феномен.

Одной из причин большого внимания к задачам заключается в том, что исторически долгое время целью обучения детей арифметике было освоением ими определенным кругом вычислительных умений, связанных с практическими расчетами. При этом основная линия арифметики - линия числа - еще не была разработана, а обучение вычислениям велось через задачи.

Вторая причина повышенного внимания к использованию текстовых задач в России заключается в том, что в России не только переняли и развили старинный способ передачи с помощью текстовых задач математических знаний и приемов рассуждений, но и научились формировать с помощью задач важные общеучебные умения, связанные с анализом текста, выделением условий задачи и вопроса, составлением плана решения, постановкой вопроса и поиском условий, из которых можно получить на него ответ проверкой полученного результата.

К середине 50-х годов XX в. текстовые задачи были хорошо систематизированы, сложилась развитая типология задач, включавшая задачи на части, на нахождение двух чисел по их сумме и разности, по их отношению и сумме (разности), на дроби, на проценты, на совместную работу, на растворы и сплавы, на прямую и обратную пропорциональность и т. д.

К этому времени была хорошо разработана методика их применения в учебном процессе, но при проведении реформы математического образования конца 60-х годов отношение к ним изменилось. Пересматривая роль и место арифметики в системе школьных предметов, стремясь повысить научность изложения математики за счет более раннего введения уравнений и функций, математики и методисты-математики посчитали, что на обучение арифметическим способам решения задач тратится слишком много времени.

А ведь именно текстовые задачи и арифметические способы их решения готовят ребенка к овладению алгеброй. А когда это произойдет, то алгебра научит более простым, чем арифметические, способам решения некоторых (но не всех!) задач. Другие же арифметические способы решения так и останутся в активном багаже ученика. Например, если ученика учили делить число в данном отношении, то он и в старших классах не будет делить число 15 в отношении 2:3 с помощью уравнения, он выполнит арифметические действия:

1) ,

2) ,

3) 15 – 6 = 9.

Хочу отметить, что я являюсь представителем именно того поколения школьников, которые были участниками вышеуказанной реформы. Я пошла в школу в 1968 году, и мой учебник в первом классе назывался «Арифметика». Оказывается, мы были последние, кто по нему учился. Во втором классе для меня было удивительным и необычным то, что предмет, а соответственно и учебник, моих подружек-первоклассниц назывался «математика». В третьем классе и мы уже учились по «математике». В среднем звене, а соответственно в старших классах, основным способом решения текстовых задач являлся алгебраический. Влияние реформы конца 60-х я ощущаю по сей день, т.к. у родителей, принимающих участие в учебном процессе детей, в силу того, что у них выработался определённый стереотип, сформировалось мнение, что задачи нужно решать именно с помощью уравнений. Мамы и папы, не зная других приёмов, настойчиво пытаются дома объяснить по-своему, что не всегда приносит пользу, даже порой только усложняет работу учителя.

Ни в коем случае нельзя умалять ценность алгебраического способа решения задач, который является универсальным и порой единственным при решении более сложных задач. К тому же, довольно часто именно уравнение даёт подсказку для нахождения способа решения по действиям. Но практика показала, что раннее применение этого перспективного, с точки зрения дальнейшего использования в обучении, способа решения задач без достаточной подготовки малоэффективно.

В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять максимальное внимания и не торопиться переходить к решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, что находится в результате каждого действия. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе.

Очень часто можно видеть, что ребенок не готов к решению задачи алгебраическим способом, когда вводится абстрактная переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что у детей такого возраста развито наглядно-образное мышление. А уравнение - абстрактная модель. Да и инструменты для решения уравнений у детей пятого, начала шестого класса отсутствуют. Исторически люди пришли к применению уравнений, обобщая решения задач, в которых приходилось оперировать такими понятиями как «часть», «куча» и т.п. Ребенок должен пройти тот же путь!

Для успешной работы важно, чтобы учитель имел глубокое представление о текстовой задаче, о ее структуре, умел решать такие задачи различными способами.

Много лет назад у меня в руках оказалось уже давно выпущенное пособие для учителей 5-8 классов (в современной школе – 5-9 классов) «Сборник московских математических олимпиад (с решениями)» 1967 г.в., автор которого - Галина Ивановна Зубелевич. Подавляющее большинство задач в нем решено арифметически, что меня очень заинтересовало. Позднее моё внимание привлекли два учебных пособия «Арифметика,6» , и «Арифметика,6» автор А.В. Шевкин, и пособие для учителя «Обучение решению текстовых задач в 5-6 классах» того же автора. Эти источники стали для меня началом работы над данной темой. Предложенные идеи мне показались очень актуальными и созвучными с моим пониманием заявленной темы, а именно:

1) отказ от использования уравнений на ранней стадии обучения и возвращение к более широкому применению арифметических способов решения задач;

2) более широкое использование «исторических» задач и Старинных способов их решения;

3) отказ от хаотичного предложения учащимся задач на разные темы и рассмотрение цепочки задач от самых простых, доступных всем учащимся, до сложных и очень сложных.

Типы текстовых задач по способу решения.

Текстовые задачи можно условно разделить на арифметические и алгебраические. Данное разделение обусловлено выбором способа решения, более характерного (рационального) для той или иной задачи.

Арифметические задачи таят в себе огромные возможности для того, чтобы научить школьников самостоятельно думать, анализируя неочевидные жизненные ситуации. Арифметика - самый короткий путь к пониманию природы, так как имеет дело с самыми простыми, самыми фундаментальными, экспериментальными фактами (например, что пересчёт

камней «по строкам» и «по столбцам» всегда приводит к одному

результату):

5+5+5 = 3+3+3+3+3.

Рассмотрим некоторые виды задач.

«Куплено на одинаковую сумму два сорта товара, первого сорта вдвое меньше, чем второго. Их смешали и продали половину смеси по цене высшего, остальное - по цене низшего сорта. Сколько процентов прибыли или убытка получено при продаже?»

Это, по существу, типичная задача, решающаяся введением произвольных единиц меры. Однако и при этом условии необходимое для решения оперирование неизвестными величинами носит здесь отчётливо выраженный алгебраический характер. Наряду с этим часто встречаются задачи, в которых, наоборот, арифметический путь решения значительно проще алгебраического. Это может зависеть от двух причин. В одних случаях переход от известного к неизвестному настолько прост, что составление уравнений (переход от неизвестного к известному) внесло бы ненужную громоздкость, замедляющую процесс решения. Такова, например, следующая задача:

«Однажды Черт предложил Бездельнику заработать. - Как только ты перейдёшь через этот мост, - сказал он – деньги удвоятся. Можешь переходить по нему сколько хочешь раз, но после каждого перехода отдавай мне за это 24 копейки. Бездельник согласился и … после третьего перехода остался без гроша. Сколько денег было у него сначала?»

Вторая - классическая задача, интересная парадоксальностью формулировки условия. Этапы «синтетического» решения развёртываются в ней, как и в предыдущей задаче, в порядке, противоположном ходу описанных событий.

«Торговка яйцами продала первому покупателю половину всего числа имевшихся в её корзине яиц и ещё пол-яйца; второму покупателю - половину остатка и ещё пол-яйца, третьему - половину остатка и ещё пол-яйца, после чего у неё ничего не осталось. Сколько яиц было в корзине в начале?»

В других случаях составление уравнения требует проведения такого рассуждения, которое само по себе достаточно для достижения цели. Это-арифметические задачи в полном смысле этого слова: алгебраическое их решение не легче, а труднее и обычно сопряжено с введением лишних неизвестных, которые потом приходится исключать, и т.п.

Так, если, например, в задаче «Таня сказала: у меня на 3 брата больше, чем сестёр. На сколько в Таниной семье братьев больше, чем сестёр?» обозначить число братьев через x, число сестёр через y, то уравнение будет x − (y − 1) = 3, но если мы уже догадались, что надо написать y−1 (сестра сама себя не считала), то и так ясно, что братьев не на 3, а только на 2 больше, чем сестёр.

Приведём ещё несколько примеров.

«Я грёб вверх по течению и, проезжая под мостом, потерял шляпу. Через 10 мин я это заметил и, повернув и гребя с той же силой, нагнал шляпу в 1 км ниже моста. Какова скорость течения реки?»

Решение: 1 (60:(10+10))=3(км/ч)

«К моему приезду на станцию за мной обычно высылали машину. Приехав однажды на час раньше, я пошёл пешком и, встретив посланную за мной машину, прибыл с ней на место на 10 мин раньше обычного срока. Во сколько раз машина идёт быстрее, чем я пешком?»

Рассмотрим решение данной задачи по действиям:

1) 10:2=5 (мин) – время, которое оставалось машине для приезда на станцию в срок от места встречи.

2) 60-5=55 (мин) - время, которое затратил пешеход на то же расстояние.

3) 55:5=11(раз) машина едет быстрее.

«Чтобы проплыть некоторое расстояние по течению на лодке, требуется времени втрое меньше, чем против течения. Во сколько раз скорость движения лодки больше скорости течения?»

В этой задаче надо догадаться перейти от времени к расстояниям.

Это очень хорошие арифметические задачи: они требуют ясного представления о соответствующей конкретной ситуации, а не действий по заученным формальным образцам.

Вот ещё пример арифметической задачи, для решения которой не надо производить никаких «действий»:

« Какой-то озорник из бутылки с дегтем перелил ложку дегтя в банку с медом. Перемешал тщательно, а затем такую же ложку смеси перелил из банки в бутылку с дегтем. Затем он проделал это ещё раз. Чего получилось больше: меда в бутылке с дегтем или дегтя в банке с медом? »

Для решения задачи достаточно задать себе вопрос: куда девался из бутылки дёготь, который был вытеснен мёдом?

Это не алгебра, не приведение подобных членов и не «перенесение из одной части в другую с обратным знаком». Это как раз та логика, связанная с воображаемыми, но имеющими в области изучаемых величин вполне реальное значение операциями, развитие и совершенствование которой входит в прямые задачи арифметики.

Разграничения между арифметическими и алгебраическими по своему характеру задачами являются как бы несколько размытыми, так как они зависят от количественных признаков, в оценке которых можно расходиться, подобно тому как нельзя провести грань между «несколькими зёрнами» и «кучей зёрен».

Остановимся подробнее на видах текстовых задач и способах их решения. Рассмотрим те задачи, которые многие склонны решать с помощью уравнений, а они при этом имеют простые и порой очень красивые решения по действиям.

1. Нахождение задач по их кратному отношению и сумме или разности (на «части»).

Знакомство с такими задачами надо начинать с тех, где речь идёт о частях в чистом виде. При их решении создаётся основа для решения задач на нахождение двух чисел по их отношению и сумме (разности). Учащиеся должны научиться принимать подходящую величину за 1 часть, определять, сколько таких частей приходиться на другую величину, на их сумму (разность).

а) Для варенья на 2 части клубники берут 3 части сахара. Сколько сахара нужно взять на 3 кг клубники?

б) Купили 2700 г сухофруктов. Яблоки составляют 4 части, груши – 3 части, сливы – 2 части. Сколько граммов яблок, груш и слив в отдельности?

в) Девочка прочитала в 3 раза меньше страниц, чем ей осталось. Сколько страниц в книге, если она прочитала на 42 страницы меньше?

Решение данной задачи желательно начинать с чертежа:

1) – приходиться на 42 страницы.

2) – 1 часть, или столько страниц прочитала девочка.

3) – в книге.

В дальнейшем ученики смогут решать и более сложные задачи.

в) Задача С.А. Рачинского. Я провел год в Москве, в деревне и в дороге - и притом в Москве в 8 раз больше времени, чем в дороге, а в деревне в 8 раз более, чем в Москве. Сколько дней я провел в дороге, в Москве и в деревне?

г) При уборке урожая в совхозе ученики собрали помидоров в 2 раза больше, чем огурцов, и в 3 раза меньше, чем картофеля. Сколько овощей в отдельности собрали ученики, если картофеля было собрано на 200 кг больше, чем помидоров?

д) Говорит дед внукам: «Вот вам 130 орехов. Разделите их на 2 части так, чтобы меньшая часть, увеличенная в 4 раза, равнялась бы большей части, уменьшенной в 3 раза».

е) Сумма двух чисел 37,75. Если первое слагаемое увеличить в 5 раз, а второе слагаемое – в 3 раза, то новая сумма окажется равной 154,25. Найти эти числа.

Задачи на делении числа в данном отношении относятся к данному типу.

2. Нахождение двух чисел по их сумме и разности.

а) В двух пачках 50 тетрадей, причём в первой пачке на 8 тетрадей больше. Сколько тетрадей в каждой пачке?

Решение задач такого вида я обязательно начинаю с чертежа. Затем предлагаю уравнять величины. Ребята предлагают два способа: убрать из первой пачки или добавить во вторую. Так определяются основные два способа: через удвоенное меньшее число или удвоенное большее число.

Когда эти способы будут отработаны, уместно показать «старинный» способ решения задач такого вида. После вопроса «Каким образом можно уравнять стопки тетрадей, и при этом общее количество тетрадей не изменилось?» учащиеся догадываются, как это сделать, и делают вывод: чтобы найти меньшее число, надо из полусуммы вычесть полуразность, а, чтобы найти большее число, надо к полусумме прибавить полуразность. Сильные учащиеся могут обосновать этот способ с помощью преобразования буквенных выражений:

С применением данного способа следующая задача решается в одно действие:

б) Среднее арифметическое двух чисел равно 3, а их полуразность равна 1. Какова величина меньшего числа?

меньшее число.

Приём уравнивания применим и в задаче:

в) 8 телят и 5 овец съели 835 кг корма. За это время каждому телёнку дали на 28 кг корма больше, чем овце. Сколько корма съел каждый телёнок и каждая овца?

3. Задачи на «предположение».

Задачи такого типа связаны с предполагаемыми действиями с предметами и величинами. В традиционной методике задачи такого типа имели и другие названия по наиболее известным задачам: на «синее и красное сукно», на «смешение ΙΙ рода». Думаю, что самой известной среди задач на «предположение» является старинная китайская задача.

а) В клетке сидят фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнать число фазанов и число кроликов.

Представьте, что в клетке сидят только фазаны. Сколько у них ног?

Почему ног меньше? (Не все фазаны, среди них есть кролики). На сколько ног больше?

Если одного фазана заменить на кролика, то на сколько увеличится число ног? (На 2)

Можно выбрать другой способ, представив, что все кролики.

Очень интересно другое рассуждение, данное старыми мастерами методики математики и вызывающее у детей большой интерес.

- Представим, что на верх клетки, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?
2·35= 70(н.)
- Но в условии задачи даны 94 ноги, где же остальные?

- Остальные не посчитаны - это передние лапы кроликов.

- Сколько их?
94 – 70 = 24(н.)
- Сколько же кроликов?
24:2 = 12
А фазанов?
35 – 12 = 23

Усвоив алгоритм рассуждения, ребята легко решают и следующие задачи:

б) Смешали 135 фунтов чая двух сортов общей стоимостью 540р. Сколько фунтов того и другого сорта в отдельности взяли, если фунт первого сорта стоил 5р., а фунт второго сорта стоил 3р.?

в) На 94р. купили 35 аршин синего и красного сукна. За аршин синего сукна платили по 2р., а за аршин красного сукна платили по 4р. Сколько аршин того и другого сукна в отдельности купили?

г) Хозяин купил 112 баранов старых и молодых и заплатил 49р. 20 алтын. За старого барана он платил по 15 алтын и по 4 полушки, а за молодого барана по 10 алтын. Сколько и каких баранов было куплено? Алтын – 3 копейки, полушка – четверть копейки.

Интересной мне показалась задача из статьи И.В. Арнольда «Принципы отбора и составления арифметических задач» (1946г.) про вагоны:

д) «Проезжая мимо станции, я заметил стоящий на станции товарный поезд из 31 вагона и услышал разговор смазчика со сцепщиком. Первый сказал: „105 осей всего пришлось проверить“. Второй заметил, что в составе много четырёхосных вагонов-втрое больше, чем двухосных, остальные трёхосные. На следующем перегоне я захотел, от нечего делать, подсчитать, сколько каких вагонов было в этом составе. Как это сделать?»

Арифметическое решение - проще алгебраического и требует отчётливого представления о том, что двухосные и четырёхосные входят в состав (в количественном отношении) определенными группами (по 4 вагона). Воображаемая «замена» всех вагонов трёхосными- обычный и уже хорошо знакомый учащимся приём.

Вспомогательным средством может служить графическое линейное отображение условий задачи.

4. Задачи на движение.

Данные задачи являются традиционно трудными. У учащихся должны быть хорошо сформированы такие понятия как скорость сближения и скорость удаления. Когда ученики научатся решать такие задачи с помощью уравнения, им будет гораздо проще добраться до ответа. Но легче - не значит полезнее. Много лет назад один мой ученик, довольно-таки сильный в математике, на уроке увлечённо искал арифметический способ решения задачи, в то время, когда весь класс её решил с помощью уравнения. Я хорошо запомнила его слова, очень мне понятные: «А мне не интересно уравнением».

Приведу условия и решение нескольких задач.

а) Старинная задача. Из Москвы в Тверь вышли одновременно два поезда. Первый проходил в час 39 вёрст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 вёрст. Сколько вёрст от Москвы до Твери?

Решение:

1) на столько отстал второй поезд.

2) – скорость удаления.

3) был в пути первый поезд.

4) расстояние от Москвы до Твери .

б) Два самолёта вылетели одновременно из Москвы в одном и том же направлении: один – со скоростью 350 км/ч, другой – со скоростью 280 км/ч. Через два часа первый уменьшил скорость до 230 км/ч. На каком расстоянии от Москвы второй самолёт догонит первый?

Решение:

1) скорость удаления.

2) – на столько отстал второй самолёт.

3) скорость сближения.

4) столько времени потребуется, чтобы второй самолёт догнал первый.

5) (км) – на таком расстоянии до Москвы второй самолёт догонит первый.

в) Из двух городов, расстояние между которыми 560 км, вышли два автомобиля навстречу друг другу и встретились через 4 часа. Если скорость первого автомобиля уменьшить на 15%, а скорость второго увеличить на 20%, то встреча произойдёт тоже через 4 ч. Найти скорость каждого автомобиля.

Решение:

Примем за 100% или за 1 скорость первого автомобиля.

1) скорость сближения.

2) – составляет скорость второго от скорости первого.

3) приходится на скорость сближения.

4) скорость первого автомобиля.

5) скорость второго автомобиля .

г) Поезд за четверть минуты проходит мимо телеграфного столба, а за 50 с – мост длиною 0,7 км. Вычислить среднюю скорость движения поезда и его длину.

Решение: При решении данной задачи учащиеся должны понять, что, пройти мост – пройти путь, равный длине моста и длине состава, пройти мимо телеграфного столба – пройти путь, равный длине состава.

1) поезд проходит путь, равный длине моста.

2) – скорость поезда.

3) длина поезда.

д) На прохождение пути между двумя пристанями пароходу необходимо на 40 мин больше, чем катеру. Скорость катера 40 км/ч, а парохода – 30 км/ч. Найти расстояние между пристанями.

Решение: 40 мин ч

1) отставание парохода.

2) – скорость удаления

2) – был в пути катер.

3) расстояние между пристанями.

Это лишь несколько задач на движения из их огромного многообразия. На их примере я хотела показать, как можно обойтись без уравнений, пока умения их решать у учащихся не сформированы. Естественно, такие задачи под силу сильным ученикам, но это большая возможность для их математического развития.

5. Задачи на «бассейны».

Это ещё один тип задач, вызывающий и интерес, и трудности у детей. Его можно назвать и задачами на совместную работу, к ним относится и часть задач на движение.

Название данного типа даёт не без известная старинная задача:

а) В городе Афинах был водоём, в который проведены 3 трубы. Одна из труб может наполнить бассейн в 1ч, другая, более тонкая, в 2 ч, третья, ещё более тонкая, в 3ч. Итак, узнай, за какую часть часа все три трубы вместе наполнят бассейн?

Решение:

1) (в./ч) – скорость заполнения через ΙΙ трубу трубу.

2) (в./ч) – скорость заполнения через ΙΙΙ трубу.

3) (в./ч) – общая скорость.

4) (ч) – заполнят водоём 3 трубы.

Можно предложить детям ещё одно интересное решение:

За 6 часов через Ι трубу заполняется 6 водоёмов, через ΙΙ трубу – 3 водоёма, через ΙΙΙ трубу – 2 водоёма. Все трубы за 6 ч заполнят 11 водоёмов, соответственно на заполнение одного водоёма потребуется ч.

Аналогичное решение имеет следующая задача:

б) Лев съел овцу одни часом, а волк съел овцу за два часа, а пёс съел овцу в три часа. Сколько бы они скоро, все три – лев, волк и пёс – ту овцу съели, сочти. (Математические рукописи 17 века).

в) Один человек выпьет кадь пития за 14 дней, а со женою выпьет туже кадь за 10 дней, и ведательно есть, в колико дней жена его особо выпьет ту же кадь. (из «Арифметики» Магницкого)

Решение:

1) (ч) – выпивают в день вместе.

) (ч) – выпивает в день муж.

3) (ч) – выпивает в день жена.

4) (д.) – потребуется жене, чтобы выпить кадь пития.

г) Старинная задача. Дикая утка от южного моря до северного моря летит 7 дней. Дикий гусь от северного моря до южного моря летит 9 дней. Теперь дикая утка и дикий гусь вылетают одновременно. Через сколько дней они встретятся? (решение аналогичное)

д) Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. Они встретились через 40 мин после выхода, а через 32 мин после встречи первый пришёл в В. Через сколько часов после выхода из В второй пришёл в А? (ч) - будут работать вместе.

7) – потребуется для разгрузки баржи.

6. Задача Ньютона.

Особый интерес у ребят вызывает задача о коровах, поедающих траву. Задача впервые была опубликована во «Всеобщей арифметике» И. Ньютона, но с той поры она не утратила своей актуальности и является одной из красивых арифметических задач, которую хотя и можно решить составлением уравнения, но намного красивее – сделать это с помощью последовательных рассуждений. Мне приходилось наблюдать, как над ней ломают голову старшеклассники, вводя несколько переменных, и в то же время легко разбираются в решении пятиклассники, если им подсказать идею решения.

7) (п.) – буде съедено в день, а это и есть количество коров.

Ответ: 20 коров.

В данной работе приведены примеры и разобраны лишь некоторые из огромного количества текстовых задач.

В завершении хотелось бы отметить, что необходимо приветствовать различные способы решения задач. Именно решение задач разными способами – чрезвычайно увлекательное занятие для учащихся различных возрастных групп. Интерес, любопытство, творчество, желание добиться успеха – это привлекательные стороны деятельности. Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

Литература.

1. Арнольд И.В. Принципы отбора и составления арифметических задач // Известия АПН РСФСР. 1946. - Вып. 6 - С. 8-28.

2. Зубелевич Г. И. Сборник задач московских математических олимпиад. – М.: Просвещение, 1971.

3. Шевкин А. В. Обучение решению текстовых задач в 5-6 классах. – М.: Галс плюс,1998.

4 . Шевкин А.В. Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1-4. – М.: Педагогический университет «Первое сентября», 2006. 88 с.

Дистанционное обучение педагогов по ФГОС по низким ценам

Вебинары , курсы повышения квалификации , профессиональная переподготовка и профессиональное обучение . Низкие цены. Более 7900 образовательных программ. Диплом госудаственного образца для курсов, переподготовки и профобучения. Сертификат за участие в вебинарах. Бесплатные вебинары. Лицензия.

Несмотря на то, что вычислительная деятельность вызывает интерес у детей, а самой проблеме отводится значительное место в программе обучения в детском саду, многие старшие дошкольники и даже младшие школьники (учащиеся 1--3-х классов) испытывают значительные трудности именно в решении арифметических задач. Около 20 % детей седьмого года жизни испытывают трудности в выборе арифметического действия, аргументации его. Эти дети, решая арифметические задачи, в выборе арифметического действия ориентируются в основном на внешние несущественные «псевдоматематические» связи и отношения между числовыми данными в условии задачи, а также между условием и вопросом задачи. Это проявляется прежде всего в непонимании ими обобщенного содержания понятий: «условие», «вопрос», «действие», а также знаков (+,-,=), в неумении правильно выбрать необходимый знак, арифметическое действие в том случае, когда заданное в условии конкретное отображение не соответствует арифметическому действию (прилетели, добавили, дороже -- сложение; улетели, взяли, дешевле -- вычитание). Более того, иногда отдельные воспитатели ориентируют детей именно на эти псевдоматематические связи. В таких ситуациях вычислительная деятельность формируется недостаточно осознанно (М. А. Бантова, Н. И. Моро, А. М. Пышкало, Е. А. Тарханова и др.).

Очевидно, основная причина невысокого уровня знаний детей заключается в самой сути того, что отличает вычислительную деятельность от счетной. Во время счета ребенок имеет дело с конкретными множествами (предметы, звуки, движения). Он видит, слышит, чувствует эти множества, имеет возможность практически действовать с ним (накладывать, прикладывать, непосредственно сравнивать). Что же касается вычислительной деятельности, то она связана с числами. А числа -- это абстрактные понятия. Вычислительная деятельность опирается на разные арифметические действия, которые также являются обобщенными, абстрагированными операциями с множествами.

Понимание самой простой арифметической задачи требует анализа ее содержания, выделения ее числовых данных, понимания отношений между ними и, конечно, самих действий, которые ребенок должен выполнить.

Дошкольникам особенно трудно понимать вопрос задачи, который отражает математическую сущность действий, хотя именно вопрос задачи направляет внимание ребенка на отношения между числовыми данными.

Обучение дошкольников решению арифметических задач подводит их к пониманию содержания арифметических действий (добавили -- сложили, уменьшили -- вычли). Это также возможно на определенном уровне развития аналитико-синтетической деятельности ребенка. Для того чтобы дети усвоили элементарные приемы вычислительной деятельности, необходима предварительная работа, направленная на овладение знаниями об отношениях между смежными числами натурального ряда, о составе числа, счете группами и т. д.

Особое значение в формировании вычислительной деятельности приобретают четкая системность и поэтапность в работе.

Решить сложением (к трем прибавить один)». Дети делают вывод: «К кормушке прилетело четыре птички».

«В магазине было пять телевизоров, один из них продали. Сколько телевизоров осталось в магазине?» Решая эту задачу, воспитатель учит аргументировать свои действия так: было пять телевизоров, один продали, следовательно, их осталось на один меньше. Чтобы узнать, сколько телевизоров осталось, нужно от пяти отнять один и получится четыре.

Воспитатель формирует у детей представления о действиях сложения и вычитания, одновременно знакомит их со знаками «+» (прибавить, сложить), «-» (отнять, вычесть) и «=» (равно, получится).

Таким образом, ребенок постепенно от действий с конкретными множествами переходит к действиям с числами, т. е. решает арифметическую задачу.

Уже на втором-третьем занятии наряду с задачами-драматизапиями и задачами-иллюстрациями можно предлагать детям решать устные (текстовые) задачи. Этот этап работы тесно связан с использованием карточек с цифрами и знаками. Особенно полезны упражнения детей в самостоятельном составлении ими аналогичных задач. При этом воспитатель должен помнить, что основное заключается в нахождении не столько ответа (названия числа), сколько пути к нему. Так, дети решают задачу: «На участке детского сада в первый день посадили четыре дерева, а на следующий -- еще одно дерево. Сколько деревьев посадили за два дня?» Воспитатель учит ребенка мыслить во время решения задачи. Он спрашивает детей: «О чем идет речь в задаче?» -- «О том, что на площадке детского сада посадили деревья». -- «Сколько деревьев посадили в первый день?» -- «Четыре». -- «Сколько деревьев посадили во второй день?» -- «Одно дерево». -- «А что спрашивается в задаче?» -- «Сколько всего деревьев посадили на участке за два дня?» -- «Как можно узнать, сколько деревьев посадили на участке?» -- «К четырем прибавить один».

Воспитатель подводит детей к такому обобщению: чтобы к числу прибавить один (единицу), не надо пересчитывать все предметы, надо просто назвать следующее число. Когда к четырем прибавляем один, мы просто называем следующее за числом «четыре» число «пять». А когда надо вычесть, отнять один, следует назвать предыдущее число, стоящее перед ним. Таким образом, опираясь на имеющиеся у детей знания, воспитатель вооружает их приемами присчитывания (прибавления) к числу единицы и вычитания единицы. Ниже предлагаются несколько задач первого типа.

  • 1. На ветке сидело пять воробьев. К ним прилетел еще один воробей. Сколько птичек стало на ветке?
  • 2. Таня и Вова помогали маме. Таня почистила три картофелины, а Вова -- одну морковку. Сколько овощей почистили дети?
  • 3. На одной клумбе расцвело пять тюльпанов, на другой -- один пион. Сколько цветов расцвело на обеих клумбах вместе?

Если с первых шагов обучения дети осознают необходимость, значение анализа простых задач, то позднее это поможет им в решении сложных математических задач. Активность умственной деятельности ребенка во многом зависит от умения воспитателя ставить вопросы, побуждать его мыслить. Так, воспитатель спрашивает у детей: «О чем следует узнать в задаче? Как можно ответить на вопрос? Почему ты считаешь, что надо сложить? Как ты прибавишь к четырем единицу?»

Следующий этап в работе связан с ознакомлением детей с новыми задачами (задачами второго типа) на отношения «больше -- меньше на несколько единиц». В этих задачах арифметические действия подсказаны в самом условии задачи. Отношение «больше на единицу» требует от ребенка увеличения, присчитывания, сложения. Выражение «больше (меньше) на единицу» дети уже усвоили в группах пятого-шестого годов жизни, сравнивая смежные числа. При этом акцентировать внимание детей на отдельных словах «больше», «меньше» и тем более ориентировать их на выбор арифметического действия только в зависимости от этих слов не рекомендуется. Позднее, при решении «непрямых, косвенных» задач возникает потребность переучивать детей, а это намного сложнее, чем научить правильно делать выбор арифметического действия. Ниже даются примерные задачи второго типа.

  • 1. В Машину чашку с чаем мама положила две ложки сахара, а в большую чашку папы -- на одну ложку больше. Сколько сахара положила мама в чашку папы?
  • 2. На станции стояли четыре пассажирских поезда, а товарных -- на один меньше. Сколько товарных поездов было на станции?
  • 3. Дети собрали на огороде три ящика помидоров, а огурцов -- на один меньше. Сколько ящиков огурцов собрали дети?

В начале обучения дошкольникам предлагаются только. прямые задачи, в них и условие, и вопрос словно подсказывают, какое действие следует выполнить: сложение или вычитание.

Шестилетним детям необходимо предлагать сравнивать задачи разных типов, хотя это для них является сложным делом, поскольку дети не видят текста, а обе задачи необходимо удерживать в памяти. Основным критерием сравнения является вопрос. В вопросе подчеркивается, что нужно определить только количество второго множества, которое больше (меньше) на один, или общее количество (остаток, разницу). Арифметические действия одинаковые, а цель разная. Именно это и способствует развитию мышления детей. Воспитатель постепенно подводит их к этому пониманию.

Еще более важным и ответственным этапом в обучении детей решению арифметических задач является ознакомление их с третьим типом задач -- на разностное сравнение чисел. Задачи этого типа решаются только вычитанием. При ознакомлении детей с этим типом задач их внимание обращается на основное -- вопрос в задаче. Вопрос начинается со слов «на сколько?», т. е. всегда необходимо определить разницу, разностные отношения между числовыми данными. Воспитатель учит детей понимать отношения зависимости между числовыми данными. Анализ задачи должен быть более детальным. Во время анализа дети должны идти от вопроса к условию задачи. Следует объяснить, что в выборе арифметического действия основным всегда является вопрос задачи, от его содержания и формулировки зависит решение. Поэтому следует начинать с анализа вопроса. Сначала детям предлагают задачу без вопроса. Например: «На прогулку дети взяли четыре больших мяча и один маленький. Что это такое? Можно ли это назвать арифметической задачей?» -- обращается воспитатель к детям. «Нет, это только условие задачи», -- отвечают дети. «А теперь поставьте сами вопрос к этой задаче».

Следует подвести детей к тому, что к этому условию задачи можно поставить два вопроса:

  • 1. Сколько всего мячей взяли на прогулку?
  • 2. На сколько больше взяли больших мячей, чем маленьких?

В соответствии с первым вопросом следует выполнить сложение, а в соответствии со вторым -- вычитание. Это убеждает детей в том, что анализ задачи следует начинать с вопроса. Ход рассуждений может быть таким: чтобы узнать, сколько всего мячей взяли дети на прогулку, надо знать, сколько взяли больших и маленьких отдельно и найти их общее количество. Во втором случае надо найти, на сколько больше одних мячей, чем других, т. е. определить разницу. Разницу всегда находят вычитанием: от большего числа вычитают меньшее.

Итак, задачи третьего типа помогают воспитателю закрепить знания о структуре задачи и способствуют развитию у детей умения различать и находить соответствующее арифметическое действие.

На этих занятиях не механически, а более или менее осознанно дети выполняют действия, аргументируют выбор арифметического действия. Задачи этого типа также следует сравнивать с задачами первого и второго типов.

Вычислительная деятельность в дошкольном возрасте предполагает овладение детьми арифметическими действиями сложения и вычитания, относящимися к операционной системе математики и подчиняющимися особым закономерностям операционных действий.

Чтобы дети лучше запоминали числовые данные, используются карточки с цифрами, а несколько позже и знаками.

Вначале числовые данные в задачах лучше ограничить первыми пятью числами натурального ряда. Дети в таких случаях, как правило, легко находят ответ. Основная цель этих занятий -- научить анализировать задачу, ее структуру, понимать математическую сущность. Дети учатся выделять структурные компоненты задачи, числовые данные, аргументировать арифметические действия и т. д.

Особое внимание в этот период следует уделить обучению детей составлению и решению задач по иллюстрациям и числовым примерам.

Так, воспитатель обращается к детям: «Сейчас мы с вами будем составлять и решать задачи по картине». При этом привлекается внимание детей к картине, на которой изображена речка, на берегу играют пять детей, а двое детей в лодках плывут к берегу. Предлагается рассмотреть картину и ответить на вопрос: «Что нарисовано на картине? О чем хотел рассказать художник? Где играют дети? Сколько детей на берегу? Что делают эти дети? (Показывает на детей в лодке.) Сколько их? Когда они выйдут на берег, их станет больше или меньше на берегу? Составьте задачу по этой картинке».

Воспитатель вызывает двух-трех детей и выслушивает составленные ими задачи. Потом выбирает наиболее удачную задачу, и все вместе решают ее. «О чем идет речь в задаче? Сколько детей играло на берегу? Сколько детей приплыло в лодке? Что надо сделать, чтобы решить задачу? Как к числу "пять" можно прибавить число "два"?» -- 5+1 + 1=7.

Воспитатель следит за тем, чтобы дети правильно формулировали арифметическое действие и объясняли прием присчитывания по единице.

Аналогично составляют и решают другие задачи. В конце занятия воспитатель спрашивает, чем занимались дети, уточняет их ответы: «Правильно, мы учились составлять и решать задачи, выбирать соответствующее действие, прибавлять и вычитать число 2 путем присчитывания и отсчитывания по единице».

Примерно так же дети составляют и решают задачи по числовому примеру. Составление и решение арифметических задач по числовому примеру требует еще более сложной умственной деятельности, поскольку содержание задачи не может быть произвольным, а опирается на числовой пример как на схему. В начале обращается внимание детей на само действие. В соответствии с действием (сложение или вычитание) составляется условие и вопрос в задаче. Можно усложнить цель -- не по каждому числовому примеру составляется новая задача, а иногда по одному и тому же примеру составляется несколько задач разных типов. Это, естественно, значительно сложнее, зато наиболее эффективно для умственного развития ребенка.

Так, по числовому примеру 4 + 2 дети составляют и решают две задачи: первую -- на нахождение суммы (сколько всего), вторую -- на отношение «больше на несколько единиц» (на 2). При этом ребенок должен осознавать отношения и зависимости между числовыми данными.

На основе примера 4 -- 2 дети должны составить три задачи: первого, второго и третьего типа. Сначала воспитатель помогает детям вопросами, предложениями: «Сейчас мы составим задачу, где будут слова "на 2 меньше", а потом по этому самому примеру составим задачу, где не будет таких слов, и нужно будет определить разницу в количестве (сколько осталось)». А потом воспитатель спрашивает: «А можно ли на основе этого примера составить новую, совсем другую задачу?» Если дети сами не могут сориентироваться, то воспитатель подсказывает им: «Составьте задачу, где вопрос начинался бы со слов "на сколько больше (меньше)"».

Такие занятия с детьми помогают им понять основное: арифметические задачи по своему содержанию могут быть разными, а математическое выражение (решение) -- одинаковым. В этот период обучения большое значение имеет «развернутый» способ вычисления, активизирующий умственную деятельность ребенка. Накануне воспитатель повторяет с детьми количественный состав числа из единиц и предлагает прибавлять число 2 не сразу, а присчитывать сначала 1, потом еще 1. Включение развернутого способа в вычислительную деятельность обеспечивает развитие логического мышления, способствуя при этом усвоению сущности этой деятельности.

После того как у детей сформируются представления и некоторые понятия об арифметической задаче, отношениях между числовыми данными, между условием и вопросом задачи, можно переходить к следующему этапу в обучении -- ознакомлению их с преобразованием прямых задач в обратные. Это даст возможность еще глубже усвоить математическую формулу задачи, специфику каждого типа задач. Воспитатель объясняет детям, что каждую простую арифметическую задачу можно преобразовать в новую, если искомое задачи взять за одно из данных новой задачи, а одно из данных преобразованной задачи считать искомым в новой задаче.

Такие задачи, где одно из данных первой является искомым во второй, а искомое второй задачи входит в данные первой, называются взаимно-обратными задачами.

Итак, из каждой прямой арифметической задачи путем преобразования можно сделать 2 обратные задачи.

Если дети при решении задач с первых шагов будут ориентироваться на существенные связи и отношения, то слова «стало», осталось» и другие не дезориентируют их. Независимо от этих слов дети правильно выбирают арифметическое действие. Более того, именно на этом этапе педагог должен обратить внимание детей на независимость выбора решения задачи от отдельных слов и выражений.

Ознакомление с прямыми и обратными задачами повышает познавательную активность детей, развивает у них способность логически мыслить. При решении любых задач дети должны исходить из вопроса задачи. Взрослый учит ребенка аргументировать свои действия, в данном случае аргументировать выбор арифметического действия. Ход мыслей при этом может идти по схеме: «Чтобы узнать... нам необходимо... потому что...» и т. д.

В группе седьмого года жизни детей можно будет ознакомить с новыми приемами вычислений -- на основе счета группами. Дети, научившись считать парами, тройками, могут сразу прибавлять число 2, а потом и 3. Однако спешить с этим не следует. Важно, чтобы у детей сформировались прочные, достаточно осознанные умения и навыки присчитывания и отсчитывания по единице.

В современных исследованиях по методике математического развития есть некоторые рекомендации к формированию у детей обобщенных способов решения арифметических задач. Одним из таких способов является решение задач по схеме-формуле. Это положение обосновано и экспериментально проверено в исследованиях Н. И. Непомнящей, Л. П. Клюевой, Е. А. Тархановой, Р. Л. Непомнящей. Предложенная авторами формула является схематическим изображением отношения части и целого. Работой, предшествующей этому этапу, является практическое деление предмета (круга, квадрата, полоски бумаги) на части. То, что дети делают практически, воспитатель потом изображает в схеме-формуле (рис. 29). При этом он рассуждает так: «Если круг поделить пополам, то получится две половины. Если эти половины сложить, то образуется снова целый круг. Если от целого круга отнять одну часть, то получим другую часть этого круга. А теперь попробуем, прежде чем решать некоторые задачи (подчеркивается слово «некоторые»), определить, на что ориентирует нас вопрос в задаче: на нахождение части или целого. Неизвестное целое всегда находится сложением частей, а часть целого -- вычитанием».

Например: «Для составления узора девочка взяла 4 синих и 3 красных кружочка. Из скольких кружочков девочка составила узор?» Дети рассуждают так: «По условию задачи рисунок составлен из синих и красных кружочков. Это части. Надо узнать, из скольких кружочков составлен узор. Это целое. Целое всегда находится сложением частей (4 + 3 =)».

Для детей высокого уровня интеллектуального развития можно предлагать проблемные (косвенные) задачи. Ознакомление детей седьмого года жизни с задачами такого типа возможно и имеет большое значение для их умственного развития. На этой основе в дальнейшем будут формироваться умения осуществлять анализ арифметической задачи, объяснять ход решения, выбор арифметического действия. Косвенные задачи отличаются тем, что в них оба числа характеризуют один и тот же объект, а вопрос направлен на определение количества другого объекта. Трудности в решении таких задач определяются самой структурой и содержанием задачи. Как правило, в этих задачах есть слова, которые дезориентируют ребенка при выборе арифметического действия. Несмотря на то, что в условии задачи есть слова «больше», «прилетели», «старше» и др., следует выполнять обратное этому действие -- вычитание. Для того чтобы ребенок правильно сориентировался, воспитатель учит его более тщательно анализировать задачу. Чтобы выбрать арифметическое действие, ребенок должен уметь рассуждать, логически мыслить. Пример косвенной задачи: «В корзине лежало 5 грибков, что на 2 грибочка больше, чем их лежит на столе. Сколько грибочков лежит на столе?» Часто дети, ориентируясь на несущественные признаки, а именно на отдельные слова (в данном случае слово «больше»), спешат выполнить действие сложения, допуская грубую математическую ошибку.

Воспитатель подчеркивает особенности таких задач, предлагая вместе порассуждать так: «В условии задачи оба числа характеризуют один объект -- количество грибочков в корзине. В ней 5 грибочков и в ней же на 2 больше, чем на столе. Необходимо узнать, сколько грибочков на столе. Если в корзине на 2 больше, то на столе лежит на 2 грибочка меньше. Чтобы узнать, сколько их на столе, следует из 5 вычесть 2 (5-2 = ?)».

При составлении задач воспитатель должен помнить о том, что важно разнообразить формулировки в условии и вопросе задачи: насколько выше, тяжелее, дороже и т. д.

Наряду с решением арифметических задач детям предлагаются арифметические примеры, которые способствуют закреплению навыков вычислительной деятельности. При этом детей знакомят с некоторыми законами сложения.

Известно, что всегда легче выполнить сложение, если второе слагаемое меньше первого. Однако не всегда именно так предлагается в примере, может быть и наоборот -- первое слагаемое меньше, а второе больше (например, 2 + 1 = 1). В таком случае есть необходимость познакомить детей с переместительным законом сложения: 2 + 7 = 7 + 2. Сначала воспитатель показывает это на конкретных примерах, например на брусках. При этом он актуализирует знания детей о составе числа из двух меньших. Дети хорошо усвоили, что число 9 можно образовать (составить) из двух меньших чисел: 2 и 7 или, что тоже самое, 7 и 2. На основе многочисленных примеров с наглядным материалом дети делают вывод-обобщение: действие сложения выполнять легче, если к большему числу прибавить меньшее, а результат не изменится, если переставить эти числа, поменять их местами.

На протяжении учебного года достаточно провести 10--12 занятий по обучению детей решению арифметических задач и примеров (табл. 1).

Ниже представляем программное содержание этих занятий.

  • 1. Ознакомить с понятием «задача». Условие и вопрос в задаче. Задачи-драматизации, задачи-иллюстрации первого типа. Числа в пределах 5, одно из чисел -- 1.
  • 2. Закрепить понятие о структуре задачи. Решение задач с помощью картинок. Задачи второго типа. Знаки «+», «--», «=». Устные задачи. Числа в пределах 5, одно из чисел -- 1. Обучение приемам вычисления на основе понимания отношений между смежными числами.
  • 3. Сравнение задач первого и второго типа. Самостоятельное составление задач по картинке, по числовым данным и по условию.
  • 4. Задачи на сложение и вычитание чисел более 1 (2 = 1 + 1; 3=1 + 1 + 1). Задачи третьего типа -- на отношения между числами. Сравнение задач всех трех типов.
  • 5. Взаимно-обратные задачи. Преобразование арифметических задач. Составление задач по числовому примеру 4 + 2; 4 - 2 всех трех типов.
  • 6. Ознакомление с арифметическими примерами. Формирование навыков вычислительной деятельности. Составление задач по числовому примеру.
  • 7. Решение задач в пределах 10 на основании состава числа из двух меньших чисел. Умение аргументировать свои действия. Алгоритм рассуждения при решении задачи -- от вопроса к условию.
  • 8. Решение задач по формуле. Логика рассуждения от вопроса к условию задачи.
  • 9. Косвенные задачи. Проблемные задачи. Решение арифметических примеров.
  • 10. Нестандартные задачи (в стихотворной форме, шутки и др.). Связь с измерением и временными отношениями.
  • 11. Решение задач на сложение с опорой на переместительный закон сложения. Решение задач по формуле.
  • 12. Решение задач первого, второго и третьего типа. Логика рассуждения при решении задач. Графическое изображение содержания задачи. псевдоматематический арифметический числовой дитя

Итак, программа воспитания в детском саду и методика математического развития большое внимание уделяют проблеме обучения вычислительной деятельности. Однако только в результате целенаправленной систематической работы у детей формируются достаточно прочные и осознанные знания и навыки в вычислительной деятельности, а это является важной предпосылкой в овладении математикой в школе.

Вопросы и задания

  • 1. Раскройте специфику счетной и вычислительной деятельностей, обоснуйте связь счета и вычисления.
  • 2. Проанализируйте несколько альтернативных программ (или программ разных лет издания) с точки зрения их ориентировки на уровень интеллектуального развития каждого ребенка.
  • 3. Составьте перспективный план на один квартал по ознакомлению старших дошкольников с вычислительной деятельностью. На его примере докажите развивающий характер обучения.
  • 4. Каково ваше отношение к методике поэтапного развития вычислительной деятельности у детей дошкольного возраста?

Анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математики, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.Тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.


«задачи для тренажера методичка»

Тренажёр: «Арифметические способы решения задач»

«Сравнение чисел по сумме и разности».

    В двух корзинах 80 боровиков. В первой корзине на 10 боровиков меньше, чем во второй. Сколько боровиков в каждой корзине?

    В швейное ателье поступило 480 м джинсовой ткани и драпа. Джинсовой ткани поступило на 140 м больше, чем драпа. Сколько метров джинсовой ткани поступило в ателье?

    Модель телебашни состоит из двух блоков. Нижний блок на 130 см короче верхнего. Какова высота верхнего и нижнего блоков, если высота башни 4 м 70 см?

    В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше.

Задача из «Арифметики» Л. Н. Толстого.

    а) У двух мужиков 35 овец. У одного на 9 овец больше, чем у другого. Сколько овец у каждого?

б) У двух мужиков 40 овец, а у одного меньше против другого на 6 овец. Сколько овец у каждого мужика?

    В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

«Круги Эйлера».

    В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К жильцов с кошками. Сколько жильцов имеют и собак, и кошек? Сколько жильцов имеют только собак? Сколько жильцов имеют только кошек? Сколько жильцов не имеют ни собак, ни кошек?

    Из 52 школьников 23 занимаются волейболом и 35 баскетболом, а 16 – и волейболом, и баскетболом. Остальные не занимаются ни одним из этих видов спорта. Сколько школьников не занимаются ни одним из этих видов спорта?

    На рисунке круг А изображает всех сотрудников университета, знающих английский язык, круг Н – знающих немецкий и круг Ф – французский. Сколько сотрудников университета знает: а) 3 языка; б) английский и немецкий; в) французский? Сколько всего сотрудников университета? Сколько из них не говорит по – французски?

    В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

    Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним?

    Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

«Метод уравнивания данных».

    В 3 маленьких и 4 больших букетах 29 цветков, а в 5 маленьких и 4 больших букетах 35 цветков. Сколько цветков в каждом букете в отдельности?

    Масса 2 плиток шоколада – большой и маленькой – 120 г, а 3 больших и 2 маленьких – 320 г. Какова масса каждой плитки?

    5 яблок и 3 груши весят 810 г, а 3 яблока и 5 груш весят 870 г. Сколько весит одно яблока? Одна груша?

    Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг. Сколько весит один утенок?

    Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

    3 красных кубика и 6 синих кубиков стоят 165тг руб. Причём, пять красных дороже двух синих на 95 тг. Сколько стоит каждый кубик?

    2 альбома для рисования и 3 альбома для марок вместе стоят 160 руб., причём 3 альбома для рисования стоят на 45 руб. дороже двух альбомов для марок.

«Графы».

    Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

    Сколько трехзначных чисел можно составить из цифр 0, 1, 3, 5, если цифры в записи числа не повторяются?

    В среду в 5 классе пять уроков: математика, физкультура, история, русский язык и естествознание. Сколько различных вариантов расписания на среду можно составить?

«Старинный способ решения задач на смешение веществ».

    Как смешать масла? У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла стоимостью 7 гривен?

    Сколько надо взять карамели по цене 260 тг за 1 кг и по цене 190 тг за 1 кг, чтобы составить 21 кг смеси по цене 210 тг за килограмм?

    Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти три сорта, чтобы получить чай стоимостью 6 гривен за фунт?

    Некто имеет серебро разных проб: одно – 12 – ой пробы, другое – 10 – ой пробы, третье – 6 – ой пробы. Сколько какого серебра надо взять, чтобы получить 1 фунт серебра 9 – ой пробы?

    Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он и того и другого, если синее стоило 5 руб. за аршин, а черное - 3 руб.?

Разные задачи.

    Для новогодних подарков купили 87 кг фруктов, причем яблок было на 17 кг больше, чем апельсинов. Сколько яблок и сколько апельсинов купили?

    На новогодней елке детей в карнавальных костюмах снежинок было в 3 раза больше, чем в костюмах Петрушек. Сколько было детей в костюмах Петрушек, если их было на 12 меньше?

    Маша получила в 2 раза меньше новогодних поздравлений, чем Коля. Сколько поздравлений получил каждый, если всего их было 27?(9 и 18).

    Для новогодних призов было куплено 28 кг конфет. Конфеты “Ласточка” составили 2 части, “Муза” - 3 части, “Ромашка” - 2 части. Сколько конфет каждого сорта купили?(8, 8, 12).

    На складе есть 2004 кг муки. Можно ли её разложить в мешки массой в 9 кг и массой в 18 кг?

    В магазине "Все для чая"" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

    Лошадь съедает стог сена за 2 дня, корова - за 3, овца - за 6. За сколько дней они съедят стог, если будут есть его вместе?

Просмотр содержимого документа
«конспект урока ариф сп»

« Арифметические способы решения текстовых задач».

Человеку, изучающему математику, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три – четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.

У.У.Сойер

Цель урока : использовать знания, полученные на предыдущих уроках, проявить фантазию, интуицию, воображение, смекалку для решения тестовых задач различными способами.

Задачи урока: образовательные : анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математика, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.

Развивающие : ощутить необходимость самореализации, оказавшись в определенной ролевой ситуации.

Воспитательные: развивают личностные качества, формируют коммуникативную культуру.

Средства обучения : тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.

ХОД УРОКА.

I. Организационный момент

Здравствуйте, ребята. Садитесь. Сегодня у нас занятие по теме «Арифметические способы решения текстовых задач».

II. Актуализация знаний.

Математика - одна из древних и важных наук. Многими математическими знаниями люди пользовались еще в глубокой древности - тысячи лет назад. Они были необходимы купцам и строителям, воинам и землемерам, жрецам и путешественникам.

И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Основа хорошего понимания математики – умение считать, думать, рассуждать, находить удачные решения задач.

Сегодня мы рассмотрим арифметические способы решения текстовых задач, разберем задачи старинные, дошедшие до нас из разных стран и времен, задачи на уравнивания, на сравнение по сумме и разности и другие.

Цель занятия – вовлечь вас в удивительный мир красоты, богатства и многообразия – мир интересных задач. А, значит, познакомить с некоторыми арифметическими способами, приводящими к весьма изящным и поучительным решениям.

Задача – это почти всегда поиск, раскрытие каких – то свойств и отношений, а средства ее решения – это интуиция и догадка, эрудиция и владение методами математики.

В качестве основных в математике различают арифметический и алгебраический способы решения задач.

Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Не секрет, что человек, владеющий разными инструментами и применяющий их в зависимости от характера выполняемой работы, добивается значительно лучших результатов, чем человек, владеющий лишь одним универсальным инструментом.

Существует много арифметических способов и нестандартных приемов решения задач. С некоторыми из них я сегодня хочу вас познакомить.

1.Метод решения текстовых задач «Сравнение чисел по сумме и разности».

Задача: Бабушка осенью с дачного участка собрала 51 кг моркови и капусты. Капусты было на 15 кг больше, чем моркови. Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

Вопросы, которые соответствуют пунктам алгоритма решения задач данного класса.

1. Выяснить о каких величинах идет речь в задаче

О количестве моркови и капусты, которые собрала бабушка, вместе и в отдельности.

2. Указать, значения каких величин необходимо найти в задаче.

Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

3. Назвать зависимость между величинами в задаче.

В задаче говорится о сумме и разности величин.

4. Назвать сумму и разность значений величин.

Сумма – 51 кг, разность – 15 кг.

5. Уравниванием величин найти удвоенное значение меньшей величины (от суммы величин отнять разность величин).

51 – 15 = 36 (кг) – удвоенное количество моркови.

6. Зная удвоенное значение, найти значение меньшей величины (удвоенное значение разделить на два).

36: 2 = 18 (кг) – моркови.

7. Используя разность величин и значение меньшей величины, найти значение большей величины.

18 + 15 = 33 (кг) – капусты. Ответ: 18 кг, 33 кг. Задача. В клетке находятся фазаны и кролики. Всего 6 голов и 20 ног. Сколько кроликов и сколько фазанов в клетке ?
Способ 1. Метод подбора:
2 фазана, 4 кролика.
Проверка: 2 + 4 = 6 (голов); 4 4 + 2 2 = 20 (ног).
Это метод подбора (от слова “подбирать”). Преимущества и недостатки у этого метода решения (трудно подбирать, если числа большие) Таким образом, появляется стимул для поиска более удобных методов решения.
Итоги обсуждения: метод подбора удобен при действиях с маленькими числами, при увеличении величин он становится нерациональным и трудоемким.
Способ 2. Полный перебор вариантов.

Составляется таблица:


Ответ: 4 кролика, 2 фазана.
Название этому методу - “полный”. Итоги обсуждения: метод полного перебора удобен, но при больших величинах достаточно трудоемок.
Способ 3. Метод предположения.

Возьмем старинную китайскую задачу:

В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Узнать число фазанов и число кроликов. (Задача из китайской математической книги «Киу-Чанг», составленной за 2600 лет до н. э.).

Приведем диалог, найденный у старых мастеров математики. - Представим, что на клетку, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

Но в условии задачи даны 94 ноги, где же остальные?

Остальные ноги не посчитаны – это передние ноги кроликов.

Сколько же их?

24 (94 – 70 = 24)

Сколько же кроликов?

12 (24: 2 = 12)

А фазанов?

23 (35- 12 = 23)

Название этого метода – “метод предположения по недостатку”. Попробуйте сами объяснить это название (у сидящих в клетке 2 или 4 ноги, а мы предположили, что у всех наименьшее из этих чисел – 2 ноги).

Другой способ решения этой же задачи. - Давайте попробуем решить эту задачу - “методом предположения по избытку”: Представим себе, что у фазанов появилось еще по две ноги, тогда всех ног будет 35 × 4 =140.

Но по условию задачи, всего 94 ноги, т.е. 140 – 94= 46 ноги лишние, чьи они? Это ноги фазанов, у них появилась лишняя пара ног. Значит, фазанов будет 46: 2 = 23, тогда кроликов 35 -23 = 12.
Итоги обсуждения: метод предположения имеет два варианта – по недостатку и по избытку ; по сравнению с предыдущими методами он удобнее, так как менее трудоемок.
Задача. По пустыне медленно идет караван верблюдов, всего их 40. Если пересчитать все горбы у этих верблюдов, то получится 57 горбов. Сколько в этом караване одногорбых верблюдов? 1 способ. Решить с помощью уравнения.

Кол- во горбов у одного Кол- во верблюдов Всего горбов

2 х 2 х

1 40 - х 40 - х 57

2 х + 40 - х = 57

х + 40 = 57

х = 57 -40

х = 17

2 способ.

- Сколько горбов может быть у верблюдов?

(их может быть два или один)

Давайте каждому верблюду на один горб прикрепим цветок.

- Сколько цветков потребуется? (40 верблюдов – 40 цветов)

- Сколько горбов останется без цветов?

(Таких будет 57-40=17 . Это вторые горбы двугорбых верблюдов).

Сколько двугорбых верблюдов? (17)

Сколько одногорбых верблюдов? (40-17=23)

Каков же ответ задачи? (17 и 23 верблюдов).

Задача. В гараже стояли легковые машины и мотоциклы с колясками, всех вместе 18. У машин и мотоциклов – 65 колес. Сколько мотоциклов с колясками стояло в гараже, если у машин 4 колеса, а у мотоцикла – 3 колеса?

1 способ. С помощью уравнения:

Кол- во колес у 1 Кол- во Всего колес

Маш. 4 х 4 х

Мот. 3 18 - х 3(18 - х ) 65

4 х + 3(18 - х ) = 65

4 х + 5 4 -3 х =65

х = 65 - 54

х = 11, 18 – 11 = 7.

Переформулируем задачу : Грабители, пришедшие в гараж, где стояли 18 машин и мотоциклов с колясками, сняли с каждой машины и каждого мотоцикла по три колеса и унесли. Сколько колес осталось в гараже, если их было 65? Машине или мотоциклу они принадлежат?

3×18=54 –столько колес унесли грабители,

65- 54 = 11 – столько колес осталось (машин в гараже),

18 - 11 = 7 –мотоциклов.

Ответ: 7 мотоциклов.

Самостоятельно:

В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

- Сколько стало колес у машин и мотоциклов вместе? (4×23=92)

- Сколько запасных колес положили в каждую коляску? (92 - 87= 5)

- Сколько машин в гараже? (23 - 5=18).

Задача. В нашем классе можно изучать английский или французский языки (по выбору). Известно, что английский язык изучают 20 школьников, а французский – 17. Всего в классе 32 ученика. Сколько учащихся изучают оба языка: и английский и французский?

Изобразим два круга. В одном будем фиксировать количество школьников, изучающих английский язык, в другом –школьников, изучающих французский. Так как по условию задачи есть учащиеся, изучающие оба языка: и английский и французский , то круги будут иметь общую часть. В условии этой задачи не так легко разобраться. Если сложить 20 и 17, то получится больше чем 32. Это объясняется тем, что некоторых школьников мы здесь учли дважды – а именно тех, которые изучают оба языка: и английский и французский. Значит, (20 + 17) – 32 = 5 учащихся изучают оба языка: и английский и французский.

Англ. Фран.

20 уч. 17 уч.

(20 + 17) – 32 = 5 (учащихся).

Схемы, подобные той, которой мы воспользовались при решении задачи, в математике называют кругами (или диаграммами) Эйлера. Леонард Эйлер (1736 год) родился в Швейцарии. Но долгие годы жил работал в России.

Задача. Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

Газеты Журналы

По рисунку видно, что в доме живут 89 семей.

Задача. В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

Русский 15 Английский

21 10 19

Немецкий

Решение: 120 – (60 + 48 + 32 -21 – 19 – 15 + 10) = 25 (чел.).

Задача. Три котенка и два щенка весят 2 кг 600 г, а два котенка и три щенка весят 2 кг 900 г. Сколько весит щенок?

3 котенка и 2 щенка – 2кг 600 г

2 котенка и 3щенка – 2кг 900 г.

Из условия следует, что 5 котят и 5 щенят весят 5 кг 500 г. Значит, 1 котенок и 1 щенок весят 1 кг 100 г

2 кот.и 2 щен. весят 2 кг 200 г

Сравним условия –

2 котенка + 3щенка =2кг 900 г

2 котенка + 2 щенка = 2 кг 200 г, видим, что щенок весит 700 г.

Задача. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

Запишем краткое условие задачи:

1 лошади и 2 коров -34кг.

2 лошадей и 1 коров -35кг.

Можно ли узнать, сколько сена потребуется для 3 лошадей и 3 коров?

(для 3 лошадей и 3 коров – 34+35=69 кг)

Можно ли узнать, сколько сена потребуется для одной лошади и одной коровы? (69: 3 – 23кг)

Сколько сена потребуется для одной лошади? (35-23=12кг)

Сколько сена потребуется для одной коровы? (23 -13 =11кг)

Ответ: 12кг и 11 кг.

Задача. Мадина решила позавтракать в школьном буфете. Изучи меню и ответь, сколькими способами она может выбрать напиток и кондитерское изделие?

Кондитерские изделия

Ватрушка

Давайте предположим, что из напитков Мадина выберет чай. Какое кондитерское изделие она может подобрать к чаю? (чай – ватрушка, чай – печенье, чай – булка)

Сколько способов? (3)

А если компот? (тоже 3)

Как же узнать, сколько способов может Мадина использовать, чтобы выбрать себе обед? (3+3+3=9)

Да, вы правы. Но чтобы нам было легче решать такую задачу, мы будем использовать графы. Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Обозначим напитки и кондитерские изделия точками и соединим пары тех блюд, которые выберет Мадина.

чай молоко компот

ватрушка печенье булочка

Теперь сосчитаем количество линий. Их 9. Значит, существует 9 способов выбора блюд.

Задача. Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

Как думаете, сколькими способами? (3)

Почему? (цветов 3)

Да. Но еще есть разная посуда: или ваза, или кувшин. Давай попробуем выполнить задачу графически.

ваза кувшин

розы тюльпаны гвоздики

Посчитайте линии. Сколько их? (6)

Значит, сколько существует способов выбора у Сережи? (6)

Итог урока.

Сегодня мы решили ряд задач. Но работа не завершена, есть желание ее продолжить, и надеюсь, что это поможет вам успешно решать текстовые задачи.

Известно, что решение задач – это практическое искусство, подобное плаванию или игре на фортепиано. Научиться ему можно только подражая хорошим образцам, постоянно практикуясь.

Это лишь самые простые из задач, сложные пока остаются предметом для будущего изучения. Но их все равно их намного больше, чем мы смогли бы решить. И если по окончанию урока вы сможете решать задачи «за страницами учебного материала», то можно считать, что я свою задачу выполнила.

Знание математики помогает разрешить определённую жизненную проблему. В жизни вам придется регулярно разрешать определённые вопросы, для этого необходимо развивать интеллектуальные способности, благодаря которым развивается внутренний потенциал, развиваются умения предвидеть ситуацию, прогнозировать, принять нестандартное решение.

Урок я хочу закончить словами: «Всякая хорошо решенная математическая задача доставляет умственное наслаждение.» (Г. Гессе).

Согласны вы с этим?

Домашнее задание .

На дом будет такое задание: используя тексты решенных задач, как образец, решите задачи № 8, 17, 26 теми способами, которые мы изучили.

Арифметический способ решения текстовых задач

«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

А.В.Шевкин

Умение решать текстовые задачи – один из основных показателей математического развития учащихся, глубины усвоения ими учебного материала, четкости в рассуждениях, понимания логических аспектов различных вопросов.

Текстовые задачи для большинства школьников – трудный, а поэтому нелюбимый учебный материал. Однако, в школьном курсе математики ему придается большое значение, так как задачи способствуют развитию прежде всего логического мышления, пространственного воображения, практического применения математических знаний в деятельности человека.

В процессе решения задач учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики в решении реальных жизненных задач. Решение текстовых задач развивает логическую культуру, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.

Традиционная российская школа всегда уделяла особое внимание обучению детей решению текстовых задач. Исторически сложилось так, что достаточно долгое время математические знания из поколения в поколение передавались в виде текстовых задач с решениями. Значимость их заключалась еще в прикладном значении, так как по своему содержанию это были задачи практической направленности (расчеты банковские, торговые, земельные и др.). Образованным в России считался тот, кто умел решать эти типовые задачи, очень важные в повседневной жизни.

Необходимо отметить, что бучение решению практических задач давалось нелегко. Часто наблюдалось заучивание наизусть способа решения без осознанного понимания условия. Главное – определить тип задачи и найти правило для ее решения, понимание было не важно.

К середине XX века была разработана хорошая методика обучению решению задач. Но, к сожалению, часто наблюдалось со стороны преподавателей натаскивание учащихся на решение типовых задач, запоминание стандартных приемов. Но невозможно научиться решать задачи по заученной схеме.

В конце 60-х годов реформа школьного математического образования предполагала раннее введение уравнений с целью по-новому организовать обучение решению задач. Однако, роль алгебраического способа решения текстовых задач в 5-6 классах была преувеличена именно потому, что из школьной программы были удалены арифметические способы. И практика доказала, что без достаточной подготовки мышления учащихся решать задачи с помощью уравнений нецелесообразно. Ученик должен уметь рассуждать, представлять действия, которые происходят с предметами.

В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять достаточно внимания и не торопиться переходить к алгебраическому способу – решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, к чему они приводят. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе. Только над этим вряд ли задумывается ученик.

Очень часто мы наблюдаем, что ребенок не готов к решению задачи алгебраическим способом, когда вводим абстрактную переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что необходимо учитывать возрастные особенности детей, у которых на этот момент развито наглядно-образное мышление. Абстрактные модели им пока не под силу

Что же мы понимаем под требованием – решить задачу. Это значит найти такую последовательность действий, которая в результате анализа условия приведет к ответу на поставленный в задаче вопрос. Чтобы прийти к ответу, нужно проделать серьезный путь, начиная с момента понимания текста, уметь выделять главное, «перевести» задачу на язык математики, заменяя слова «скорее», «медленнее» на «меньше» или «больше», составлять графическую модель или таблицу, облегчающие понимание условия задачи, сопоставлять величины, устанавливая логические отношения между данными по условию и искомыми. И дается это детям очень нелегко.

Важно отметить, что текст задач должен составляться таким образом, чтобы ребенок понимал и представлял, о чем идет речь. Зачастую, прежде чем приступить к решению задачи, затрачивается много времени на разбор условия, когда учащимся приходится объяснять, что такое чугунная болванка, чем она отличается от детали, а также железобетонная опора, станок-автомат, жилая площадь и т.д. Текст задачи должен соответствовать уровню его восприятия. Конечно же, текст задачи необходимо приблизить к реальной жизни, чтобы можно было увидеть практическое применение данной модели.

Приступая к решению задачи необходимо не только представить ситуацию, о которой идет речь, но и изобразить ее на рисунке, схеме, в виде таблицы. Невозможно качественно решить задачу без составления краткой записи условия. Именно схематичное составление условия позволяет при обсуждении решения выявить все действия, которые необходимо выполнить, чтобы ответить на вопрос задачи.

Рассмотрим некоторые примеры решения текстовых задач

Задачи на движение

Данный тип задач широко распространен в школьном курсе математики. В них рассматриваются разные виды движения: навстречу, в противоположных направлениях, в одном направлении (один догоняет другого).

Для понимания этих задач удобно изобразить схему. Но, если учащийся составляет таблицу, не нужно переубеждать его в том, что данный способ краткой записи условия не очень хорош. Мы по-разному воспринимаем информацию. Может, ребенок в таком отображении лучше «видит» задачу.

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

Составим схему к задаче, которая достаточно полно отражает условие (указаны направления движения, скорости велосипедистов, время в пути до встречи, ясен вопрос):

Рассмотрим два способа решения этой задачи:

1 способ:

Традиционно мы любим решать эти задачи, вводя понятие «скорость сближения», и находим ее как сумму (или разность) скоростей участников движения. При движении навстречу друг другу – скорости складываем:

1)12 + 14 = 26 (км/ч) – скорость сближения

Зная, что время движения одинаково, второе действие позволяет по формуле пути (S = vt ) рассчитать искомое расстояние и ответить на поставленный в задаче вопрос.

2) 26 3 = 78 (км)

Составим выражение:

3(12 + 14) = 78(км)

Ответ : 78 км.

Но не все дети понимают, что это за абстрактная величина – скорость сближения. Почему можно складывать, а в других случаях вычитать скорости двух различных участников движения, объединяя их общим названием. Если ваши ученики решают эту задачу другим способом, не старайтесь их перетянуть на свою сторону. Для кого-то еще не настало время это понять, а кому-то первый способ вообще никогда не будет доступным.

2 способ:

1)12 3 = 36 (км) – путь первого велосипедиста до встречи

2)14 3 = 42 (км) – путь второго велосипедиста до встречи

3)36 + 42 = 78 (км) – расстояние между посёлками

Составим выражение:

12 3 + 14 3 = 78 (км)

Ответ : 78 км.

Постепенно, когда ребенок научится понимать такие задачи, сравнивая числовые выражения, можно показать, что оба способа взаимосвязаны, а заодно вспомнить распределительное свойство умножения:

12 3 + 14 3 = 3(12 + 14) = 78

Пример 2. В двух пачках было 54 тетради. Когда из первой пачки убрали 10 тетрадей, а из второй - 14 тетрадей, то в обеих пачках стало тетрадей поровну. Сколько было тетрадей в каждой пачке первоначально?

Как можно отобразить условие?

1.Составить таблицу:

Было

Убрали

Стало

1 пачка - ? 54 тет.

2 пачка – ?

10 тет.

14 тет.

поровну

2. Сделать рисунок

Забрали 14 шт.

Забрали 10 шт.

Поровну

Всего 54 шт.

Проанализируем решение задачи, обращая внимание на то, на какие вопросы мы даем ответы, выполняя каждое арифметическое действие:

1) Сколько всего тетрадей убрали из обеих пачек?

10 + 14 = 24 (шт.);

2) Сколько стало тетрадей в двух пачках?

    24 = 30 (шт.);

3) Сколько стало в каждой пачке тетрадей?

30: 2 = 15 (шт.);

4) Сколько было тетрадей в первой пачке первоначально?

    10 = 25 (шт.);

5) Сколько было тетрадей во второй пачке первоначально?

54 – 25 = 29 (шт.).

В 5 классе, вероятнее всего, ученик выберет именно такой способ решения задачи. А предложите ему решить эту задачу в 6 ил 7 классе. Возможно, ситуация изменится, и ученик будет решать ее с помощью уравнения. Выполняя те же действия, он не будет задумываться над многочисленными вопросами. Выбирая уравнение как средство решения задачи, очень быстро придет к тому же ответу.

Как же тогда будет выглядеть решение?

Пусть х тетрадей стало в каждой пачке после перекладывания,

тогда (х + 10) тетрадей было первоначально в первой пачке, а

(х + 14) тетрадей было первоначально во второй пачке.

Зная, что в двух пачках было 54 тетради, можно составить уравнение:

х + 10 + х + 14 = 54

В уравнении прослеживаются все те же действия, которые выполняются при арифметическом способе решения задачи.

х + х + (10 + 14) = 54; (1 действие арифметического способа)

2х = 54 – 24; (2 действие)

х = 30:2; (3 действие)

15 + 10 = 25 (шт.) (4 действие)

15 + 14 = 29 (шт.) (5 действие)

Ответ: 25 тетрадей, 29 тетрадей.

Но при этом никто не задает вопросов, что мы находим при выполнении каждого шага.

Своим ученикам я всегда показываю, что текст задач для 5-х или 9-х классов зачастую одинаков по смыслу. И практика показывает, что пятиклассники в состоянии разобраться с условием из задачника для 9 класса и даже составить уравнение. Решить такое уравнение, конечно же, пока не хватает знаний. Но при этом не каждому девятикласснику удается решить арифметическим способом задачу для 5 класса.

Школьники, обычно, выбирают алгебраический способ решения текстовых задач, к арифметическому они практически никогда не возвращаются. Они просто перестают видеть этот способ, увлекаясь введением переменных и составлением уравнений.

За что же мы ценим арифметический способ решения текстовых задач? Первое и главное за то, что при выполнении каждого арифметического действия учащийся задумывается над тем: «А что я нашел в результате?» Он представляет, о чем идет речь в задаче, так как каждое действие имеет наглядное и конкретное истолкование. В результате активно развивается логическое мышление. В процессе вычислений, измерений, поиска решения задач у ученика формируются познавательные универсальные учебные действия, формирование которых является важнейшей задачей современной системы основного общего образования.

Текстовые задачи изучаются в течение всего школьного курса математики. Но научить понимать задачи, анализировать условие, рассуждать и находить рациональные способы решения необходимо именно в 5-6 классах, пока уровень сложности их невелик, а сама задача является одной из самых важных категорий. На легком постигается сложное.

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть, развивает естественный язык, готовит школьников к дальнейшему обучению.

Арифметические способы решения текстовых задач позволяют строить план решения с учетом взаимосвязей между известными и неизвестными величинами (с учетом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью составления и решения обратной задачи, то есть, формировать и развивать важные общеучебные умения и навыки.

Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

Великий Д.Пойа сказал: “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”. Если мы научим детей решать задачи - мы не только повысим интерес к самому предмету, окажем значительное влияние на формирование их математического мышления, что способствует успешному освоению новых знаний в других областях.