Как проявляется себя межзвездная среда. Межзвездный газ

Даже из приведенного краткого обзора видно, как сложна структура межзвездной среды. Перечислим компоненты, из которых она должна состоять.

Компактные области с Те Такими характеристиками обладают облака, которые изучаются по их молекулярным радиолиниям. Для них характерен широкий диапазон плотностей, многие из них связаны с районами недавнего звездообразования. В табл. 17.2, заимствованной из обзора , приведены значения плотностей, размеров, степени ионизации и среднеквадратичных дисперсий скорости, характерных для этих областей.

Диффузный нейтральный водород. Ббльшая часть показанного на рис. 17.1 нейтрального водорода является диффузной, т. е. он не входит в облака. Ясно, что плотность меняется от точки к точке, но в среднем с разумной степенью точности можно пользоваться значением Часть этого газа может быть горячей, но, конечно, неионизованной.

Ионизованный газ. Области являющиеся одним из самых интересных астрономических объектов в Галактике, непосредственно связаны с молодыми, яркими, горячими звездами спектральных классов конечно, не типичны для межзвездной среды. Многие описанные выше методы используются для комплексного изучения этих объектов. В качестве примера на рис. 17.3 показаны результаты наблюдений источника в разных диапазонах. В целом он представляет собой источник диффузного теплового тормозного радиоизлучения. При большем разрешении видны отдельные области некоторые из них обладают оболочечной структурой, означающей, что они возникли в результате недавней вспышки

(кликните для просмотра скана)

(см. скан)

звездообразования. Еще более компактны области связанные с мощными инфракрасными источниками. Наконец, наименьшие размеры имеют источники мазерного излучения на молекулах и Соответствующие физические параметры приведены на рис. 17.3.

Существует также ионизованная составляющая диффузного межзвездного газа. Лучше всего ее плотность определяется по мерам дисперсии пульсаров. Найденные таким образом значения имеют большой разброс, что неудивительно, поскольку физические условия в межзвездной среде меняются в широких пределах. Разумным средним значением плотности межзвездного газа является

Горячая фаза Те Наблюдения высоко ионизованных элементов, например и показывают, что в межзвездном газе должна присутствовать гораздо более горячая фаза. Примечательно, что ее температура не сильно отличается от температур старых остатков сверхновых. Как можно показать, значительная часть межзвездного газа постоянно нагревается ударными волнами, возникающими на границах старых остатков сверхновых. Это дает довольно привлекательное объяснение горячей фазы.

Ясно, что структура межзвездной среды очень сложна. Тем не менее для расчетов полезно иметь простую модель. Области сосредоточены вблизи плоскости Галактики. Полутолщина слоя нейтрального водорода (т. е. расстояние между уровнями половинной плотности) составляет примерно С другой стороны, судя по мерам вращения, тормозному поглощению на низких частотах и мерам дисперсии пульсаров, полутолщина слоя значительно больше, около Точность этих значений низка, но они дают правильное по порядку величины представление о распределении различных составляющих газового диска Галактики. Эти значения относятся к окрестностям Солнца. Ближе к центру Галактики ситуация существенно меняется и в радиусе от центра большая часть водорода находится в молекулярном состоянии.

Наконец, мы даже не пытались разобраться в механизмах нагрева и ионизации межзвездного газа. Многие из них детально разработаны. Среди них: нагрев и ионизация космическими лучами, т. е. ионизационные потери, которые подробно обсуждались в гл. 2; нагрев при столкновениях облаков; нагрев жестким ультрафиолетовым и мягким рентгеновским излучением; нагрев при вспышках сверхновых. В силу большого разнообразия структур в межзвездной среде было бы удивительно, если бы для каждого из перечисленных механизмов не нашлась бы точка в Галактике, где он преобладает.

Механизм нагрева вспышками сверхновых дает привлекательное объяснение существования очень горячей фазы с В оригинальной работе Кокса и Смита высказано предположение, что дальнейший нагрев может происходить при столкновениях старых остатков сверхновых. Согласно этим авторам, пересечение старых оболочек и их разогрев при столкновениях приводят к образованию сети из горячего газа, пронизывающей диск Галактики.

Межзвёздная среда

разреженное вещество, межзвёздный газ и мельчайшие пылевые частицы, заполняющие пространство между звёздами в нашей и других Галактика х. В состав М. с. входят, кроме того, Космические лучи , межзвёздные магнитные поля (См. Межзвёздное магнитное поле), а также кванты электромагнитного излучения различной длины волны. Вблизи Солнца (и других звёзд) М. с. переходит в межпланетную среду (См. Межпланетная среда). Пространство между галактиками заполняет Межгалактическая среда . Впервые к выводу о существовании М. с., поглощающей свет звёзд, пришёл В. Я. Струве (1847), однако её существование было доказано только в 30-х годах 20 века (американским астрономом Р. Трамплером и советским астрономом Б. А. Воронцовым-Вельяминовым).

Межзвёздный газ состоит из нейтральных и ионизованных атомов и молекул. Основную массу газа составляют атомы водорода и гелия (соответственно около 90 % и 10 % по числу атомов) с небольшой примесью кислорода, углерода, неона, азота (около 0,01 % каждого). Из молекул наиболее обильно представлена H 2 , сосредоточенная в облаках. Кроме того, имеются в малом количестве CH, OH, H 2 O, NH 3 , CH 2 O и другие органические и неорганические молекулы. Межзвёздный газ почти равномерно перемешан с межзвёздной пылью, состоящей из частиц размером 10 -4 -3·10 -6 см . Мелкие частицы состоят из Fe, SiO 2 , более крупные имеют частично графитовые ядра, возможно с примесью железа, и оболочки из замерзших газов CH 4 , NH 3 , H 2 O и других. Газ и пыль почти полностью отсутствуют в эллиптических галактиках, в спиральных же галактиках типов Sa , Sb , Sc составляют соответственно около 1 %, 3 %, 10 % массы галактики, а в неправильных галактиках - в среднем 16 %. Межзвёздные газ и пыль сильно концентрируются к плоскости галактик, образуя диск, толщина которого составляет в среднем несколько сотен пс , возрастая к периферии иногда до нескольких кпс . Концентрация газа в дисках в среднем около 1 или нескольких атомов в 1 см 3 (плотность около 10 -24 г/см 3 ); вне диска и на его краях плотность газа значительно меньше. В спиральных галактиках большая часть газа и пыли сосредоточена в спиральных рукавах (ветвях): плотность газа между рукавами галактики в 3-10 раз меньше, чем в рукавах. В рукавах около 80-90 % газа сосредоточено в межзвёздных облаках, которые часто объединяются, образуя газопылевые комплексы, располагающиеся главным образом на внутренней (вогнутой) стороне спиральных рукавов. Параметры межзвёздных облаков крайне разнообразны.

В нашей Галактике диаметры межзвёздных облаков обычно составляют 5-40 пс , концентрация атомов в них от 2 до 100 в 1 см 3 , температура 20-100 К. Облака занимают около 10 % объёма диска Галактики. Газ и пыль М. с. вместе со звёздами движутся в диске галактик вокруг её центра по орбитам, близким к круговым, со средними скоростями, составляющими 100-200 км/сек. Отдельные облака межзвёздного газа имеют собственные (пекулярные) скорости, величина которых в среднем равна 10 км/сек , достигая иногда 50-100 км/сек. В галактической короне наблюдается газ, падающий на плоскость галактики со скоростями в десятки и сотни (до 200) км/сек ; происхождение этого газа не выяснено. Концентрация атомов между облаками 0,02-0,2 в 1 см 3 , температура 7-10 тысяч К.

Водород, гелий и другие элементы, потенциалы ионизации которых больше, чем у водорода, в облаках ионизованы очень слабо, а между облаками ионизация водорода - несколько десятков процентов. Остальные элементы однократно ионизованы светом звёзд. Такие облака и среда между ними называются областями HI (нейтрального водорода) и занимают основную часть диска галактик. Вокруг горячих звёзд класса О водород сильно (до 99 %) ионизован ультрафиолетовым излучением. Такие области называются областями HII (ионизованного водорода) или зонами Стрёмгрена. температура областей HII достигает 6000-8000 К, размеры их в зависимости от температуры звезды и плотности газа колеблются от долей пс до нескольких десятков, а в исключительных случаях - до сотен пс . Обычно вокруг горячих звёзд наблюдаются не просто ионизованные межзвёздные облака, а значительно более плотные диффузные туманности, в которых концентрация достигает десятков и сотен атомов в 1 см 3 . Возможно, это остатки того плотного комплекса, из которого образовались горячие звёзды. Такие области HII постепенно расширяются под действием горячего газа. Если на пути такой области встречается уплотнение, принадлежащее области HI, то граница области HII огибает это уплотнение, обнажая его со всех сторон. Так образуются тёмные (на фоне светящихся областей HII) холодные плотные области HI, имеющие вид вытянутых жгутов (так называемые слоновьи хоботы) или сферических сгустков (глобулы). В спектре областей HII наблюдаются яркие линии водорода и запрещенные линии кислорода, азота, серы и некоторых других элементов, а также слабый непрерывный спектр. В радиодиапазоне эти области светятся в непререрывном спектре и в линиях водорода и гелия, возникающих при квантовых переходах между очень высокими энергетическими уровнями. В областях HI газ в оптических лучах не светится. Его изучают по линиям поглощения света звёзд, расположенных позади этих областей. Особенно много информации дают резонансные линии поглощения атомов и ионов, расположенные в ультрафиолетовой области и наблюдаемые с космических зондов. Сведения о нейтральном водороде в Галактике и других галактиках, о его распределении и движении получают, наблюдая радиолинии нейтрального водорода с длиной волны 21 см . В этой линии, однако, излучается лишь малая доля тепловой энергии газа областей HI. Основная доля энергии излучается областями HI в далёких инфракрасных спектральных линиях атомов O, ионов C, Si, Fe и других.

Средняя плотность пыли в диске Галактики 10 -26 г/см (0,01 плотности газа). Эта пыль поглощает свет звёзд, причём синие лучи сильнее, чем красные. Поэтому из-за пыли свет далёких звёзд виден не только ослабленным, но и более красным. Наличие пыли не позволяет наблюдать звёзды, лежащие в плоскости Галактики на расстояниях, превышающих 3 кпс от Земли. Плотные облака газа и пыли, поглощающей свет, кажутся тёмными на светлом фоне Млечного Пути. Ещё резче выделяются тёмные газопылевые облака, если они проектируются на светлую туманность. Вблизи достаточно ярких звёзд (в основном класса B) пыль освещена настолько, что может быть сфотографирована с Земли; такие светлые облака называются отражательными туманностями. Слой газа и пыли в других галактиках, наблюдаемых с ребра, виден в виде тёмной полосы (см., например, илл. ). Межзвёздные пылинки имеют несферическую форму и ориентированы в среднем определённым образом относительно магнитного поля Галактики, что вызывает поляризацию света звёзд.

Массы больших газопылевых комплексов достигают десятков и сотен тысяч масс Солнца. В их центральных частях температура очень низкая (иногда всего 5-6 К) при концентрации атомов до сотен в 1 см 3 и более. Плотность пыли в них больше 1 / 100 плотности газа. Последнее обстоятельство связано с тем, что при низких температурах и больших плотностях происходит образование молекул, в том числе многоатомных, и налипание их на пылинки. В таких местах могут образовываться звёзды. В связи с этим имеет важное значение то обстоятельство, что в центральных частях комплексов наблюдаются компактные объекты (размером порядка 10 15 см и меньше), из которых, возможно, образуются звёзды (см. Протозвёзды) и планеты. Они очень интенсивно излучают в радиолиниях молекул OH, H 2 O и других, характер излучения которых иногда аналогичен излучению Лазер ов.

Частиц, составляющих космические лучи и обладающих огромными энергиями - от 10 6 до 10 20 эв , в М. с. гораздо меньше, чем других её компонентов, но их общая энергия в 1 см 3 составляет около 1 эв , то есть превышает энергию тепловых движений межзвёздного газа. Космические лучи больших энергий слабо взаимодействуют с газом и пылью, изредка вызывая в них ядерные реакции. Менее энергичные частицы (10 6 -10 7 эв ) способны нагревать и ионизовывать межзвёздный газ; они являются одним из основных источников нагрева областей HI. Напряжённость межзвёздного магнитного поля мала (в 10 5 раз слабее магнитного поля Земли), но его энергия примерно равна энергии космических лучей. Поэтому давление космических лучей и магнитного поля играют существенную роль в динамике М. с. Электромагнитные кванты в М. с. имеют частоты от радиодиапазона до жёсткого гамма-излучения. Наибольшее воздействие на межзвёздные газ и пыль оказывают оптические, ультрафиолетовые и мягкие рентгеновские лучи (с энергией квантов меньше 1 кэв ). Последние отчасти приходят из межгалактического пространства, а отчасти возникают в рентгеновских источниках внутри Галактики и вызывают (вместе с космическими лучами) нагрев и частичную ионизацию областей HI. Оптические и ультрафиолетовые кванты в М. с. являются результатом излучения звёзд Галактики.

В галактиках происходит постоянный обмен веществом между М. с. и звёздами. М. с. служит материалом для образования звёзд, а звёзды, в свою очередь, выбрасывают часть вещества в М. с., сообщая одновременно газу кинетическую энергию. Это происходит и на спокойных стадиях развития звёзд, и в конце их эволюции, когда звёзды сбрасывают оболочку, образуя планетарную туманность, или взрываются как сверхновая звезда (См. Сверхновые звёзды). Происходит постоянный круговорот вещества, при котором количество газа в М. с. постепенно истощается. В частности, последним обстоятельством объясняется, что в эллиптических галактиках газа нет, в то время как в неправильных его много: здесь он истощился менее всего. Поскольку в процессе эволюции звёзд и особенно при взрывах сверхновых звёзд ядерные реакции меняют химический состав газа, меняется со временем и состав М. с., а следовательно, и состав образующихся из неё звёзд. Кроме того, происходит обмен газом между ядрами галактик и М. с.

Лит.: Пикельнер С. Б., Физика межзвёздной среды, М., 1959; Каплан С. А., Пикельнер С. Б., Межзвёздная среда, М., 1963; Гринберг М., Межзвёздная пыль, перевод с английского, М., 1970; Космическая газодинамика, [перевод с английского], М., 1972; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1970; Мартынов Д, Я., Курс общей астрофизики, М., 1971; Аллер Л., Астрофизика, перевод с английского, т. 2, М., 1957.

С. Б. Пикельнер, Н. Г. Бочкарёв.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Межзвёздная среда" в других словарях:

    Материя, заполняющая пространство между звёздами внутри галактик. Материя в пространстве между галактиками наз. межгалактич. средой (см. Скопления галактик. Межгалактический газ). Газ в оболочках вокруг звёзд (околозвёздные оболочки) часто… … Физическая энциклопедия

    Включает разреженное вещество (газ, пыль), электромагнитное излучение, космические лучи, нейтрино и другие виды материи, заполняющей пространство между звёздами в нашей Галактике и других галактиках. Плотность межзвёздной среды 10–24 10–26 г/см3 … Энциклопедический словарь

    Карта местного межзвёздного облака Межзвёздная среда (МЗС) вещество и поля, заполняющие межзвёздное пространство внутри галактик … Википедия

    Включает разреженное в во (газ, пыль), эл. магн. излучение, космич. лучи, нейтрино и др. виды материи, заполняющей пространство между звёздами в нашей Галактике и др. галактиках. Плотн. М.с. 10 24 10 26Г/СМ3 … Естествознание. Энциклопедический словарь

    Межзвёздная пыль твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается что пылинки имеют тугоплавкое ядро, окруженное органическим веществом или ледяной оболочкой.… … Википедия

    Твёрдые частицы размером от тысячных до неск. десятых долей микрона. Распределение M. п. в Галактике коррелирует с распределением межзвёздного газа; отношение содержаний (по массе) пыли и газа составляет в ср. 0,01. Пылевые частицы воздействуют… … Физическая энциклопедия

    Межзвёздный полёт путешествие между звёздами пилотируемых аппаратов или автоматических станций. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2 достигли третьей космической скорости и покинули солнечную… … Википедия

    Путешествия между звёздами пилотируемых аппаратов или автоматических станций. Полеты на звездолётах занимают существенное место в научной фантастике. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2 достигли третьей… … Википедия

    Межзвёздные полёты путешествия между звёздами пилотируемых аппаратов или автоматических станций. Полеты на звездолётах занимают существенное место в научной фантастике. Четыре автоматические станции Пионер 10, Пионер 11, Вояджер 1, Вояджер 2… … Википедия

    - (поле коллектора показано видимым) Межзвёздный прямоточный двигатель Бассарда … Википедия

Водород является самым распространенным элементом, и состояние его ионизации должно определять физические условия в газе. Можно поэтому думать, что физические условия в зонах Н I и Н II коренным образом различны. Л. Спицер (США) показал, что прежде всего резко различаются температуры. Он рассчитал температуру в областях HI и Н II, используя метод энергетического баланса, сходный с тем, который был использован для туманностей.

В области Н II приход энергии определяется ионизацией водорода - оторванный электрон получает избыток энергии кванта, который потом распределяется между несколькими электронами в результате столкновений. Нужно подчеркнуть, что ионизации водорода возможны только потому, что происходят рекомбинации, иначе водород был бы ионизован полностью и нагрев прекратился бы. Чем больше рекомбинаций происходит в единице объема, тем больше будет ионизации и тем больше энергии сообщается электронному газу. Напомним, что число рекомбинаций пропорционально квадрату плотности.

Охлаждение газа производится при возбуждении уровней ионов S II, N II и главное О II. Интенсивности линий вычислялись теоретически, так как из-за их слабости они трудны для наблюдения. Величина температуры почти не зависит от плотности, если удары второго рода несущественны, так как и нагрев и охлаждение пропорциональны n 2 , которое сокращается в уравнении баланса. Поскольку освещающие звезды в областях Н II такие же, как в диффузных туманностях, температуры этих областей должны быть примерно такими же - от 7000 до 10 000° в зависимости от подкласса звезды. Эта оценка температуры подтверждается наблюдениями линии О II. При температуре ниже 7000 - 8000° ультрафиолетовая линия не может возбуждаться.

В областях Н I водород не ионизуется, туда не проникает излучение с длиной волны меньшей, чем у лаймановского предела. Поэтому там не могут быть ионизованы также кислород и азот, у которых энергия ионизации больше, чем у водорода. Из сравнительно обильных элементов только углерод, кремний, сера и железо должны быть в ионизованном состоянии, так как их ионизация может производиться квантами с частотой, меньшей частоты лаймановского предела. Излучение, ионизующее эти атомы, является не столь коротковолновым, как излучение, ионизующее водород (предел ионизации углерода равен 1105 Å), поэтому оно достаточно интенсивно и в спектрах более холодных и многочисленных звезд классов В1 - В5, которые играют здесь ту же роль, что звезды О и ВО для водорода. Так как атомов С, Si и других в тысячу раз меньше, чем водорода, поглощение ими радиации не очень существенно, и резко разделенных зон, например С I и С II и т. п., не должно быть. Более существенно поглощение пылью, из-за которого могут возникнуть зоны С I и другие внутри плотных газово-пылевых облаков.

Поскольку электроны в областях Н I образуются при ионизации углерода и других элементов, относительное содержание которых в тысячи раз меньше, чем водорода, концентрация электронов в областях Н I в тысячу раз меньше, чем в Н II при той же плотности газа.

Эти числа согласуются с упомянутыми выше данными Б. Стремгрена об электронной концентрации в облаках, найденными из сравнения межзвездных линий поглощения. Ввиду малой электронной концентрации рекомбинации в областях H I происходят реже, чем в областях Н II. Отсюда следует любопытный вывод, что степень ионизации металлов, С, Si и тому подобных элементов в областях H I выше, чем в областях НИ, несмотря на отсутствие там коротковолнового излучения.

Рассмотрим температуру областей Н I. Нагрев газа производится при ионизации С, Si, S и металлов, прежде всего Fe. Но из-за малого количества этих элементов и низкой электронной концентрации число рекомбинаций, а следовательно, и число ионизации, очень мало, так что приход энергии от фотоионизаций в 1 см 3 в десятки тысяч раз меньше, чем в области Н II (при расчете надо принять во внимание, что при низкой температуре вероятность рекомбинации увеличивается). Поскольку приход энергии мал, нужно рассмотреть по возможности все механизмы нагрева и охлаждения, даже те, которые кажутся второстепенными, так как в сравнении с малым приходом от фото-ионизации эти механизмы могут оказаться существенными.

Одним из дополнительных факторов нагрева могут служить космические лучи. Подробнее о них будет говориться в следующей главе. Пока достаточно знать, что до того как космические лучи попадают в атмосферу Земли они представляют собой протоны и ядра других атомов, а также электроны, движущиеся в межзвездном пространстве с громадной энергией, в миллиарды раз превосходящей энергию теплового движения частиц в областях Н II. Двигаясь в межзвездном газе почти со скоростью света, такая частица ионизует атомы на своем пути. Вырванный электрон получает довольно значительную энергию, которая распределяется в газе в результате столкновений с другими электронами. Наиболее существенна ионизация атомов водорода. Концентрация космических лучей около Земли известна, и, сделав гипотезу, что она одинакова почти во всей Галактике (эта гипотеза теперь подтверждена данными радиоастрономии, о чем см. в главе IV), Спицер подсчитал, что нагрев космическими лучами составляет около 10% нагрева от фотоионизации атомов в обычных облаках Н I. Таким образом, в обычных облаках роль космических лучей не очень существенна. Однако в более плотных комплексах газо-пылевых облаков, куда излучение звезд проникает сильно ослабленным, космические лучи могут быть основным источником ионизации и нагрева.

Охлаждение в зонах Н I, так же как и в областях Н II, производится в основном при возбуждении уровней электронным ударом. Число ионов, которые могут возбуждаться ударом и охлаждать газ, сравнимо с концентрацией С, Si и др., ионизации которых нагревают газ. Это приводит к тому, что температура газа оказывается значительно ниже, чем в зоне Н II, где охлаждающих ионов в тысячи раз меньше, чем нагревающих (водород). При низкой температуре электроны не могут возбуждать уровни, переходы с которых вниз дают линии в видимой части спектра ([О II], и т. п.). Поэтому если бы атомы имели только такие уровни, то температура понизилась бы примерно до 3000°, после чего охлаждение уменьшилось бы в тысячи раз и баланс энергии восстановился бы. Однако у многих атомов и ионов основной уровень, который мы до сих пор рассматривали как слитный, на самом деле оказывается расщепленным, он состоит из двух-трех подуровней. Расщепление этих подуровней в сто-триста раз меньше, чем расстояние от первого до второго уровня ионов, излучающих обычные запрещенные линии. Поэтому длины волн, излучаемые при запрещенных переходах между подуровнями, лучше измерять не в ангстремах, а в микронах (1 мк равен 10 -4 см или 10 4 Å). Из более обильных в области Н I ионов такие длинноволновые линии имеются у С II (переход между первым возбужденным и основным подуровнем дает линию с длиной волны 156 мк, т. е. 0,15 мм), у О I (6З мк), у Si II (35 мк), Fe II (26 мк) и др. У N I основной уровень не расщеплен. Возбуждение низких подуровней N II, С II и других происходит, конечно, и в областях Н II, но, поскольку каждое возбуждение уносит очень небольшую энергию, их влияние на температуру этих областей незначительно.

Чем больше длина волны линии, тем более медленные электроны могут ее возбуждать. При относительно высокой температуре, например 200-300° К 1 , много энергии будет уносить возбуждение Fe II. При температуре меньше 200° К охлаждение на ионах железа начнет уменьшаться, и могло бы установиться равновесие, но ионы кремния будут еще легко возбуждаться, и температура будет продолжать опускаться. Нижний предел температуры определяется самым низким из перечисленных подуровней, принадлежащим С II. Если основная часть атомов углерода находится в состоянии С II, то равновесная температура по расчетам Спицера была бы всего 22° К 2 . Однако некоторые данные наблюдений, о которых речь будет ниже, говорят о более высокой температуре. Кроме того, из теоретических соображений следует, что углерод в зоне Н I вряд ли будет весь в свободном состоянии. Часть его входит в состав молекул СН, CN и др. Кроме того, атомы углерода легко адсорбируются пылинками, поэтому в газово-пылевых облаках часть углерода должна войти в атомарном или молекулярном виде в состав пылинок. Процесс роста пылинок еще плохо изучен, и пока трудно сказать, насколько эта часть значительна. Некоторое указание может дать тот факт, что в более плотных облаках содержание Са по отношению к Na в несколько раз меньше обычного. Это было объяснено тем, что Са в таких условиях адсорбируется пылинками. Если поведение углерода сходно с поведением кальция, то содержание свободного углерода тоже должно уменьшиться в несколько раз, так что основным "нагревающим" элементом станет Si I, а охлаждающим - О I и Si II, у которых энергия возбуждения в несколько раз больше, чем у С II. В этом случае температура установится более высокой, например 40 - 50° К. Ошибка в температуре не может здесь быть очень большой, так как число возбуждений сильно зависит от температуры - изменение ее на 10° изменяет скорость охлаждения в два-три раза, и поэтому неточность в оценке относительного содержания элементов, эффективных сечений возбуждения и т. п. может изменить температуру не больше, чем на 20 - 30°.

1 (Речь идет об абсолютной температуре, отсчитываемой от -273° С )

2 (По новым расчетам - 18° К )

Рассмотрим теперь другие процессы, ведущие к охлаждению. Одним из таких процессов могут быть столкновения атомов с пылинками 1 . При столкновении значительная доля кинетической энергии атома переходит к атомам холодной пылинки, которые начинают быстрее двигаться, т. е. пылинка нагревается, а энергия атома в результате столкновения уменьшается. Чтобы проиллюстрировать роль этого процесса, Спицер рассмотрел плотное газопы-левое облако, в котором относительная концентрация пылинок в десять раз больше, чем средняя концентрация в межзвездном газе. Предполагалось, что фотоионизация несущественна из-за поглощения света пылью, а нагрев и ионизация осуществляются космическими лучами. Тогда, если бы газ охлаждался только пылинками, т. с. без возбуждения ионов, температура его установилась бы около 70° К. Поскольку наличие в таком облаке атомов С I и других с очень низкими уровнями (для С I длина волны лики и равна 610 мк) понизит температуру до величины, по-видимому, меньшей, чем 20°, охлаждение при столкновениях с пылинками окажется несущественным, если не считать аномально плотные и богатые пылью облака.

1 (В межзвездном газе, так же как в туманностях, пыли в среднем в 200 раз меньше по массе, чем газа )

Охлаждение межзвездного газа может быть связано также с наличием в нем молекул водорода Н 2 . Диссоциация этих молекул на атомы (один из которых после диссоциации оказывается возбужденным) может производиться лишь излучением с длиной волны меньшей, чем 850 Å, т. е. за лаймановским пределом. Следовательно, диссоциация может происходить только в областях Н II. Обратный процесс - соединение двух свободных атомов водорода в молекулу - мог бы произойти только если один из атомов возбужден или если энергия столкновения атомов значительно больше энергии возбуждения. Поскольку число возбужденных атомов водорода в межзвездном пространстве ничтожно мало, образование молекул так происходить не может. Но если атом водорода приближается к другому атому, находящемуся на поверхности пылинки, то соединение их в молекулу может произойти и без предварительного возбуждения, пыль служит как бы катализатором, способствующим химической реакции. Между прочим, аналогичную роль пыль может играть и при рекомбинациях - если ион находится на поверхности пылинки, то вероятность рекомбинировать с ним для пролетающего мимо электрона гораздо больше, чем в случае свободного иона. Таким образом, наличие пыли уменьшает степень ионизации газа.

При соединении двух атомов водорода в молекулу выделяется энергия связи подобно выделению энергии при рекомбинации. Если реакция происходит на поверхности пылинки, то выделившаяся энергия переходит в тепло, участок пылинки, прилегающий к молекуле, как показал А. И. Лебединский (СССР), нагревается и частично испаряется, а сама молекула отделяется от пылинки и переходит в газ. Таким образом, в более плотных облаках, содержащих достаточно пыли, должен присутствовать молекулярный водород. Молекулы, так же как и атомы, имеют многочисленные уровни. У атома уровни соответствовали значениям энергии электрона. У молекулы имеются три вида энергии: энергия электрона, энергия колебаний ядер составляющих ее атомов около их среднего положения и энергия вращения молекулы как целого. Каждый из этих видов энергии может принимать только определенные значения. Изменения энергии электронов обычно велики, они соответствуют переходам, дающим кванты в видимой или в прилегающих частях спектра. В условиях низкой температуры электроны возбуждаться не могут. Самые маленькие измзнения энергии соответствуют вращательному движению. Обычно молекула в межзвездном пространстве имеет самые низкие значения электронной, колебательной и вращательной энергии. Столкновения с нейтральными атомами водорода увеличивают вращательную энергию, возбуждают соответствующие подуровни. При обратном переходе излучаются длинноволновые кванты, которые уносят часть энергии газа. Таким образом, этот процесс подобен охлаждению газа при возбуждении подуровней атомов. Пока температура меньше 40° К, возбуждения молекул практически не происходит. При повышении температуры до 50° охлаждение резко возрастает и дальше растет очень быстро. Поэтому температура газа внутри плотных облаков, где имеется молекулярный водород, не может быть больше 50 - 55°. Однако другие факторы, действующие в плотных облаках, приводят к еще более низким температурам, так что возбуждение молекул, по-видимому, не играет существенной роли. Но оно может стать основным фактором охлаждения, если какая-нибудь причина поднимет на некоторое время температуру облака до более высокого значения.

Подведем итоги. Недостаток данных о физических условиях в Н I областях --о содержании атомов разных элементов, в первую очередь свободного углерода, о количестве пыли, молекул Н 2 и т. д.- не позволяет дать достаточно точные значения для температуры. Однако можно считать доказанным, что температура областей Н I резко отличается от температуры областей Н II. В стационарных условиях температура нейтрального водорода при средней плотности, по-видимому, не превышает 60 - 70° К, а в плотных областях 40 - 50° К. Почему подчеркивается стационарность условий и что это означает? Дело в том, что большинство процессов, охлаждающих газ, действует сравнительно медленно; они могут заметно изменить температуру только за десятки и сотни тысяч лет, а в некоторых случаях за миллионы лет. Следовательно, чтобы температура приблизилась к оцененным выше значениям, все внешние факторы должны мало меняться в течение миллионов лет. Это условие не всегда выполняется. Горячие звезды приближаются к облакам и удаляются от них, вблизи облака может вспыхнуть новая звезда и т. д. Наконец, сами облака находятся в постоянном движении, они сталкиваются, деформируются, причем часть их кинетической энергии переходит в тепло. Поэтому температура зависит не только от факторов, нагревающих и охлаждающих газ, но и от истории данной массы газа. К этому вопросу мы вернемся после того как рассмотрим некоторые наблюдения, позволяющие судить о температуре межзвездной среды.

Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газово-пылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды.

Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд. С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными. Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см3 находится примерно 1 атом. Напомним, что в таком же объеме воздуха находится 2,7*1019 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 103 см-3. И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики.

Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, CO, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра.

Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд полностью ионизует водород на огромных расстояниях. Так, звезда класса О5 ионизует вокруг себя водород в гигантской области радиусом около 100 пс.

Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях мезжзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название «зоны HII». Однако большая часть межзвездной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода.

Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10-4-10-5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2–3 тыс. пс. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газово-пылевого слоя составляет всего лишь около 250 пс. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно.

Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газово-пылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное «клочковатое» распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газово-пылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6–8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности.

Значительное количество сведений о природе межзвездного газа было получено за последние два десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными оыли исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно – другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.

Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн. лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность.

Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет «размазано» в некоторой полосе частот около 1420 Мгц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому «профилю линии») можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом излучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода.

В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила ОН, с длиной волны 18 см (линия ОН состоит из четырех близких по частотам компонент – 1612, 1665, 1667 и 1720МГц)). Существование этой линии было теоретически предсказано известным советским астрофизиком И.С.Шкловским в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой. Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. В 1967 г. была открыта радиолиния воды Н2О с длиной волны 1,35 см.

За последние 15 лет, протекшие после открытия межзвездной радиолинии ОН, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Среди них особенно большое значение имеет молекула СО, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, СН3НСО, CH3CN и др.

Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12C16 О, 13С16О и 12С18О. Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован («зоны HII»), весьма успешно исследуются при помощи так называемых «рекомбинационных» радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н.С.Кардашевым. «Рекомбинационные» линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь «высокие» уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы.

Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10-5Э, т.е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки.

В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения – Крабовидной туманности. Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, – это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта – замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным.

Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников при его прохождении через «намагниченную» межзвездную среду («явление Фарадея»). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары.

Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газово-пылевых облаков межзвездной среды, из которых конденсируются звезды.

С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электронвольт, доходя до 1020–1021 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космическнх лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое «синхротронное излучение»). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент.

Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10-4% и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем.

Распределение ионизованного водорода в галактической межзвездной среде, которая видна из северного полушария Земли.

На межзвездный газ, при кажущейся пустоте незаполненного пространства Вселенной, приходится почти 99% от совокупной массы всех космических объектов.

Вселенские просторы, в которых светила занимают ничтожно малую часть, далеко не так пустынны, как считалось долгое время. Хотя и в небольших количествах, но везде присутствует межзвездный газ, наполняя собой все уголки мирозданья. В его концентрация снижена, в иррегулярных, наоборот, повышена. Он смешан с межзвездной пылью и активно участвует в процессах образования новых звезд, которые в конце своего возвращают Вселенной этот строительный материал. Таким образом происходит своеобразный обмен веществом между светилами и межзвездным газом. Цикличность этих процессов постепенно приводит к уменьшению его количества в космосе, при увеличении объемов содержания тяжелых элементов в его структуре. Но для существенных изменений в этой области требуются миллиарды лет. По приблизительным оценкам, ежегодное количество газа, задействованное в Галактике при формировании звезд, равняется 5 солнечным массам.

Состав, структура и протекающие процессы

Объект Хербига-Аро 110 выбрасывает газ в межзвездное пространство

Плотные и холодные формы межзвездного газа, содержащие водород, гелий и минимальные объемы тяжелых элементов (железо, алюминий, никель, титан, кальций), находятся в молекулярном состоянии, соединяясь в обширные облачные поля. Если же в составе вещества доминируют ионизированные или нейтральные атомы водорода, оно участвует в образовании светящихся , окружающих горячие звезды. Температурные характеристики межзвездного молекулярного газа лежат в диапазоне от -269 до -167°С, а его излучение охватывает довольно широкий спектр, включающий и жесткие гамма-лучи, и длинные радиоволны. Средняя плотность имеет ничтожный показатель – на 1 см куб. приходится менее одного атома вещества. Но есть и исключения, в тысячи раз превосходящие эти параметры. Обычно в составе межзвездного газа элементы распределены следующим образом: водород – 89%, гелий – 9%, углерод, кислород, азот – ок. 0,2-0,3%.

Газопылевое облако IRAS 20324+4057 из межзвездного газа и пыли длиной в 1 световой год, похожее на головастика, в котором скрывается растущая звезда.

В обширных областях разряженного и горячего газа температура среды достигает 1,5 млн. градусов Цельсия, сопровождаясь рентгеновским излучением. Такие газовые объекты участвуют в формировании звезд-гигантов, провоцируют взрывы сверхновых, радикально влияют на межзвездную среду, заставляя ее расширяться. Планетарные или эмиссионные туманности из межзвездного газа светятся благодаря находящемуся в их центре или рядом с ним ядру стареющей звезды или горячим молодым светилам.

В результате исследований ученые обнаружили факт хаотичности скоростей в движении подобных образований. Облака межзвездного газа могут не только упорядоченно вращаться вокруг галактических центров, но и обладать нестабильным ускорением. В течение нескольких десятков миллионов лет они догоняют друг друга и сталкиваются, образуя комплексы из пыли и газа. Такие объекты имеют достаточную плотность, чтобы защитить свои глубины от проникающего космического излучения. Этим объясняются более низкие температуры внутри газопылевых комплексов по сравнению с межзвездными облаками. Гравитационная неустойчивость объектов постоянно влияет на процесс молекулярных преобразований в их составе и со временем приводит к формированию протозвезд.

Расположение в нашей Галактике

Максимальная концентрация межзвездного газа в нашей Галактике наблюдается в районах, удаленных от ее центральной части на 5 кпк. Его процентное содержание в общем объеме ее массы равняется 2. Толщина слоя максимальна на периферии, уменьшаясь к центру. Около половины массы межзвездного газа приходится на огромные молекулярные облака, находящиеся на расстоянии 4-8 кпк от галактической оси. Самые плотные образования составляют туманности, которые наиболее заметны и доступны для исследований. Размеры облаков из межзвездного газа могут достигать значений около 2 тыс. световых лет.

Наблюдение и его методы

Вояджер-1 — первый искусственный объект достигший межзвездной среды

Межзвездный газ, обладая высокой разреженностью и широким температурным диапазоном, изучается с помощью нескольких способов. Особый интерес в этом плане представляют светлые газовые и газопылевые туманности, так как их визуальные характеристики значительно упрощают процесс оптических наблюдений. В число методов, позволяющих получить разнообразную информацию о состоянии и структуре межзвездного газа, входят исследования:

  • непрерывного радиоизлучения;
  • межзвездных оптических и УФ линий;
  • пространственного распределения молекул;
  • рентгеновского, ИК и гамма излучений;
  • параметров межзвездного ветра;
  • пульсаров.

Комплексный подход к изучению межзвездного газа позволил определить многие его свойства и параметры. К объектам, дающим оптимальную возможность наблюдать МГ на нашем небосводе, относится Ориона, где находится эмиссионная М42.

  • Галактический газовый диск изогнут на периферии.
  • Основной объем межзвездного газа сосредоточен в спиральных рукавах, один из коридоров которых расположен рядом с Солнечной системой.
  • В разреженном МГ, подвергаемом действию космических излучений, обнаружена зависимость показателей температуры, давления и объема электронов от плотности концентрации водорода.
  • К самым мощным факторам, влияющим на структурные процессы в межзвездной газовой среде, относятся спиральные ударные волны.
  • Энергия вспышки сверхновой способна пробить пространство галактического диска, вызвав тем самым отток МГ в свободное пространство Вселенной.
  • В теории молекулярные газовые облака за период в чуть более 100 лет должны превращаться в звезды. Но на практике существует множество факторов, замедляющих этот процесс.