Институт математических проблем биологии. Связь математики с биологией

Законы эволюции хотя и основаны на фактах, но не имеют строгого математического обоснования. Это-то и позволяет ученым различных направлений трактовать их по-разному, а то и вовсе не признавать. Но все это до тех пор, пока до этих законов не добралась математика.

Первое по времени применение математики в биологии связано с обработкой результатов наблюдений. Так было установлено большинство экспериментальных закономерностей... Однако это в высшей степени полезное приложение математики к биологии не только не единственное, но даже и не самое важное.

Экспериментальные законы есть не только в биологии. Немало их в физике, технике, экономике и других областях человеческих знаний. Но какой бы науке ни принадлежал такой закон, у него всегда есть один серьезный изъян: он хотя и отвечает на вопрос "как", но не отвечает на вопрос "почему".

Еще алхимики знали, как растворяются вещества. Измеряя концентрацию раствора, легко начертить кривую, наглядно показывающую, что сначала вещество переходит в раствор большими дозами, затем эти дозы постепенно уменьшаются, пока наконец вещество совсем не перестанет растворяться.

Подобные кривые можно найти и в книгах по лесоводству. Они получены в результате сотен и тысяч обмеров и показывают, что дерево сначала растет быстро, затем рост замедляется и прекращается полностью.

Эти законы экспериментальные. Они довольно точно описывают явление - вполне достаточно для практики. Но вот прогнозировать, зная только их, трудно: можно сказать лишь, что данное вещество будет растворяться таким-то образом, если повторяются условия, при которых мы его изучали. Точно так же и с деревьями. Не зная, почему они растут так или иначе, нельзя предсказать, что случится с их ростом в иных условиях.

"Науки сильно различаются между собой по степени предсказуемости относящихся к ним фактов, и некоторые утверждают, что биология не наука. Поскольку биологические явления не всегда можно предсказать". Это грустное замечание ученого К. Вилли бьет прямо в цель. Чтобы получить ранг современной науки, биологии уже недостаточно располагать детальными сведениями о многочисленных и разрозненных фактах. Нужны законы, отвечающие на вопрос "почему". И именно тут заключена самая суть математической биологии.

Так же как в физике, изучая биологическое явление, стараются выявить его математические характеристики. Например, если обследуется больной, то для анализа его состояния требуются числовые данные - температура тела, давление и состав крови, частота пульса и т. д. и т. п.

Но ведь обычно изучают только одну какую-нибудь сторону, что-то является главным, а чем-то можно пренебречь. В астрономии, например, весь земной шар представляется как точка, лишенная размеров. Грубее, казалось бы, некуда. Тем не менее эти расчеты вот уже более 300 лет исправно служат при определении сроков затмений и в наши годы - при запуске спутников.

Часто, однако, биологи вообще отказываются делать какие-либо упрощения. На одном весьма представительном биологическом семинаре обсуждалась модель роста дерева. Докладчик, известный специалист своего дела, был принят аудиторией благожелательно. Все шло хорошо до тех пор, пока он не произнес фразу: "Так как энергия фотосинтеза пропорциональна площади листа, мы для простоты будем считать лист плоским, не имеющим толщины". Тут же посыпались недоуменные вопросы: "Как так? Ведь даже самый тонкий лист имеет толщину!". Вспомнили и о хвойных, у которых вообще трудно толщину отличить от ширины. С некоторым трудом удалось все же объяснить, что в задаче, которой, занимается докладчик, толщина листа не играет никакой роли и ею можно пренебречь. Зато вместо живого листа со всеми его бесконечными сложностями мы можем изучать простую модель.

Математическая модель изучается математическими средствами. Поэтому можно отвлечься на время от биологического содержания модели и сосредоточить свое внимание на ее математической сущности.

Разумеется, всю эту сложную работу, требующую специальных знаний, биолог проводит в тесном союзе с математиком, а некоторые моменты целиком препоручает математику-специалисту. В результате такой совместной работы получается биологический закон, записанный математически.

В отличие от экспериментального он отвечает на вопрос "почему", вскрывает внутренний механизм изучаемого процесса. Этот механизм описывается математическими соотношениями, входящими в модель. В модели роста дерева, например, таким механизмом является дифференциальное уравнение, выражающее закон сохранения энергий. Решив уравнение, получаем теоретическую кривую роста - она с поразительной точностью совпадает с экспериментальной.

Еще в 1931 году в Париже вышла в свет книга известного математика В. Вольтерра "Математическая теория борьбы за существование". В ней, в частности, была рассмотрена и проблема "хищник-жертва". Математик рассуждал так: "Прирост численности жертвы будет тем больше, чем больше родителей, то есть, чем больше численность жертвы в настоящий момент. Но, с другой стороны, чем больше численность жертвы, тем чаще она будет встречаться и уничтожаться хищниками. Таким образов, и убыль жертвы пропорциональна ее численности. Кроме того, эта убыль растет и с ростом численности хищников.

А от чего меняется численность хищников? Ее убыль происходит только из-за естественной смертности и поэтому пропорциональна количеству взрослых особей. А ее прибыль можно считать пропорциональной питанию, то есть пропорциональной количеству жертвы, уничтоженной хищниками".

Последняя из названных проблем очень интересна. Суть ее в том, что химические методы борьбы с вредными видами часто не удовлетворяют биологов. Некоторые химикалии настолько сильны, что вместе с вредными животными уничтожают и множество полезных. Бывает и наоборот: подавляемый вид очень быстро приспосабливается к химическим ядам и становится неуязвимым. Специалисты уверяют, например, что порошок ДДТ, один запах которого убивал клопов 30-х годов, нынешние клопы с успехом употребляют в пищу.

А вот еще один небольшой пример того, как математический подход прояснил запутанную биологическую ситуацию. В одном из экспериментов наблюдали удивительную вещь: стоило в колонию простейших микроорганизмов, обитающих в воде, поместить капельку сахарного сиропа, как все обитатели колонии, даже самые далекие, начинали продвигаться в направлении к капельке. Пораженные экспериментаторы готовы были утверждать, что у микроорганизмов есть специальный орган, который на большом расстоянии чувствует приманку и помогает двигаться к ней. Еще немного, и они бы бросились искать, этот никому не известный орган.

К счастью, один из биологов, знакомый с математикой, предложил другое объяснение феномена. Его версия состояла в том, что вдали от приманки движение микроорганизмов мало чем отличается от обычной диффузии, свойственной неживым частицам. Биологические особенности живых организмов проявляются только в непосредственной близости от приманки, когда они задерживаются около нее. Благодаря этой задержке следующий от капли слой становится менее насыщенным обитателями, чем обычно, и туда по законам диффузии устремляются микроорганизмы из соседнего слоя. В этот слой по тем же законам устремляются обитатели следующего, еще более удаленного слоя и т. д. и т. п. В результате получается тот поток микроорганизмов к капле, который и наблюдали экспериментаторы.

Эту гипотезу легко было проверить математически, и таинственный орган искать не пришлось.

Математические методы позволяли дать ответы на многие конкретные вопросы биологии. И эти ответы подчас поражают своей глубиной и изяществом. Однако говорить о математической биологии как о сложившейся науке еще рано.

Математическая биология - это междисциплинарное направление науки, в котором объектом исследования являются биологические системы разного уровня организации, причём цель исследования тесно увязывается с решением некоторых определённых математических задач, составляющих предмет исследования . Критерием истины в ней является математическое доказательство . Основным математическим аппаратом математической биологии является теория дифференциальных уравнений и математическая статистика .

В отличие от чисто математических наук, в математической биологии результатам исследования придаётся биологическая интерпретация.

См. также

Напишите отзыв о статье "Математическая биология"

Ссылки

Литература

Источник -

  • Алексеев В. В., Крышев И. И., Сазыкина Т. Г. Физическое и математическое моделирование экосистем / Ком. по гидрометеорологии и мониторингу окружающей среды М-ва экологии и природ. ресурсов Рос. Федерации. - СПб. : Гидрометеоиздат, 1992. - ISBN 5-286-01006-7 .
  • Базыкин А. Д. Нелинейная динамика взаимодействующих популяций. - М.; Ижевск: Ин-т компьютерных исследований, 2003. - 367 с. - ISBN 5-93972-244-X .
  • Бейли Н. Т. Дж. Математика в биологии и медицине: Пер. с англ. - М .: Мир, 1970. - 326 с.
  • Белинцев Б. Н. Физические основы биологического формообразования / Под ред. М. В. Волькенштейна. - М .: Наука, 1991. - 251 с. - ISBN 5-02-014556-4 .
  • Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. - М .: Физматлит, 2010. - 400 с. - ISBN 978-5-9221-1192-8 .
  • Дещеревский В. И. Математические модели мышечного сокращения / Под ред. акад. Г. М. Франка. - М .: Наука. - Т. 1977. - 160 с.
  • Динамическая теория биологических популяций / Под ред. Р. А. Полуэктова. - М .: Наука, 1974. - 455 с.
  • Жаботинский А. М. Концентрационные автоколебания. - М .: Наука, 1974. - 178 с.
  • Иваницкий Г. Р., Кринский В. И., Сельков Е. Е. Математическая биофизика клетки. - М .: Наука. - 310 с. - (Теоретическая и прикладная биофизика).
  • Исследования по математической биологии: Сб. науч. тр / Науч. ред. Э. Э. Шноль. - Пущино: ПНЦ РАН, 1996. - 192 с. - ISBN (ошибоч.) .
  • Малашонок Г. И., Ушакова Е. В. Эффективная математика: моделирование в биологии и медицине: Учеб. пособие. - Тамбов: ТГУ, 2001. - 45 с.
  • Марри Д. Нелинейные дифференциальные уравнения в биологии: Лекции о моделях: Пер. с англ. / Под ред. А. Д. Мышкиса. - М .: Мир, 1983. - 397 с. Перевод изд.: Lectures on nonlinear-differential-equation Models in biology / J.D. Murray (Oxford, 1977)
  • Математическое моделирование жизненных процессов: Сб. статей / Редколлегия: М. Ф. Веденов и др. - М .: Мысль, 1968. - 287 с.
  • Меншуткин В. В. Математическое моделирование популяций и сообществ водных животных. - Л. : Наука, 1971. - 196 с.
  • Нахушев А. М. Уравнения математической биологии: Учеб. пособие для мат. и биол. спец. ун-тов. - М .: Высш. школа, 1995. - 301 с. - ISBN 5-06-002670-1 .
  • Введение в математическую экологию. - Л. : Изд-во ЛГУ, 1986. - 222 с.
  • Петросян Л. А., Захаров В. В. Математические модели в экологии. - СПб. : Изд-во СПбГУ, 1997. - 256 с. - ISBN 5-288-01527-9 .
  • Рашевски Н. Некоторые медицинские аспекты математической биологии: Пер. с англ. / Под ред. акад. В. В. Парина. - М .: Медицина, 1966. - 243 с.
  • Ризниченко Г. Ю. Лекции по математическим моделям в биологии:Учеб. пособие для студентов биол. спец. высш. учеб. заведений. - М.; Ижевск: R & C Dynamics; РХД, 2002.
  • Ризниченко Г. Ю. Математические модели в биофизике и экологии. - М.; Ижевск: Ин-т компьютер. исслед, 2003. - 183 с. - (Математическая биология и биофизика). - ISBN 5-93972-245-8 .
  • Математическая биофизика. - М .: Наука, 1984. - 304 с. - (Физика жизненных процессов).
  • Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическое моделирование в биофизике: Введение в теоретическую биофизику. - М .: РХД, 2004. - 472 с. - ISBN 5-93972-359-4 .
  • Рубин А. Б., Пытьева Н. Ф., Ризниченко Г. Ю. Кинетика биологических процессов: Учеб. пособие для вузов по спец. "Биология": 2-е изд., испр. и доп. - М .: Изд-во МГУ, 1987. - 299 с.
  • Свирежев Ю. М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. - М .: Наука, 1987. - 366 с.
  • Свирежев Ю. М., Логофет Д. О. Устойчивость биологических сообществ. - М .: Наука, 1978. - 352 с.
  • Свирежев Ю. М., Пасеков В. П. Основы математической генетики. - М .: Наука, 1982. - 511 с.
  • Смит Д. М. Математические идеи в биологии: [с задачами и ответами]: Пер. с англ.: 2-е изд., стер / Под ред. Ю. И. Гильдермана. - М .: КомКнига; URSS, 2005. - 179 с. - ISBN 5-484-00022-X .
  • Теоретическая и математическая биология: Пер. с англ. - М .: Мир, 1968. - 448 с.
  • Торнли Д. Г. М. Математические модели в физиологии растений: Пер. с англ. / Под ред. Б. И. Гуляева. - Киев: Наукова думка, 1982. - 310 с. Перевод изд.: Mathematical models in plant physiology / J. H. M. Thornley (London etc., 1976)
  • Эйген М., Шустер П. Гиперцикл: Принципы самоорганизации макромолекул: Пер. с англ. / Под ред. М. В. Волькенштейна и Д. С. Чернавского. - М .: Мир, 1982. - 280 с. Перевод изд.: The hypercycle / M. Eigen, P. Schuster (Berlin etc., 1979)
  • Хаубольд Б., Вие Т. РХД 2011. - 456 с. ISBN 978-5-4344-0014-5

Отрывок, характеризующий Математическая биология

– Да, да, знаю. Пойдем, пойдем… – сказал Пьер и вошел в дом. Высокий плешивый старый человек в халате, с красным носом, в калошах на босу ногу, стоял в передней; увидав Пьера, он сердито пробормотал что то и ушел в коридор.
– Большого ума были, а теперь, как изволите видеть, ослабели, – сказал Герасим. – В кабинет угодно? – Пьер кивнул головой. – Кабинет как был запечатан, так и остался. Софья Даниловна приказывали, ежели от вас придут, то отпустить книги.
Пьер вошел в тот самый мрачный кабинет, в который он еще при жизни благодетеля входил с таким трепетом. Кабинет этот, теперь запыленный и нетронутый со времени кончины Иосифа Алексеевича, был еще мрачнее.
Герасим открыл один ставень и на цыпочках вышел из комнаты. Пьер обошел кабинет, подошел к шкафу, в котором лежали рукописи, и достал одну из важнейших когда то святынь ордена. Это были подлинные шотландские акты с примечаниями и объяснениями благодетеля. Он сел за письменный запыленный стол и положил перед собой рукописи, раскрывал, закрывал их и, наконец, отодвинув их от себя, облокотившись головой на руки, задумался.
Несколько раз Герасим осторожно заглядывал в кабинет и видел, что Пьер сидел в том же положении. Прошло более двух часов. Герасим позволил себе пошуметь в дверях, чтоб обратить на себя внимание Пьера. Пьер не слышал его.
– Извозчика отпустить прикажете?
– Ах, да, – очнувшись, сказал Пьер, поспешно вставая. – Послушай, – сказал он, взяв Герасима за пуговицу сюртука и сверху вниз блестящими, влажными восторженными глазами глядя на старичка. – Послушай, ты знаешь, что завтра будет сражение?..
– Сказывали, – отвечал Герасим.
– Я прошу тебя никому не говорить, кто я. И сделай, что я скажу…
– Слушаюсь, – сказал Герасим. – Кушать прикажете?
– Нет, но мне другое нужно. Мне нужно крестьянское платье и пистолет, – сказал Пьер, неожиданно покраснев.
– Слушаю с, – подумав, сказал Герасим.
Весь остаток этого дня Пьер провел один в кабинете благодетеля, беспокойно шагая из одного угла в другой, как слышал Герасим, и что то сам с собой разговаривая, и ночевал на приготовленной ему тут же постели.
Герасим с привычкой слуги, видавшего много странных вещей на своем веку, принял переселение Пьера без удивления и, казалось, был доволен тем, что ему было кому услуживать. Он в тот же вечер, не спрашивая даже и самого себя, для чего это было нужно, достал Пьеру кафтан и шапку и обещал на другой день приобрести требуемый пистолет. Макар Алексеевич в этот вечер два раза, шлепая своими калошами, подходил к двери и останавливался, заискивающе глядя на Пьера. Но как только Пьер оборачивался к нему, он стыдливо и сердито запахивал свой халат и поспешно удалялся. В то время как Пьер в кучерском кафтане, приобретенном и выпаренном для него Герасимом, ходил с ним покупать пистолет у Сухаревой башни, он встретил Ростовых.

1 го сентября в ночь отдан приказ Кутузова об отступлении русских войск через Москву на Рязанскую дорогу.
Первые войска двинулись в ночь. Войска, шедшие ночью, не торопились и двигались медленно и степенно; но на рассвете двигавшиеся войска, подходя к Дорогомиловскому мосту, увидали впереди себя, на другой стороне, теснящиеся, спешащие по мосту и на той стороне поднимающиеся и запружающие улицы и переулки, и позади себя – напирающие, бесконечные массы войск. И беспричинная поспешность и тревога овладели войсками. Все бросилось вперед к мосту, на мост, в броды и в лодки. Кутузов велел обвезти себя задними улицами на ту сторону Москвы.
К десяти часам утра 2 го сентября в Дорогомиловском предместье оставались на просторе одни войска ариергарда. Армия была уже на той стороне Москвы и за Москвою.
В это же время, в десять часов утра 2 го сентября, Наполеон стоял между своими войсками на Поклонной горе и смотрел на открывавшееся перед ним зрелище. Начиная с 26 го августа и по 2 е сентября, от Бородинского сражения и до вступления неприятеля в Москву, во все дни этой тревожной, этой памятной недели стояла та необычайная, всегда удивляющая людей осенняя погода, когда низкое солнце греет жарче, чем весной, когда все блестит в редком, чистом воздухе так, что глаза режет, когда грудь крепнет и свежеет, вдыхая осенний пахучий воздух, когда ночи даже бывают теплые и когда в темных теплых ночах этих с неба беспрестанно, пугая и радуя, сыплются золотые звезды.
2 го сентября в десять часов утра была такая погода. Блеск утра был волшебный. Москва с Поклонной горы расстилалась просторно с своей рекой, своими садами и церквами и, казалось, жила своей жизнью, трепеща, как звезды, своими куполами в лучах солнца.
При виде странного города с невиданными формами необыкновенной архитектуры Наполеон испытывал то несколько завистливое и беспокойное любопытство, которое испытывают люди при виде форм не знающей о них, чуждой жизни. Очевидно, город этот жил всеми силами своей жизни. По тем неопределимым признакам, по которым на дальнем расстоянии безошибочно узнается живое тело от мертвого. Наполеон с Поклонной горы видел трепетание жизни в городе и чувствовал как бы дыханио этого большого и красивого тела.
– Cette ville asiatique aux innombrables eglises, Moscou la sainte. La voila donc enfin, cette fameuse ville! Il etait temps, [Этот азиатский город с бесчисленными церквами, Москва, святая их Москва! Вот он, наконец, этот знаменитый город! Пора!] – сказал Наполеон и, слезши с лошади, велел разложить перед собою план этой Moscou и подозвал переводчика Lelorgne d"Ideville. «Une ville occupee par l"ennemi ressemble a une fille qui a perdu son honneur, [Город, занятый неприятелем, подобен девушке, потерявшей невинность.] – думал он (как он и говорил это Тучкову в Смоленске). И с этой точки зрения он смотрел на лежавшую перед ним, невиданную еще им восточную красавицу. Ему странно было самому, что, наконец, свершилось его давнишнее, казавшееся ему невозможным, желание. В ясном утреннем свете он смотрел то на город, то на план, проверяя подробности этого города, и уверенность обладания волновала и ужасала его.
«Но разве могло быть иначе? – подумал он. – Вот она, эта столица, у моих ног, ожидая судьбы своей. Где теперь Александр и что думает он? Странный, красивый, величественный город! И странная и величественная эта минута! В каком свете представляюсь я им! – думал он о своих войсках. – Вот она, награда для всех этих маловерных, – думал он, оглядываясь на приближенных и на подходившие и строившиеся войска. – Одно мое слово, одно движение моей руки, и погибла эта древняя столица des Czars. Mais ma clemence est toujours prompte a descendre sur les vaincus. [царей. Но мое милосердие всегда готово низойти к побежденным.] Я должен быть великодушен и истинно велик. Но нет, это не правда, что я в Москве, – вдруг приходило ему в голову. – Однако вот она лежит у моих ног, играя и дрожа золотыми куполами и крестами в лучах солнца. Но я пощажу ее. На древних памятниках варварства и деспотизма я напишу великие слова справедливости и милосердия… Александр больнее всего поймет именно это, я знаю его. (Наполеону казалось, что главное значение того, что совершалось, заключалось в личной борьбе его с Александром.) С высот Кремля, – да, это Кремль, да, – я дам им законы справедливости, я покажу им значение истинной цивилизации, я заставлю поколения бояр с любовью поминать имя своего завоевателя. Я скажу депутации, что я не хотел и не хочу войны; что я вел войну только с ложной политикой их двора, что я люблю и уважаю Александра и что приму условия мира в Москве, достойные меня и моих народов. Я не хочу воспользоваться счастьем войны для унижения уважаемого государя. Бояре – скажу я им: я не хочу войны, а хочу мира и благоденствия всех моих подданных. Впрочем, я знаю, что присутствие их воодушевит меня, и я скажу им, как я всегда говорю: ясно, торжественно и велико. Но неужели это правда, что я в Москве? Да, вот она!»
– Qu"on m"amene les boyards, [Приведите бояр.] – обратился он к свите. Генерал с блестящей свитой тотчас же поскакал за боярами.
Прошло два часа. Наполеон позавтракал и опять стоял на том же месте на Поклонной горе, ожидая депутацию. Речь его к боярам уже ясно сложилась в его воображении. Речь эта была исполнена достоинства и того величия, которое понимал Наполеон.

Основы математического моделирования

В этом разделе курса лекций «Математические модели в биологии » рассматриваются базовые понятия математического моделирования. На примере простейших систем анализируются основные закономерности их поведения. Основное внимание уделяется не самой биологической системе, но тем подходам, которые использованы для создания её модели.

Смотри также:

Тема 1: Интеграция данных и знаний. Цели моделирования. Базовые понятия

Модели и моделирование. Классификация моделей. Качественные (базовые) модели. Имитационные модели конкретных биологических систем. Математический аппарат. Понятие переменных и параметров. Стационарное состояние и его устойчивость. Компьютерные программы. Иерархия масштабов и времен в биологических системах. Регуляторные сети.

Тема 2: Модели, описываемые автономным дифференциальным уравнением

Понятие решения автономного дифференциального уравнения. Стационарное состояние и его устойчивость. Модели роста популяции. Непрерывные и дискретные модели. Модель экспоненциального роста. Модель логистического роста. Модель с наименьшей критической численностью. Вероятностные модели.

Тема 3: Модели, описываемые системами двух автономных дифференциальных уравнений

Исследование устойчивости стационарных состояний. Типы динамического поведения: монотонное изменение, мультистационарность, колебания. Понятие фазовой плоскости. Модели Лотки (химическая реакция) и Вольтерра (взаимодействие видов).

Тема 4: Иерархия времен в биологических системах. Быстрые и медленные переменные

Теорема Тихонова. Вывод уравнения Михаэлиса-Ментен. Применение метода квазистационарных концентраций.

Тема 5: Мультистационарные системы

Модели отбора. Применение метода квазистационарных концентраций. Модели переключений в биологических системах. Триггер. Модель синтеза двух ферментов Жакоба и Моно.

Тема 6: Колебательные процессы

Понятие предельного цикла и автоколебаний. Автокатализ. Типы обратной связи. Примеры. Брюсселятор. Гликолиз. Модели клеточного цикла.

Тема 7: Квазистохастические процессы. Динамический хаос

Понятие странного аттрактора. Периодические воздействия и стохастические факторы. Нерегулярные колебания в гликолизе. Хаотическая динамика в сообществах видов.

Тема 8: Живые системы и активные кинетические среды

Нелинейные взаимодействия и процессы переноса в биологических системах и их роль в формировании пространственно-временной динамики. Уравнения в частных производных типа реакция-диффузия-конвекция. Распространение волны в системах с диффузией.

Тема 9: Диссипативные структуры

Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Неустойчивость Тьюринга. Диссипативные структуры вблизи порога неустойчивости. Локализованные диссипативные структуры. Типы пространственно-временных режимов.