Изотерма адсорбции генри. Адсорбция

Адсорбцию можно рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Процессы адсорбции классифицируют в соответствии с типом взаимодействия адсорбата с адсорбентом. Различают физическую (молекулярную) адсорбцию, хемосорбцию (химическое присоединение атома молекулы) и ионный обмен. В данном разделе рассматривается, главным образом физическая адсорбция газов и паров.

Для физической адсорбции характерно взаимодействие адсорбента и адсорбата за счет сил Ван-дер-Ваальса и водородных связей: эти адсорбционные силы обеспечивают притяжение. На близком расстоянии проявляются короткодействующие силы отталкивания. Силы Ван-дер- Ваальса включают три вида взаимодействий:

Ориентационные силы действуют между полярными молекулами, обладающими дипольным моментом больше нуля. Взаимодействие диполей зависит от их взаимной ориентации, что и дало название силам диполь-дипольного взаимодействия. Эти силы максимальны, когда дипольные моменты молекул располагаются вдоль одной линии благодаря тому, что в этом случае расстояния между разноимёнными зарядами меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Тепловое движение непрерывно хаотично меняет ориентацию полярных молекул, но среднее по всевозможным ориентациям значение силы имеет величину, не равную нулю.

Индукционные силы возникают при взаимодействии полярной и неполярной молекул. Полярная молекула создаёт электрическое поле, которое поляризует неполярную молекулу. В результате происходит смещение электрических зарядов, равномерно распределённых по объёму молекулы до взаимодействия. В результате у неполярной молекулы индуцируется дипольный момент.

Природа дисперсионных сил Лондона-Ван-дер-Ваальса (1930) полностью была выяснена только после появления квантовой механики. Их возникновение обусловлено тем, что даже нейтральные атомы представляют собой системы колеблющихся зарядов, вследствие чего мгновенное значение дипольного момента незаряженной молекулы больше нуля. Флуктуационно возникший диполь создаёт электрическое поле, поляризующее соседние молекулы. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции.

Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от величины дипольного момента молекулы. Существенной особенностью дисперсионных взаимодействий является их аддитивность: для двух объемов конденсированных фаз, находящихся на расстоянии h, имеет место суммирование притяжения отдельных молекул.

Дисперсионный эффект (силы Лондона) проявляется в чистом виде между неполярными молекулами. Соответствующие силы возникают вследствие того, что флуктуации электронной плотности в одном атоме индуцируют подобные флуктуации в соседнем атоме. Резонанс таких флуктуаций приводит к уменьшению общей энергии системы, обусловленному притяжением атомов. Такие силы имеют общий характер и могут возникать между любыми атомами, что и обуславливает их универсальность.

Ориентационный эффект (силы Киезома) дисперсионное взаимодействие усиливается при наличии у молекул постоянных диполей, характеризующимся проявлением дипольдипольного взаимодействия. Чем больше дипольные моменты взаимодействующих молекул, тем больше составляющая ориентационного эффекта.

Индукционный эффект (силы Дебая) проявляется при взаимодействии между полярной и неполярной молекулами, отражающий усиление притяжения благодаря тому, что полярная молекула индуцирует диполь в неполярной молекуле этот эффект тем значительнее, чем больше поляризуемость молекул.

Полную потенциальную энергию двух взаимодействующих атомов (молекул) удовлетворительно описывает уравнение Леннарда - Джонса:

U x c 6 x b 12

Где x – расстояние на которое действуют силы притяжения; с – константа учитывающая эффект каждой составляющей сил Ван-дер-Ваальса; b – эмпирическая константа

При адсорбции происходит взаимодействие между атомом (молекулой) адсорбата с поверхностью адсорбента, т. е. с большим числом атомов (молекул), из которых состоит адсорбент. Поэтому зависимость энергии притяжения при адсорбции от расстояния иная, чем описываемая по уравнению Леннарда - Джонса. Это объясняется тем, что дисперсионные силы, вносящие основной вклад во взаимодействие, обладают свойством аддитивности. Поэтому если один атом взаимодействует с системой атомов из 2, 3, 4 и т. д. атомов, то энергия взаимодействия соответственно в 2, 3, 4 и т. д. раза больше, чем энергия двух взаимодействующих атомов. Таким образом, чтобы рассчитать энергию взаимодействия при адсорбции, необходимо провести суммирование энергий взаимодействия адсорбирующегося атома с каждым атомом адсорбента.

U cn

6x 3

Такая зависимость указывает на более медленное уменьшение энергии притяжения при адсорбции и на дальнодействие адсорбционных сил. Уравнение было использовано Лондоном, а затем и другими учеными для экспериментального доказательства дисперсионной природы адсорбционных сил и связи энергии адсорбции со свойствами адсорбированных молекул и адсорбента. Полную потенциальную энергию взаимодействия при адсорбции можно выразить уравнением

6x 3

т - расстояние атома А от отдельных атомов адсорбента Одним из важных практических выводов при рассмотрении природы адсорбционного

взаимодействия является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовании водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, чем и большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту.

Закон Генри

Рассмотрим распределение веществ между объемной фазой и поверхностным слоем, и в частности при адсорбции на границе жидкость - газ или жидкость - жидкость, когда активности отдельных участков адсорбционного поля автоматически выравниваются. Поверхность твердых тел, как правило, неоднородна геометрически (пористость) и химически, и чтобы получить простейшие закономерности адсорбции, необходимо предположить, что поверхность адсорбента однородна и распределение адсорбата происходит в мономолекулярном слое. Если пористость представить как отдельную фазу, то можно рассматривать процесс перераспределения вещества как выравнивание химических потенциалов распределяемого вещества в адсорбционном слое и в объемной фазе

где μ0 и μ0 – химический потенциал распределяемого вещества в адсорбционном слое и в объемной фазе; а и а – активности распределяемого вещества в адсорбционном слое и в объемной фазе; К – константа распределения Генри, не зависящая от концентрации.

Для неэлектролитов

где и – константы активности распределяемого вещества в адсорбционном слое и в объемной фазе; D – коэффициент распределения

Рисунок 11 – Зависимость величины адсорбции от конценрации (давления)

Так как в бесконечно разбавленном растворе коэффициенты активности равны единице, то на основании уравнения можно сформулировать следующую закономерность: при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе распределения Генри. В этом и состоит закон Генри. Относительно величины адсорбции А этот закон запишется так:

с ,

A K "

Для идеального газа КГ = КГ ’ RT

Уравнения представляют собой изотермы адсорбции вещества при малых концентрациях. При адсорбции на твердых адсорбентах область действия этого закона мала из-за неоднородности поверхности. Но даже на однородной поверхности с увеличением концентрации вещества или давлении пара обнаруживается отклонение от линейной зависимости. Это связано с тем, что, например, при положительной адсорбции концентрация вещества в поверхностном слое растет быстрее, чем увеличение ее в объемной фазе, и поэтому коэффициенты активности адсорбата на поверхности адсорбента раньше начинают отклоняться от единицы. При малых концентрациях распределяемого вещества отклонения обусловлены, главным образом соотношением между взаимодействиями молекул друг с другом и с поверхностью адсорбента. Если когезионное взаимодействие адсорбата больше, то отклонение от закона Генри отрицательное - коэффициенты активности меньше единицы (положительное отклонение от закона Рауля), и коэффициент распределения увеличивается (кривая 1); если же сильнее взаимодействие адсорбат адсорбент, то отклонение от закона Генри положительное (отрицательное отклонение от закона Рауля) и коэффициент распределения уменьшается (кривая 2). При дальнейшем увеличении концентрации вещества или давлении пара уменьшается свободная поверхность адсорбента; что влечет за собой снижение его реакционной способности, выражающееся в росте коэффициентов активности адсорбата на поверхности адсорбента.

Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра

Фундаментальным вкладом в учение об адсорбции явилась теория Ленгмюра. Эта теория позволяет учесть наиболее сильные отклонения от закона Генри, связанные с ограниченностью адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение является основным в теории Ленгмюра и уточняется следующими допущениями:

1. Адсорбция происходит на дискретных адсорбционных центрах, которые могут иметь различную природу.

2. При адсорбции соблюдается строго стехиометрическое условие - на одном центре адсорбируется одна молекула.

3. Адсорбционные центры энергетически эквивалентны и независимы, то есть адсорбция на одном центре не влияет на адсорбцию на других центрах.

4. Процесс адсорбции находится в динамическом равновесии с процессом десорбции. Первое положение означает, что адсорбированные молекулы прочно связаны с

адсорбционными центрами; они как бы локализованы на центрах (локализованная адсорбция). Из второго положения следует, что на поверхности может образовываться только один адсорбционный слой, поэтому адсорбцию по Ленгмюру называют мономолекулярной. Третье положение означает, что дифференциальная теплота адсорбции постоянна и что силами взаимодействия адсорбированных молекул можно пренебречь. И, наконец, согласно последнему положению, адсорбированные молекулы вследствие флуктуаций энергии могут отрываться от центров и возвращаться в газовую фазу.

На основании этих положений можно получить уравнение изотермы адсорбции. Скорость адсорбции из газовой фазы Vадс (то есть число молекул, адсорбированных за единицу времени) пропорциональна давлению газа и числу свободных центров на поверхности твердого тела. Если общее число центров А , а при адсорбции оказывается занятыми А центров, то число центров, остающихся свободными равно (А - А). Поэтому V адс = k адс. р (А - А). Адсорбция динамически уравновешена процессом десорбции. Скорость десорбции пропорциональна числу адсорбированных молекул V дес = k дес. А . При равновесии V адс = V дес или k адс. р (А - А) = k дес. А . Переобозначив k адс / k дес = К (где К - это константа адсорбционного равновесия) и А/А = . (относительное заполнение поверхности) получим

A A Kc 1 Kc

Уравнение называется уравнением изотермы адсорбции Ленгмюра .

Необходимо отметить, что константа адсорбционного равновесия Ленгмюра характеризует энергию взаимодействия адсорбата с адсорбентом. Чем сильнее это взаимодействие, тем больше константа адсорбционного равновесия. Адсорбционное уравнение Ленгмюра часто представляют относительно степени заполнения поверхности - отношения величины адсорбции к емкости монослоя.

Выражения соответствуют закону Генри: величина адсорбции линейно растет с увеличением концентрации. Таким образом, уравнение Ленгмюра является более общим соотношением, включающим и уравнение Генри. При больших концентрациях и давлениях, когда Кс> 1 и Кр > 1, уравнения переходят в соотношения

A A и

Соотношения отвечают насыщению, когда вся поверхность адсорбента покрываётся мономолекулярным слоем адсорбата.

Согласно принципу независимости поверхностного натяжения, который ввел Ленгмюр, величина предельной адсорбции a ∞ одинакова для всех членов гомологического ряда, т. е. не зависит от длины углеводородной цепи, а определяется только площадью поперечного сечения молекул. Это утверждение становится понятным, если рассмотреть строение поверхностного слоя при его предельном заполнении. В этом случае дифильные молекулы могут располагаться в поверхностном слое единственно возможным образом, когда гидрофильные части молекул

находятся на поверхности воды и плотно примыкают друг к другу, а гидрофобные радикалы ориентируются к воздушной среде (так называемый «частокол Ленгмюра», о котором уже упоминалось выше).

Следовательно, если предельная адсорбция – это количество моль ПАВ, полностью занимающее единицу поверхности, то величина, обратная предельной

адсорбции, будет давать суммарную площадь поперечного сечения одного моль молекул, тогда:

Для нахождения длины молекулы необходимо помимо S молекулы знать ее объем:

Тогда

V молекулы

молекулы

S молекулы

где М – молярная масса ПАВ, ρ – плотность ПАВ, δ – длина молекулы ПАВ. Экспериментальные результаты по определению изотермы адсорбции обычно

обрабатывают с помощью уравнения Ленгмюра, записанного в линейной форме:

Такая линейная зависимость позволяет графически определить оба постоянных параметра адсорбционной изотермы.

При адсорбции газов из их смесей в соответствии с уравнением изотермы Ленгмюра величины адсорбции суммируются, а концентрация свободных центров является общей для равновесной многокомпонентной системы.

K i p i

1 K i p i

Увеличение парциального давления одного компонента подавляет адсорбцию других, и тем сильнее, чем больше адсорбционная константа равновесия.

Реальные поверхности твердых тел, как правило, не обладают энергетически эквивалентными активными центрами Существенным приближением к реальным условиям является рассмотрение возможных распределений адсорбционных центров поверхности адсорбента по энергиям. Приняв линейное распределение адсорбционных центров по энергиям (теплотам адсорбции), М. И. Темкин, используя уравнение Ленгмюра, получил следующее уравнение для средних степеней заполнения адсорбента:

1 ln K 0 p

где - постоянная характеризующая линейное распределение; К0 – константа в уравнении Ленгмюра, отвечающая максимальной теплоте адсорбции.

Уравнение Ленгмюра можно использовать только при отсутствии адсорбции вещества сверх мономолекулярного слоя. Это условие выполняется достаточно строго при хемосорбции, физической адсорбции газов при небольших давлениях и температурах выше критической (при отсутствии конденсации на поверхности адсорбента), а часто и при адсорбции из растворов. Указанные ограничения для применения уравнения Ленгмюра связаны не столько с формальным

Газ, не действующий химически на жидкость, может тем не менее поглощаться ею при соприкосновении с ней. Такое явление называется абсорбцией.

Для конкретности представим себе что на дне закрытого сосуда находится вода, а над водой - газообразный кислород. Некоторые молекулы кислорода будут проникать в воду и странствовать между ее молекулами. Другие кислородные молекулы будут, наоборот, вылетать из жидкости в газовую атмосферу над ней. Когда вода и кислород находятся в равновесии, то число молекул кислорода, переходящих за единицу времени из газообразной фазы в жидкую, будет равно числу молекул, переходящих за то же время из жидкой фазы в газообразную.

Если давление кислорода увеличим вдвое, то число кислородных молекул, имеющих шансы быть поглощенными жидкостью, увеличится вдвое (если поглощенное ранее количество молекул газа не так велико чтобы препятствовать дальнейшему поглощению его).

Отсюда вытекает закон установленный английским ученым Генри в 1803 г. при не слишком больших давлениях газа абсорбируемое количество газа (при данной температуре) пропорционально его давлению.

Легко сообразить, что, поскольку справедлив закон Генри, объем газа абсорбированного при данной температуре данным количеством жидкости, будет при всяком давлении выражаться одним и тем же числом Например, 1 объем воды поглощает при объем углекислого газа, 0,035 объема кислорода, 0,017 объема азота и т. д. Числа эти называют коэффициентами абсорбции.

В связи с относительно большим поглощением водой углекислоты до недавнего времени предполагали, что водяные растения дышат кислородом, который они усваивают из поглощенной водой углекислоты. Однако в 1940 г. советские ученые Виноградов и Тейсс показали, что зеленые растения в воде дышат кислородом воды, а не

Вследствие того, что коэффициент абсорбции, т. е. растворимость, кислорода в воде в два раза больше, чем коэффициент абсорбции азота, состав воздуха в воде («водяного воздуха») существенно отличается от состава атмосферного воздуха. Атмосферный воздух содержит по объему 78% азота и 21% кислорода; воздух, выделяемый из воды, содержит 63% азота и 36% кислорода. Обогащенность «водяного воздуха» кислородом имеет, по-видимому, большое биологическое значение.

Подобно тому как в системе жидкости и ее насыщенного пара повышение температуры благоприятствует переходу молекул из жидкой фазы в парообразную, так в системе жидкости и газа, ею абсорбируемого, повышение температуры благоприятствует переходу молекул газа из жидкости в газообразную фазу; это значит, что с повышением температуры коэффициент абсорбции уменьшается. Впрочем, многие металлы представляют собой исключение из этого правила.

Способностью соды абсорбировать при пониженной температуре и повышен ном давлении значительное количество углекислоты широко пользуются для изготовления шипучих напитков.

Известно, что при постепенном нагревании воды из нее выделяется все больше и больше газовых пузырьков; это - результат уменьшения коэффициента абсорбции. Кипячением можно совершенно освободить воду от абсорбированных ею газов.

Из смеси газов жидкость поглощает такое количество каждого газа, какое соответствует его парциальному давлению. Поэтому, например, количество поглощаемой углекислоты не возрастет, если в занимаемое ею над водой пространство накачать воздух.

Твердые металлы также обладают способностью поглощать газы. Так, платина, железо и другие металлы в калильном жару поглощают водород, а железо легко поглощает также окись углерода газы эти удерживаются металлами и по охлаждении последних (это явление называется окклюзией).

Строго говоря, под абсорбцией понимают только те случаи поглощения газов, когда поглощаемый газ растворяется в объеме поглощающего вещества (безразлично - жидкости или твердого тела). При поглощении газов твердыми мелкозернистыми или пористыми телами большая часть поглощенного газа не распределяется по всему объему, а удерживается в весьма уплотненном виде на поверхности пор и зерен; такое поглощение газа называют адсорбцией (§ 131). Таким образом, абсорбция - это, в сущности, растворение газа, а адсорбция - его уплотнение на микроповерхности тел. Следует отметить, однако, что при поглощении газов металлами, имеющими микрозернистое строение, явления адсорбции и абсорбции не всегда могут быть точно разграничены.


Уравнение изотермы адсорбции Генри

Если рассматривать динамическую картину адсорбции, то ее величина будет тем больше, чем больше число ударов молекул газа о поверхность (т.е. чем больше давление газа) и чем больше время пребывания молекулы на поверхности от момента удара до момента ее перехода обратно в газовую фазу. Поэтому, но де Буру, величина адсорбции

где n - среднее число молекул, ударяющихся о поверхность в единицу времени, τ - среднее время пребывания молекул на поверхности. В этой формуле предполагается, что каждый удар молекулы сопровождается задержкой ее на поверхности, независимо оттого, есть уже на ней другие молекулы или нет. В действительности, молекула, ударившаяся в уже занятое место, может отразиться обратно в газовую фазу или задержаться, но время ее удержания будет иным.

Учет этих обстоятельств привел к следующей формуле:

Это уравнение изотермы адсорбции Генри. Оно означает, что в идеальной модели величина адсорбции прямо пропорциональна давлению пара или газа. Это название данная зависимость получила по аналогии с известным в физической химии законом Генри, согласно которому объем газа, растворенного в твердом теле или жидкости, пропорционален его давлению. Итак, по принятым допущениям, изотерма Генри должна описывать экспериментальные данные, полученные при малых заполнениях на однородных поверхностях. Первое допущение, как было сказано, оправдывается при изучении адсорбции при очень малых давлениях. Что касается второго, то адсорбцию практически всегда измеряют на неоднородных поверхностях. Однако адсорбция при очень малых давлениях отвечает очень малым степеням покрытия. Это означает, что все зависит от того, насколько неоднородна не вся поверхность, а только малая ее доля, покрываемая при малых давлениях. Поэтому в литературе можно найти достаточно примеров того и другого рода. Константа К уравнения Генри (тангенс угла наклона прямой) зависит от температуры и энергии взаимодействия адсорбат - адсорбент, как это видно из уравнения (4.4). Чем меньше температура и чем больше взаимодействие адсорбированных молекул с поверхностью адсорбента, тем больше К, тем круче изотерма адсорбции.

Конечно, предположение, что молекулы адсорбируются с одинаковой вероятностью на любых участках поверхности, в том числе и уже занятых ранее - слишком грубое допущение, пригодное лишь для очень малых степеней покрытия. Можно сделать другое предположение, состоящее в том, что адсорбция происходит лишь на свободных участках поверхности и что любое попадание молекул на уже занятые места не приводит к акту адсорбции. Это предположение равносильно постулату монослойной адсорбции и оно действительно выполняется, как мы говорили ранее, в случае химической адсорбции, однако при физической адсорбции дело обстоит сложнее


Другое допущение, принятое при выводе уравнения изотермы Генри, об однородности поверхности, т.е. равноценности всех ее участков, сохраним неизменным. И, наконец, третье допущение в рассматриваемой новой модели состоит в отсутствии взаимодействия адсорбированных молекул, т.е. будем считать, что время пребывания молекулы на поверхности не зависит то того, в какое место она ударилась - в непосредственной близости от другой молекулы или на большом от нее расстоянии. Все эти допущения были приняты Ленгмюром при выводе изотермы адсорбции, сделанном им в 1918 г.

Уравнение изотермы адсорбции Ленгмюра можно вывести различными способами. Сам Ленгмюр вывел его, рассматривая зависимость скоростей адсорбции и десорбции от степени покрытия поверхности и считая, что при равновесии обе скорости становятся одинаковыми.

Термодинамический вывод этого уравнения был дан Фольмером, а статистический - Фаулером.

В такой форме уравнение Ленгмюра широко известно. Оно содержит две константы: а m кратко называемая емкостью монослоя (максимальная адсорбция), и K - константа, зависящая от энергии адсорбции и температуры.

Адсорбция. Изотермы адсорбции Лэгмюра, Фрейндлиха. Уравнение БЭТ и его анализ.

Поверхностная энергия стремится самопроизвольно уменьшиться. Это выражается в уменьшении межфазной поверхности или поверхностного натяжения (s ).

Вследствие этого стремления происходит адсорбция.

Адсорбция – процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемной фазой. То есть адсорбция может происходить в многокомпонентных системах, в слой переходит тот компонент, который сильнее уменьшаетповерхностное натяжение. В общем случае адсорбция может быть результатом химического взаимодействия компонентов с поверхностью – хемосорбция.

Основные понятия.

Адсорбент – фаза, определяющая форму поверхности, она более плотная, может быть твердой или жидкой.

Адсорбат – вещество, которое перераспределяется (газ или жидкость).

Десорбция - переход вещества из поверхностного слоя в объемную фазу.

Для количественного описания адсорбции применяют две величины. Одна измеряется массой адсорбента, то есть числом молей или граммов, приходящихся на единицу площади поверхности или на единицу массы адсорбента. Эту величину обозначают «А» (метод «слоя конечной толщины»). Другая характеристика величины адсорбции определяется избытком вещества в поверхностном слое по сравнению с его количеством в таком же объеме фазы также отнесенным к единице площади или единице массы адсорбента.

Физико – химическая классификация.

1. физическая (молекулярная),

2. хемосорбция,

3. ионный обмен.

Наиболее широко распространена физическая адсорбция.

При физической адсорбции происходит взаимодействие адсорбата и адсорбента за счет сил Ван-дер-Ваальса и водородных связей. Силы Ван-дер-Ваальса включают три вида взаимодействия: диполь-дипольное, индукционное и дисперсионное. Для всех видов взаимодействия выполняется один закон изменения энергии притяжения от расстояния между атомами.

Поверхностные явления.

Адсорбция – изменение концентрации вещества на границе раздела фаз по сравнению с объемом. Этим термином обозначают также и процесс поглощения и количество поглощенного вещества Г, отнесенного к единице площади поверхности или массы адсорбента (ммоль/м 2 или ммоль/г).

Адсорбция идет с выделением энергии, следовательно, этот процесс самопроизвольный.

Адсорбент – вещество, на поверхности которого происходит адсорбция.

Адсорбат – адсорбирующееся вещество.

Адсорбция физическая – адсорбция, обусловленная силами межмолекулярного взаимодействия (как правило, обратима).

Хемосорбция – поглощение газов, паров или растворенных веществ твердыми или жидкими поглотителями, сопровождающееся образованием химических соединений.

Теплота адсорбции – отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции.

Адсорбция – экзотермический процесс (Q >0) . При постоянной адсорбции(Г, Q = const ):

, .

Величина Q является косвеннымкритерием определения типа адсорбции: если Q <30-40 кДж/моль – физическая адсорбция, если Q >40 кДж/моль – хемосорбция.

Изотерма адсорбции – функциональная зависимость количества адсорбированного поверхностью вещества от давления или концентрации этого вещества в другой фазе Г= f (p ) T = const , Г= f (с) T = const .При монослойной локализованной адсорбции на однородной поверхности Г= f (p ) описывается изотермой Ленгмюра.

Уравнение Ленгмюра

Уравнение изотермы абсорбции (1916 –1918 г) получено исходя из следующих предположений:

1.) поверность адсорбента энергетически однородна, т.е. адсорбция молекул на любом ее участке проходит с одинаковым тепловым эффектом

2.) отсутствует взаимодействие между адсорбированными молекулами, т.е. молекулы покрывают адсорбент только мономолекулярным слоем. Максимум адсорбции наблюдается тогда, тогда когда вся поверхность покрыта мномолекулярным слоем

3.) адсорбция обратима, т.е. между адсорбционным слоем и газовой (жидкой) фазой восстанавливается термодинамическое равновесие.

При равновесии скорость адсорбции V ад должна равняться скорости десорбции V дес .

V ад = V дес

Для того, чтобы молекула адсорбировалась, она должна удариться о поверхность и попасть на незанятое место. Так как число ударов пропорционально концентрации С, а вероятность попасть на незанятое место пропорциональна числу незанятых мест, то

V адс = k 1 C (1- q ),

где k 1 – константа скорости адсорбции. q - доля занятых мест, 1– q – доля не занятых мест.

Молекула десорбируется, когда ее энергия окажется достаточной для того, чтобы оторваться от поверхности. Число таких молекул пропорционально числу адсорбированных молекул, поэтому

V дес = k 2 q ,

где k 2 – константа десорбции.

k 1 C (1- q ) = k 2 q ,k 1 C – k 1 q C= k 2 q ,k 1 C = q (k 2 + k 1 C)

отсюда , делим числитель и знаменатель на k 2 .

Уравнение Бернулли

где b = k 1 / k 2 .

Если число мест на адсорбенте равно z , то адсорбция Г= z q и уравнение изотермы будет

(1) уравнение Ленгмюра.

Исследуем это уравнение:

1.) адсорбция мала: либо мала k 1 , либо мала С, тогда bC <<1. Г= zbC = , где - константа Генри, т.е. уравнение Ленгмюра переходит в уравнение Генри, следовательно изотерма адсорбции должна представлять собой сначала прямую линию (рис. 1).

Рис.1Рис. 2

2.) Адсорбция велика: bc >> 1, тогда Г= z , т.е. наступает предельная адсорбция Г ¥ . Отношение называется степенью заполнения поверхности. Уравнение Ленгмюра можно привести к линейному виду (рис. 2):

(2) или .

Отсекаемые на оси координат отрезки и наклоны этих прямых позволяют определить константы уравнения Ленгмюра z и b . Однако уравнении Ленгмюра неудовлетворительно истолковывает данные по адсорбции. Отклонение от теории Ленгмюра является результатом неоднородной поверхности, которая характеризуется наличием неодинаковых адсорбционных центров обладающих различным сродством с адсорбируемым веществом. Если поверхность энергетически неоднородна, используют эмпирическое уравнение Френдлиха

где х – количество адсорбированного вещества,

m – масса адсорбента,

С – равновесная концентрация после адсорбции,

k , n – константы (аппроксимационные параметры).

Константа k – представляет собой количество вещества, адсорбированное 1 г. адсорбента при С = 1моль/литр. Для каждого адсорбатива k имеет свое значение при одном и том же адсорбенте, т.е. она характеризует способность данного адсорбата адсорбироваться определенным адсорбентом

(4)

где n – наклон прямой, а k – антилогарифм отрезка прямой. Уравнение Фрейндлиха можно вывести предположив, что поверхность энергетически неоднородна и что адсорбция на каждом из типов адсорбционных центров подчиняется уравнению Ленгмюра. Тогда константа k отвечает константе адсорбционного равновесия, а n – степени агрегативности. Согласно уравнению Фрейндлиха количество адсорбируемого вещества неограниченно возрастает с увеличение концентрации и давления, поэтому это уравнение не является удовлетворительным для высоких заполнений поверхностей.

Теория БЭТ

При многослойной адсорбции изотерма адсорбции описывается уравнением БЭТ (Брунаэр, Эммет, Теллер). Они предположили, что на поверхности адсорбента имеются однородные локализованные адсорбционные центры и что адсорбция на одном центре не оказывает никакого влияния на адсорбцию на соседних центрах, также как и в теории Ленгмюра. Далее они предположили, что молекулы могут адсорбирваться во втором, третьем и n -ом молекулярном слоях, причем доступная площадь для молекул n -го слоя равна площади покрытой (n -1) слоем.

где p s – давление насыщенного пара адсорбата,

p – давление адсорбата в другой фазе.

Отличительной чертой адсорбции паров является переход к объемной конденсации при предельном давлении, равном давлению насыщенного пара жидкости, p = p s . Целью этого уравнения является нахождение Г ¥ с помощью которой можно рассчитать доступную поверхность адсорбента.

Изотерма адсорбции. Уравнение Фрейндлиха.

Величина адсорбции (абсолютная А или избыточная Г) в каждом конкретном случае определяется температурой Т и давлением р (при газообразном адсорбтиве) или температурой Т и концентрацией С (при адсорбции из растворов). Как правило, в теории адсорбции при рассмотрении адсорбционного равновесия один из этих параметров поддерживается постоянным. Так, уравнение вида А = f (р) Т или Г = f (c) Т, связывающее величину адсорбции с давлением или концентрацией при постоянной температуре, называется изотермой адсорбции. Адсорбция (если она выражена не как избыток, а как полное содержание) всегда возрастает с повышением равновесного давления или концентрации. Так как адсорбция - процесс экзотермический, то при повышении температуры величина адсорбции снижается. На рис. 26.9 приведены основные виды кривых адсорбционного равновесия. Изотермам адсорбции при трех температурах (Т 1 > Т 2 >Т 3) соответствует рис. 26.9а.

Рис 26.9. Кривые адсорбционного равновесия: изотермы (а), изобары (б) и изостеры (в) адсорбции

Уравнение, связывающее величину адсорбции с температурой при постоянном равновесном давлении А = f(T) p или постоянной равновесной концентрации Г = f (Т) с, носит название, соответственно, изобары или изопикны адсорбции (рис. 26.9 -б) ; здесь р 1 > р 2 > р 3 . Уравнение вида р = f (Т) А , изостера адсорбции (рис. 26.9 -в), связывает равновесное давление с температурой при постоянном адсорбированном количестве; в этом случае А 1 >А 2 >А 3 .

Задача любой адсорбционной теории - на базе определенной модели процесса адсорбции составить ее математическое описание. В идеале уравнение должно описывать зависимость равновесной величины адсорбции от концентрации адсорбата в объемной фазе при различных температурах, а также прогнозировать изменение теплоты адсорбции от заполнения адсорбента. Наиболее часто при этом находят уравнение изотермы адсорбции. Форма изотермы адсорбции на твердых телах зависит от многих параметров: свойств адсорбента и адсорбата, взаимодействия адсорбент адсорбат, взаимодействия молекул адсорбата между собой в газовой фазе и в адсорбированном состоянии. В области малыхдавлений (или концентраций) и соответствующих им малых заполнений поверхности взаимодействие между молекулами адсорбата незначительно и зависимость А = f(p) T сводится к простейшей форме, называемой законом Генри :

А = kp или А = k"c (26.20)

где k и к" - адсорбционный коэффициент (или коэффициент Генри), с - концентрация адсорбента в объемной фазе, р - давление пара адсорбата. Коэффициент Генри k является мерой интенсивности адсорбции. Можно показать, что любая теоретическая изотерма должна в пределе (при малых заполнениях) переходить в уравнение Генри.

В области средних концентраций зависимость адсорбции растворенных веществ от концентрации хорошо описывается эмпирическим уравнением Фрейндлиха :

(26.21)

где Х - количество адсорбированного вещества, m - масса адсорбента, βи п - константы, характерные для каждой адсорбционной системы, причем 0 < 1/n < 1 . По Фрейндллиху, n не зависит от заполнения, хотя это утверждение не вполне точно. Этим эмпирическим уравнением часто пользуются для ориентировочных расчетов адсорбции. Чаще всего оно применяется в логарифмической форме:

позволяющей построить линейную зависимость ln А - ln c и графически определить оба постоянных параметра β и n.

Поверхностные явления и адсорбция. Типы адсорбционных взаимодействий. Изотермы адсорбции газов. Уравнение Генри и Лэнгмюра. Полимолекулярная адсорбция, теория БЭТ.

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ И АДСОРБЦИЯ

Поверхностная энергия. Адсорбция

До сих пор свойства гетерогенных систем описывались с помощью параметров и функций состояния, характеризующих каждую из фаз в целом. Однако свойства участка фазы, примыкающего к её поверхности, отличаются от свойств фазы в объеме: фактически частицы, находящиеся на поверхности каждой фазы, образуют особую поверхностную фазу, свойства которой существенно отличаются от свойств внутренних областей фазы. Частицы, расположенные на поверхности, находятся в другом окружении по сравнению с частицами, находящимися в объеме фазы, т.е. взаимодействуют как с однородными частицами, так и с частицами другого рода. Следствием этого является то, что средняя энергия g s частицы, находящейся на поверхности раздела фаз, отличается от средней энергии такой же частицы в объеме фазы g v (причем энергия частицы на поверхности может быть как больше, так и меньше энергии частицы в объеме). Поэтому важнейшей характеристикой поверхностной фазы является поверхностная энергия G s – разность средней энергии частицы, находящейся на поверхности, и частицы, находящейся в объеме фазы, умноженная на число частиц на поверхности N:

(26.1)

Очевидно, что общая величина поверхностной энергии фазы будет определяться величиной её поверхности S. Поэтому для характеристики поверхности раздела, отделяющей данную фазу от другой, вводится понятие поверхностное натяжение σ – отношение поверхностной энергии к площади поверхности раздела фаз; величина поверхностного натяжения зависит только от природы обеих фаз. Как и поверхностная энергия фазы, поверхностное натяжение может иметь как положительное, так и отрицательное значение. Поверхностное натяжение положительно, если находящиеся на поверхности частицы взаимодействуют с частицами этой же фазы сильнее, чем с частицами другой фазы (и, следовательно, g s > g v). Согласно принципу минимума свободной энергии, любая фаза будет стремиться самопроизвольно уменьшить свою поверхностную энергию; поэтому в случае положительного поверхностного натяжения (σ > 0) фаза стремится уменьшить свою поверхность. В случае если σ < 0, поверхностная энергия фазы будет уменьшаться при увеличении площади поверхности.

Влияние поверхностного слоя фазы на её общие свойства определяется долей частиц, находящихся на поверхности, от общего числа составляющих данную фазу частиц, т.е. величиной удельной поверхности фазы S/V (поверхности, приходящейся на единицу объема). Свободную энергию фазы G можно представить как сумму поверхностной G s и объемной G v энергий, пропорциональных соответственно площади поверхности и объему фазы:

Разделив это выражение на объем фазы, получаем:

Из уравнения (IV.4) следует, что при одном и том же количестве фазы (т.е. неизменном объеме) вклад поверхностной энергии в общую энергию фазы возрастает с увеличением удельной поверхности или, иначе говоря, степени дисперсности (раздробленности) фазы. В случае, когда степень дисперсности фазы невелика (удельная поверхность незначительна), вкладом поверхностной энергии в полную энергию фазы обычно пренебрегают. Вклад поверхностного слоя в свойства фазы и системы в целом учитывают при изучении дисперсных систем – гетерогенных систем, одна из фаз которой является сплошной (дисперсионная среда ), а другая – раздробленной (дисперсная фаза ).

На границе конденсированной (т.е. твердой или жидкой) фазы с газом поверхностное натяжение всегда положительно, поскольку частицы конденсированной фазы взаимодействуют друг с другом сильнее, чем с молекулами газа. Согласно принципу минимума свободной энергии, конденсированная фаза будет стремиться самопроизвольно уменьшить свою поверхностную энергию. Это может быть результатом либо уменьшения площади поверхности фазы (именно поэтому капля жидкости в невесомости принимает форму сферы), либо уменьшения поверхностного натяжения при появлении на поверхности раздела фаз новых частиц – молекул газа либо растворенного вещества. Процесс самопроизвольного изменения концентрации какого-либо вещества у поверхности раздела двух фаз называется адсорбцией . Адсорбентом называется вещество, на поверхности которого происходит изменение концентрации другого вещества – адсорбата .

Адсорбция на границе раствор – пар

В жидких растворах поверхностное натяжение σ является функцией от концентрации растворенного вещества. На рис. 4.1 представлены три возможных зависимости поверхностного натяжения от концентрации раствора (т.н. изотермы поверхностного натяжения). Вещества, добавление которых к растворителю уменьшает поверхностное натяжение, называют поверхностно-активными (ПАВ), вещества, добавление которых увеличивает или не изменяет поверхностное натяжение – поверхностно-инактивными (ПИАВ).

Рис. 26.1 Изотермы поверхностного Рис. 26.2 Изотерма адсорбции
натяжения растворов ПАВ (1, 2) и ПИАВ. ПАВ на границе раствор – пар
ПИАВ (3)

Уменьшение поверхностного натяжения и, следовательно, поверхностной энергии происходит в результате адсорбции ПАВ на поверхности раздела жидкость – пар, т.е. того, что концентрация поверхностно-активного вещества в поверхностном слое раствора оказывается больше, чем в глубине раствора.

Количественной мерой адсорбции на границе раствор-пар является поверхностный избыток Г (гамма), равный числу молей растворенного вещества в поверхностном слое. Количественное соотношение между адсорбцией (поверхностным избытком) растворенного вещества и изменением поверхностного натяжения раствора с ростом концентрации раствора определяет изотерма адсорбции Гиббса :

График изотермы адсорбции ПАВ представлен на рис. 26.2. Из уравнения (26.5) следует, что направление процесса – концентрирование вещества в поверхностном слое или, наоборот, нахождение его в объеме жидкой фазы – определяется знаком производной dσ/dС. Отрицательная величина данной производной соответствует накоплению вещества в поверхностном слое (Г > 0), положительная – меньшей концентрации вещества в поверхностном слое по сравнению с его концентрацией в объеме раствора.

Величину g = –dσ/dС называют также поверхностной активностью растворенного вещества. Поверхностную активность ПАВ при некоторой концентрации С 1 определяют графически, проводя касательную к изотерме поверхностного натяжения в точке С = С 1 ; при этом поверхностная активность численно равна тангенсу угла наклона касательной к оси концентраций:

Нетрудно заметить, что с ростом концентрации поверхностная активность ПАВ уменьшается. Поэтому поверхностную активность вещества обычно определяют при бесконечно малой концентрации раствора; в этом случае её величина, обозначаемая g о, зависит только от природы ПАВ и растворителя. Исследуя поверхностное натяжение водных растворов органических веществ, Траубе и Дюкло установили для гомологических рядов поверхностно-активных веществ следующее эмпирическое правило:

В любом гомологическом ряду при малых концентрациях удлинение углеродной цепи на одну группу СН 2 увеличивает поверхностную активность в 3 – 3.5 раза.

Для водных растворов жирных кислот зависимость поверхностного натяжения от концентрации описывается эмпирическим уравнением Шишковского :

Здесь b и K – эмпирические постоянные, причём значение b одинаково для всего гомологического ряда, а величина К увеличивается для каждого последующего члена ряда в 3 – 3,5 раза.

Рис. 26.3 Предельная ориентация молекул ПАВ в поверхностном слое

Молекулы большинства ПАВ обладают дифильным строением, т.е. содержат как полярную группу, так и неполярный углеводородный радикал. Расположение таких молекул в поверхностном слое энергетически наиболее выгодно при условии ориентации молекул полярной группой к полярной фазе (полярной жидкости), а неполярной – к неполярной фазе (газу или неполярной жидкости). При малой концентрации раствора тепловое движение нарушает ориентацию молекул ПАВ; при повышении концентрации происходит насыщение адсорбционного слоя и на поверхности раздела фаз образуется слой "вертикально" ориентированных молекул ПАВ (рис. 26.3). Образование такого мономолекулярного слоя соответствует минимальной величине поверхностного натяжения раствора ПАВ и максимальному значению адсорбции Г (рис. 26.1-26.2); при дальнейшем увеличении концентрации ПАВ в растворе поверхностное натяжение и адсорбция не изменяются.

Адсорбция на границе твердое тело – газ

При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата и адсорбента представляет собой весьма сложную задачу, поскольку характер их взаимодействия, определяющий характер адсорбции, может быть различным. Поэтому обычно задачу упрощают, рассматривая два крайних случая, когда адсорбция вызывается физическими или химическими силами – соответственно физическую и химическую адсорбцию.

Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 – 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.

Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40 – 120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.

Следует подчеркнуть, что явления физической и химической адсорбции чётко различаются в очень редких случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо и лишь небольшая часть – прочно. Например, кислород на металлах или водород на никеле при низких температурах адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать химическая адсорбция. При повышении температуры увеличение химической адсорбции с некоторой температуры начинает перекрывать падение физической адсорбции, поэтому температурная зависимость адсорбции в этом случае имеет четко выраженный минимум (рис. 26.4).

Рис. 26.4 Зависимость объема адсорбированного никелем водорода от температуры

При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.

Теории адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело – газ или твердое тело – раствор.

Теория мономолекулярной адсорбции Ленгмюра

Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр, основывается на следующих положениях.

1) Адсорбция является локализованной и вызывается силами, близкими к химическим.

2) Адсорбция происходит не на всей поверхности адсорбента, а на активных центрах , которыми являются выступы либо впадины на поверхности адсорбента, характеризующиеся наличием т.н. свободных валентностей. Активные центры считаются независимыми (т.е. один активный центр не влияет на адсорбционную способность других), и тождественными.

3) Каждый активный центр способен взаимодействовать только с одной молекулой адсорбата ; в результате на поверхности может образоваться только один слой адсорбированных молекул.

4) Процесс адсорбции является обратимым и равновесным – адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; т.о., через некоторое время между процессами адсорбции и десорбции устанавливается динамическое равновесие.

Рис. 26.5 Изотерма мономолекулярной адсорбции

В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 – х):

(26.9)

Отсюда находим х:

Разделив числитель и знаменатель правой части уравнения (26.10) на k A , получим:

(26.11)

Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Г о. Подставив это в уравнение (26.11), получаем:

Уравнение (26.13) есть изотерма мономолекулярной адсорбции , связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b – некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров. График изотермы адсорбции Ленгмюра приведен на рис. 26.5. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

При описании процесса адсорбции газов в уравнении (26.13) концентрация может быть заменена пропорциональной величиной парциального давления газа:

Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

Теория полимолекулярной адсорбции Поляни

На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции (рис. 4.6), форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.

Рис. 26.6 Изотерма полимолекулярной адсорбции

Для описания таких изотерм адсорбции М. Поляни предложил теорию полимолекулярной адсорбции , основанную на следующих основных положениях:

1. Адсорбция вызвана чисто физическими силами .

2. Поверхность адсорбента однородна , т.е. на ней нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.

3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата. Иначе говоря, у поверхности адсорбента существует некоторый адсорбционный объём , который при адсорбции заполняется молекулами адсорбата.

4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.

5. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не меняется.

Уравнение Фрейндлиха

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

Адсорбция на границе твердое тело – раствор

Молекулярная адсорбция из растворов

Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Лэнгмюра, если в них подставить равновесную концентрацию растворенного вещества в растворе. Однако адсорбция из растворов является значительно более сложным явлением по сравнению с газовой, поскольку одновременно с адсорбцией растворенного вещества часто происходит и адсорбция растворителя.

Рис. 26.8 Ориентация молекул ПАВ на поверхности адсорбента

Зависимость адсорбции от строения молекул адсорбата очень сложна, и вывести какие-либо закономерности довольно трудно. Молекулы многих органических веществ состоят из полярной (гидрофильной) и неполярной (гидрофобной) группировок, т.е. являются поверхностно-активными веществами. Молекулы ПАВ при адсорбции на твердом адсорбенте ориентируются на его поверхности таким образом, чтобы полярная часть молекулы была обращена к полярной фазе, а неполярная – к неполярной. Так, при адсорбции алифатических карбоновых кислот из водных растворов на неполярном адсорбенте – активированном угле – молекулы ориентируются углеводородными радикалами к адсорбенту; при адсорбции из бензола (неполярный растворитель) на полярном адсорбенте – силикагеле – ориентация молекул кислоты будет обратной (рис. 4.8).

Адсорбция из растворов электролитов

Адсорбция из водных растворов электролитов происходит, как правило, таким образом, что на твердом адсорбента из раствора адсорбируются преимущественно ионы одного вида. Преимущественная адсорбция из раствора или аниона, или катиона определяется природой адсорбента и ионов. Механизм адсорбции ионов из растворов электролитов может быть различным; выделяют обменную и специфическую адсорбцию ионов.

Обменная адсорбция представляет собой процесс обмена ионов между раствором и твердой фазой, при котором твердая фаза поглощает из раствора ионы какого-либо знака (катионы либо анионы) и вместо них выделяет в раствор эквивалентное число других ионов того же знака. Обменная адсорбция всегда специфична, т.е. для данного адсорбента к обмену способны только определенные ионы; обменная адсорбция обычно необратима.

При специфической адсорбции адсорбция на поверхности твердой фазы ионов какого-либо вида не сопровождается выделением в раствор эквивалентного числа других ионов того же знака; твердая фаза при этом приобретает электрический заряд. Это приводит к тому, что вблизи поверхности под действием сил электростатического притяжения группируется эквивалентное число ионов с противоположным зарядом, т.е. образуется двойной электрический слой. Взаимодействие концентрирующихся на поверхности зарядов приводит к понижению поверхностной энергии системы. Для случая специфической адсорбции электролита Песковым и Фаянсом было сформулировано следующее эмпирическое правило (правило Пескова-Фаянса ):

На поверхности кристаллического твердого тела из раствора электролита специфически адсорбируется ион, который способен достраивать его кристаллическую решетку или может образовывать с одним из ионов, входящим в состав кристалла, малорастворимое соединение.