Две касательных из одной точки. Что такое касательная к окружности? Свойства касательной к окружности

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ДОКАЗАТЕЛЬСТВО. А. 3. В. 4. 1. 2. С. О. По теореме о свойстве касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, т.к. имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и угол 3= углу 4, что и требовалось доказать.

Слайд 4 из презентации ««Окружность» геометрия» . Размер архива с презентацией 316 КБ.

Геометрия 8 класс

краткое содержание других презентаций

«Свойства четырёхугольников» - Трапеция. Незнайка исправил двойку. Диагонали делят углы пополам. Определения четырехугольников. Диагонали. Диктант. Квадратом называется прямоугольник, у которого все стороны равны. Все углы прямые. Противоположные углы. Элементы параллелограмма. Конструктор. Ромб. Свойства четырехугольников. Стороны. Четырехугольники и их свойства. Четырехугольник. Помогите Незнайке исправить двойку. Диагональ. Противоположные стороны.

«Векторы 8 класс» - Цели урока. Назовите равные и противоположные векторы. Определите координаты вектора. Равные вектора. Векторы на уроках физики. Продолжите фразу. Найдите и назовите равные векторы на данном рисунке. Координаты вектора. Практическая работа. Абсолютная величина вектора. Абсолютная величина вектора. Самостоятельная работа в парах. Явления природы описываются физическими величинами. Векторы. Координаты вектора.

«Скалярное произведение в координатах» - Математическая разминка. Решение треугольника. Теорема Наполеона. Новый материал. Обменяйтесь карточками. Решим задание. Геометрия. Имя автора теоремы. Следствие. Вектор. Свойства скалярного произведение векторов. Скалярное произведение в координатах и его свойства. Доказательство теоремы Пифагора. Математический тест.

«Осевая симметрия в геометрии» - Фигура называется симметричной относительно прямой a. Фигуры, обладающие двумя осями симметрии. Фигуры, обладающие одной осью симметрии. Постройте треугольники, симметричные данным, относительно прямой С. Содержание. Постройте точки А" и В". Определение. Симметрия в поэзии. Осевая симметрия. Начертите две прямые а и b и отметьте две точки А и В. Как же получить фигуру, симметричную данной. Слова, имеющие ось симметрии.

««Осевая и центральная симметрия» геометрия» - Опишите фигуру. Вейль Герман. Симметрия в мире растений. Науки. Симметрия в мире насекомых. Углы треугольника. Поворотная симметрия. Соразмерность. Алгоритм построения. Осевая и центральная симметрия. Симметричность точек относительно центра. Симметричность точек относительно прямой. Знакомые черты. Что Вас привлекло в этих фотографиях. Точка О. Центральная и осевая симметрия. Симметричность фигуры относительно прямой.

««Теорема Фалеса» 8 класс» - Отрезок. Навыки решения задач. Диагональ. Анализ. Задачи на готовых чертежах. Доказательство. Исследование. Параллельные прямые. Фалес известен как геометр. Фалес Милетский. Середины боковых сторон. Теорема Фалеса. Изречения Фалеса. Задача. Найти углы трапеции. Доказать.

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, - радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Основные термины

Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной

    Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

    Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд

    Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

    Дуги, заключенные между параллельными хордами, равны.

    Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM MB = CM MD.

Свойства окружности

    Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная ); иметь с ней две общие точки (секущая ).

    Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

    Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.MA MB = MC MD.

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью

    Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

    Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

    Вписанный угол, опирающийся на диаметр, равен 90°.

    Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Длины и площади

    Длина окружности C радиуса R вычисляется по формуле:

C = 2 R .

    Площадь S круга радиуса R вычисляется по формуле:

S = R 2 .

Вписанные и описанные окружности

Окружность и треугольник

    центр вписанной окружности - точка пересечения биссектрис треугольника, ее радиус r вычисляется по формуле:

r = ,

где S - площадь треугольника, а - полупериметр;

R = ,

R = ;

здесь a, b, c - стороны треугольника, - угол, лежащий против стороны a , S - площадь треугольника;

    центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;

    центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник - правильный.

Окружность и четырехугольники

    около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

180°;

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

a + c = b + d ;

    около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;

    около трапеции можно описать окружность тогда и только тогда, когда эта трапеция - равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции c серединным перпендикуляром к боковой стороне;

    в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

Понятие касательной к окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

    Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Введем теперь понятие касательной прямой к окружности.

Определение 1

Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.

Общая точка окружности и касательной называется точкой касания (рис 1).

Рисунок 1. Касательная к окружности

Теоремы, связанные с понятием касательной к окружности

Теорема 1

Теорема о свойстве касательной : касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство.

Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).

Докажем, что $a\bot r$

Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.

Рисунок 2. Иллюстрация теоремы 1

То есть $OA$ - наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.

Следовательно, касательная перпендикулярна к радиусу окружности.

Теорема доказана.

Теорема 2

Обратная теореме о свойстве касательной : Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.

Доказательство.

По условию задачи мы имеем, что радиус -- перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая -- касательная к окружности.

Теорема доказана.

Теорема 3

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).

Докажем, что $\angle BAO=\angle CAO$ и что $AB=AC$.

Рисунок 3. Иллюстрация теоремы 3

По теореме 1, имеем:

Следовательно, треугольники $ABO$ и $ACO$ -- прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ -- общая, то эти треугольники равны по гипотенузе и катету.

Отсюда и получаем, что $\angle BAO=\angle CAO$ и $AB=AC$.

Теорема доказана.

Пример задачи на понятие касательной к окружности

Пример 1

Дана окружность с центром в точке $O$ и радиусом $r=3\ см$. Касательная $AC$ имеет точку касания $C$. $AO=4\ см$. Найти $AC$.

Решение.

Изобразим вначале все на рисунке (Рис. 4).

Рисунок 4.

Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$\angle ACO={90}^{{}^\circ }$. Получили, что треугольник $ACO$ -- прямоугольный, значит, по теореме Пифагора, имеем:

\[{AC}^2={AO}^2+r^2\] \[{AC}^2=16+9\] \[{AC}^2=25\] \

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Секущие, касательные - все это сотни раз можно было слышать на уроках геометрии. Но выпуск из школы позади, проходят года, и все эти знания забываются. Что следует вспомнить?

Сущность

Термин "касательная к окружности" знаком, наверное, всем. Но вряд ли у всех получится быстро сформулировать его определение. Между тем касательной называют такую прямую, лежащую в одной плоскости с окружностью, которая пересекает ее только в одной точке. Их может существовать огромное множество, но все они обладают одинаковыми свойствами, о которых речь пойдет ниже. Как нетрудно догадаться, точкой касания называют то место, где окружность и прямая пересекаются. В каждом конкретном случае она одна, если же их больше, то это будет уже секущая.

История открытия и изучения

Понятие касательной появилось еще в древности. Построение этих прямых сначала к окружности, а потом к эллипсам, параболам и гиперболам с помощью линейки и циркуля проводилось еще на начальных этапах развития геометрии. Разумеется, история не сохранила имя первооткрывателя, но очевидно, что еще в то время людям были вполне известны свойства касательной к окружности.

В Новое время интерес к этому явлению разгорелся вновь - начался новый виток изучения этого понятия в сочетании с открытием новых кривых. Так, Галилей ввел понятие циклоиды, а Ферма и Декарт построили к ней касательную. Что же касается окружностей, кажется, еще для древних не осталось секретов в этой области.

Свойства

Радиус, проведенный в точку пересечения, будет Это

основное, но не единственное свойство, которое имеет касательная к окружности. Еще одна важная особенность включает в себя уже две прямые. Так, через одну точку, лежащую вне окружности, можно провести две касательные, при этом их отрезки будут равны. Есть и еще одна теорема по этой теме, однако ее редко проходят в рамках стандартного школьного курса, хотя для решения некоторых задач она крайне удобна. Звучит она следующим образом. Из одной точки, расположенной вне окружности, проведены касательная и секущая к ней. Образуются отрезки AB, AC и AD. А - пересечение прямых, B точка касания, C и D - пересечения. В этом случае будет справедливым следующее равенство: длина касательной к окружности, возведенная в квадрат, будет равна произведению отрезков AC и AD.

Из вышесказанного есть важное следствие. Для каждой точки окружности можно построить касательную, но при этом только одну. Доказательство этого достаточно просто: теоретически опустив на нее перпендикуляр из радиуса, выясняем, что образованный треугольник существовать не может. И это значит, что касательная - единственная.

Построение

Среди прочих задач по геометрии есть особая категория, как правило, не

пользующаяся любовью учеников и студентов. Для решения заданий из этой категории нужны лишь циркуль и линейка. Это задачи на построение. Есть они и на построение касательной.

Итак, даны окружность и точка, лежащая вне ее границ. И необходимо провести через них касательную. Как же это сделать? Прежде всего, нужно провести отрезок между центром окружности О и заданной точкой. Затем с помощью циркуля следует разделить его пополам. Чтобы это сделать, необходимо задать радиус - чуть более половины расстояния между центром изначальной окружности и данной точкой. После этого нужно построить две пересекающиеся дуги. Причем радиус у циркуля менять не надо, а центром каждой части окружности будут изначальная точка и О соответственно. Места пересечений дуг нужно соединить, что разделит отрезок пополам. Задать на циркуле радиус, равный этому расстоянию. Далее с центром в точке пересечения построить еще одну окружность. На ней будет лежать как изначальная точка, так и О. При этом будет еще два пересечения с данной в задаче окружностью. Именно они и будут точками касания для изначально заданной точки.

Именно построение касательных к окружности привело к рождению

дифференциального исчисления. Первый труд по этой теме был опубликован известным немецким математиком Лейбницем. Он предусматривал возможность нахождения максимумов, минимумов и касательных вне зависимости от дробных и иррациональных величин. Что ж, теперь оно используется и для многих других вычислений.

Кроме того, касательная к окружности связана с геометрическим смыслом тангенса. Именно от этого и происходит его название. В переводе с латыни tangens - "касательная". Таким образом, это понятие связано не только с геометрией и дифференциальным исчислением, но и с тригонометрией.

Две окружности

Не всегда касательная затрагивет лишь одну фигуру. Если к одной окружности можно провести огромное множество прямых, то почему же нельзя наоборот? Можно. Вот только задача в этом случае серьезно усложняется, ведь касательная к двум окружностям может проходить не через любые точки, а взаимное расположение всех этих фигур может быть очень

разным.

Типы и разновидности

Когда речь идет о двух окружностях и одной или нескольких прямых, то даже если известно, что это касательные, не сразу становится ясно, как все эти фигуры расположены по отношению друг к другу. Исходя из этого, различают несколько разновидностей. Так, окружности могут иметь одну или две общие точки или не иметь их вовсе. В первом случае они будут пересекаться, а во втором - касаться. И вот тут различают две разновидности. Если одна окружность как бы вложена во вторую, то касание называют внутренним, если нет - то внешним. Понять взаимное расположение фигур можно не только, исходя из чертежа, но и располагая информацией о сумме их радиусов и расстоянии между их центрами. Если две эти величины равны, то окружности касаются. Если первая больше - пересекаются, а если меньше - то не имеют общих точек.

Так же и с прямыми. Для любых двух окружностей, не имеющих общих точек, можно

построить четыре касательные. Две из них будут пересекаться между фигурами, они называются внутренними. Пара других - внешние.

Если речь идет об окружностях, которые имеют одну общую точку, то задача серьезно упрощается. Дело в том, что при любом взаимном расположении в этом случае касательная у них будет только одна. И проходить она будет через точку их пересечения. Так что построение трудности не вызовет.

Если же фигуры имеют две точки пересечения, то для них может быть построена прямая, касательная к окружности как одной, так и второй, но только внешняя. Решение этой проблемы аналогично тому, что будет рассмотрено далее.

Решение задач

Как внутренняя, так и внешняя касательная к двум окружностям, в построении не так уж просты, хоть эта проблема и решаема. Дело в том, что для этого используется вспомогательная фигура, так что додуматься до такого способа самостоятельно

довольно проблематично. Итак, даны две окружности с разным радиусом и центрами О1 и О2. Для них нужно построить две пары касательных.

Прежде всего, около центра большей окружности нужно построить вспомогательную. При этом на циркуле должна быть установлена разница между радиусами двух изначальных фигур. Из центра меньшей окружности строятся касательные к вспомогательной. После этого из О1 и О2 проводятся перепендикуляры к этим прямым до пересечения с изначальными фигурами. Как следует из основного свойства касательной, искомые точки на обеих окружностях найдены. Задача решена, по крайнем мере, ее первая часть.

Для того чтобы построить внутренние касательные, придется решить практически

аналогичную задачу. Снова понадобится вспомогательная фигура, однако на этот раз ее радиус будет равен сумме изначальных. К ней строятся касательные из центра одной из данных окружностей. Дальнейший ход решения можно понять из предыдущего примера.

Касательная к окружности или даже двум и больше - не такая уж сложная задача. Конечно, математики давно перестали решать подобные проблемы вручную и доверяют вычисления специальным программам. Но не стоит думать, что теперь необязательно уметь делать это самостоятельно, ведь для правильного формулирования задания для компьютера нужно многое сделать и понять. К сожалению, есть опасения, что после окончательного перехода на тестовую форму контроля знаний задачи на построение будут вызывать у учеников все больше трудностей.

Что же касается нахождения общих касательных для большего количества окружностей, это не всегда возможно, даже если они лежат в одной плоскости. Но в некоторых случаях можно найти такую прямую.

Примеры из жизни

Общая касательная к двум окружностям нередко встречается и на практике, хоть это и не всегда заметно. Конвейеры, блочные системы, передаточные ремни шкивов, натяжение нити в швейной машинке, да даже просто велосипедная цепь - все это примеры из жизни. Так что не стоит думать, что геометрические задачи остаются лишь в теории: в инженерном деле, физике, строительстве и многих других областях они находят практическое применение.