Как ученые из NASA собираются превысить скорость света в космосе. Какие проблемы нужно решить, чтобы межзвездные полеты стали реальностью

Даже если бы мы смогли сконструировать прототипы кораблей, выдуманных учеными из NASA и способных двигаться с релятивистской скоростью, а также нашли бы неприлично большой источник энергии, необходимой для того, чтобы запустить их в небеса, наше путешествие оказалось бы вовсе не таким приятным, как может показаться с борта «Тысячелетнего сокола». От возможности летать к соседним звездам нас отделяют отнюдь не технологии - это лишь вопрос нескольких веков. Проблема заключается в том, насколько опасен космос, если он превращается в среду обитания, и насколько хрупким на самом деле может оказаться человеческое тело.

Если бы мы стали перемещаться со скоростью света (300 000 км/с) в межзвездном пространстве, то погибли бы через пару секунд. Несмотря на то что плотность вещества в космосе очень низкая, на такой скорости даже несколько атомов водорода на кубический сантиметр врежутся в носовую часть корабля с ускорением, которое на Земле достижимо лишь на Большом адронном коллайдере. Из-за этого мы получим дозу излучения, равную десяти тысячам зивертов в секунду. Учитывая, что смертельная доза для человека составляет шесть зивертов, такой радиоактивный луч повредит корабль и уничтожит все живое на борту.

«Если бы мы стали перемещаться со скоростью света в космосе, то погибли бы через пару секунд»

Согласно исследованиям ученых из Университета Джонса Хопкинса, никакая броня не может уберечь нас от этой ионизирующей радиации. Переборка из алюминия толщиной десять сантиметров в таком случае поглотит меньше 1% энергии - а ведь размеры переборок невозможно увеличивать бесконечно, не рискуя возможностью взлететь. Однако помимо радиоактивного водорода нашему космолету на скорости света будет угрожать эрозия, возникающая из-за воздействия межзвездной пыли. В лучшем случае нам придется согласиться на 10% от скорости света, что позволит с большим трудом достичь лишь самой близкой звезды - Проксимы Центавра. С учетом расстояния в 4,22 светового года такой полет займет 40 лет - то есть одну неполную человеческую жизнь.

Космическая радиация пока остается для нас непреодолимым препятствием, однако, если в далеком будущем мы сможем его преодолеть, путешествие со скоростью света окажется самым невероятным переживанием, которое только доступно человеку. На такой скорости время замедлится, и старение станет намного более протяженным процессом (ведь даже космонавты на МКС за шесть месяцев успевают состариться на 0,007 секунды меньше, чем люди на Земле). Наше зрительное поле во время такого полета искривится, превратившись в туннель. Мы будем лететь по этому туннелю вперед, к сияющей белоснежной вспышке, не видя следов от звезд и оставляя за спиной самую кромешную, самую абсолютную темноту, какую только можно себе представить.

Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой E = mc 2 , еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам. По крайней мере, явлениям, существующим в теории.

Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.

Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.

Квантовая телепортация

Статус: активно развивается

Живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.

Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.

Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.

Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.

Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.

К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.

Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.

Эффект Вавилова – Черенкова

Статус: давно используется

Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.

В самом деле, говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.

Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.

Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.

Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.

Пузыри и норы

Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.

Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая . Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное... отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.

Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.

Статус: от фантастического до теоретического

Фотоны – частицы безмассовые, как и и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc 2 , задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».

В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.

Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.

Скорость тьмы

Статус: философический

Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше?..

Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.

Правообладатель иллюстрации Thinkstock

Нынешний рекорд скорости в космосе держится уже 46 лет. Корреспондент задался вопросом, когда же он будет побит.

Мы, люди, одержимы скоростью. Так, только за последние несколько месяцев стало известно о том, что студенты в Германии поставили рекорд скорости для электромобиля, а ВВС США планируют так усовершенствовать гиперзвуковые самолеты, чтобы те развивали скорость в пять раз превышающую скорость звука, т.е. свыше 6100 км/ч.

У таких самолетов не будет экипажа, но не потому, что люди не могут передвигаться с такой высокой скоростью. На самом деле люди уже перемещались со скоростью, которая в несколько раз выше скорости звука.

Однако существует ли предел, преодолев который наши стремительно несущиеся тела уже не смогут выдерживать перегрузки?

Нынешний рекорд скорости поровну принадлежит трем астронавтам, которые участвовали в космической миссии "Аполлон 10", - Тому Стаффорду, Джону Янгу и Юджину Сернану.

В 1969 году, когда астронавты облетели вокруг Луны и возвращались обратно, капсула в которой они находились, развила скорость, которая на Земле равнялась бы 39,897 км/час.

"Я думаю, что сто лет назад мы вряд ли могли себе представить, что человек сможет перемещаться в космосе со скоростью почти в 40 тысяч километров в час", - говорит Джим Брей из аэрокосмического концерна Lockheed Martin.

Брей - директор проекта обитаемого модуля для перспективного корабля "Орион" (Orion), который разрабатывается Космическим агентством США НАСА.

По замыслу разработчиков, космический корабль "Орион" – многоцелевой и частично многоразовый - должен выводить астронавтов на низкую орбиту Земли. Очень может быть, что с его помощью удастся побить рекорд скорости, установленный для человека 46 лет назад.

Новая сверхтяжелая ракета, входящая в Систему космических пусков (Space Launch System), должна, согласно плану, совершить свой первый пилотируемый полет в 2021 году. Это будет облет астероида, находящегося на окололунной орбите.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание

Затем должны последовать многомесячные экспедиции к Марсу. Сейчас, по мысли конструкторов, обычная максимальная скорость "Ориона" должна составлять примерно 32 тысяч км/час. Однако скорость, которую развил "Аполлон 10", можно будет превзойти даже при сохранении базовой конфигурации корабля "Орион".

"Orion предназначен для полетов к различным целям в течение всего своего срока эксплуатации, - говорит Брей. – Его скорость может оказаться значительно выше той, что мы сейчас планируем".

Но даже "Орион" не будет представлять пик скоростного потенциала человека. "По сути дела, не существует другого предела скорости, с какой мы можем перемещаться, кроме скорости света", - говорит Брей.

Скорость света один миллиард км/час. Есть ли надежда, что нам удастся преодолеть разрыв между 40 тысячами км/час и этими величинами?

Удивительным образом скорость как векторная величина, обозначающая быстроту перемещения и направление движения, не является для людей проблемой в физическом смысле, пока она относительно постоянна и направлена в одну сторону.

Следовательно, люди – теоретически – могут перемещаться в пространстве лишь чуть медленнее "скоростного предела вселенной", т.е. скорости света.

Правообладатель иллюстрации NASA Image caption Как будет ощущать себя человек в корабле, летящем с околосветовой скоростью?

Но даже если допустить, что мы преодолеем значительные технологические препятствия, связанные с созданием скоростных космических кораблей, наши хрупкие, состоящие в основном из воды тела столкнутся с новыми опасностями, сопряженными с эффектами высокой скорости.

Могут возникнуть и пока только воображаемые опасности, если люди смогут передвигаться быстрее скорости света благодаря использованию лазеек в современной физике или с помощью открытий, разрывающих шаблон.

Как выдержать перегрузки

Впрочем, если мы намерены передвигаться со скоростью свыше 40 тысяч км/час, нам придется достигать ее, а затем замедляться, не спеша и сохраняя терпение.

Быстрое ускорение и столь же быстрое замедление таят в себе смертельную опасность для организма человека. Об этом свидетельствует тяжесть телесных травм, возникающих в результате автомобильных катастроф, при которых скорость падает с нескольких десятков километров в час до нуля.

В чем причина этого? В том свойстве Вселенной, которое носит название инерции или способности физического тела, обладающего массой, противостоять изменению его состояния покоя или движения при отсутствии или компенсации внешних воздействий.

Эта идея сформулирована в первом законе Ньютона, который гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений

"Состояние покоя и движение с постоянной скоростью - это нормально для человеческого организма, - объясняет Брей. - Нам скорее следует беспокоиться о состоянии человека в момент ускорения".

Около века назад создание прочных самолетов, которые могли маневрировать на скорости, привело к тому, что пилоты стали говорить о странных симптомах, вызываемых изменениями скорости и направления полета. Эти симптомы включали в себя временную потерю зрения и ощущение либо тяжести, либо невесомости.

Причина заключается в перегрузках, измеряемых в единицах G, которые представляют собой отношение линейного ускорения к ускорению свободного падения на поверхности Земли под воздействием притяжения или гравитации. Эти единицы отражают воздействие ускорения свободного падения на массу, например, человеческого тела.

Перегрузка в 1 G равна весу тела, которое находится в поле тяжести Земли и притягивается к центру планеты со скоростью 9,8 м/сек (на уровне моря).

Перегрузки, которые человек испытывает вертикально с головы до пят или наоборот, являются поистине плохой новостью для пилотов и пассажиров.

При отрицательных перегрузках, т.е. замедлении, кровь приливает от пальцев на ногах к голове, возникает чувство перенасыщения, как при стойке на руках.

Правообладатель иллюстрации SPL Image caption Для того чтобы понять, сколько G смогут выдержать астронавты, их тренируют в центрифуге

"Красная пелена" (чувство, которое испытывает человек, когда кровь приливает к голове) наступает, когда распухшие от крови, полупрозрачные нижние веки поднимаются и закрывают зрачки глаз.

И, наоборот, при ускорении или положительных перегрузках кровь отливает от головы к ногам, глаза и мозг начинают испытывать недостаток кислорода, поскольку кровь скапливается в нижних конечностях.

Сначала зрение туманится, т.е. происходит потеря цветного зрения и накатывает, что называется, "серая пелена", потом наступает полная потеря зрения или "черная пелена", но человек остается в сознании.

Чрезмерные перегрузки ведут к полной потере сознания. Это состояние называют обмороком, вызванным перегрузкой. Многие пилоты погибли из-за того, что на их глаза опускалась "черная пелена" - и они разбивались.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание.

Пилоты, одетые в специальные противоперегрузочные комбинезоны и обученные особым образом напрягать и расслаблять мышцы торса для того, чтобы кровь не отливала от головы, способны управлять самолетом при перегрузках примерно в девять G.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов

"На протяжении коротких периодов времени человеческое тело может переносить гораздо более сильные перегрузки, чем девять G, - говорит Джефф Свентек, исполнительный директор Ассоциации аэрокосмической медицины, расположенной в городе Александрия, штат Вирджиния. - Но выдерживать высокие перегрузки на протяжении длительного периода времени способны очень немногие".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений.

Рекорд кратковременной выносливости поставил капитан ВВС США Эли Бидинг-младший на авиабазе Холломэн в штате Нью-Мексико. В 1958 году он при торможении на специальных санях с ракетным двигателем после разгона до 55 км/ч за 0.1 секунду испытал перегрузку в 82.3 G.

Этот результат зафиксировал акселерометр, закрепленный у него на груди. На глаза Бидинга также упала "черная пелена", но он отделался только синяками во время этой выдающейся демонстрации выносливости человеческого организма. Правда, после заезда он провел три дня в госпитале.

А теперь в космос

Астронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки - от трех до пяти G - во время взлетов и при возвращении в плотные слои атмосферы соответственно.

Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.

Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях "Орион", то с мелкими космическими камнями – микрометеоритами – все сложнее.

Правообладатель иллюстрации NASA Image caption Для защиты от микрометеоритов "Ориону" понадобится своего рода космическая броня

Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа "Орион" оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.

Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля.

"Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов", - говорит Джим Брей.

Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.

В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.

Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой.

Космические полеты следующего поколения

Эта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.

Новые корабли НАСА, которые угрожают побить рекорд скорости "Аполлона 10", по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи

Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы.

"Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, - говорит Брей, - однако все мы хотели бы стать свидетелями революции в двигателях".

Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.

Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.

Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.

Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения "всегда остается еще 50 лет" - и так будет всегда, как гласит старый девиз этой отрасли.

"Это весьма передовые технологии, - говорит Дэвис, - но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века". По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.

Правообладатель иллюстрации US Air Force Image caption Летать со сверхзвуковой скоростью - уже не проблема для человека. Другое дело - скорость света, или хотя бы близко к ней...

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи.

Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.

Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.

В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.

Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.

Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.

При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.

Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека.

Энергетический град

На скорости в несколько сот миллионов километров в час любая пылинка в космосе, от распыленных атомов водорода до микрометеоритов, неизбежно становится пулей, обладающей высокой энергией и способной прошить корпус корабля насквозь.

"Когда вы передвигаетесь с очень высокой скоростью, это означает, что частицы, летящие вам навстречу, движутся с теми же скоростями", - говорит Артур Эдельстайн.

Вместе с покойным отцом, Уильямом Эдельстайном, профессором радиологии в Медицинской школе Университета имени Джона Хопкинса, он работал над научным трудом, в котором рассматривались последствия воздействия атомов космического водорода (на людей и технику) во время сверхбыстрых космических путешествий в космосе.

Водород начнет разлагаться на субатомные частицы, которые будут проникать внутрь корабля и подвергать воздействию радиации как экипаж, так и оборудование.

Двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны Эрик Дэвис, физик-исследователь

На скорости, равной 95% скорости света, воздействие такой радиации будет означать почти мгновенную смерть.

Звездолет нагреется до температур плавления, перед которыми не устоит ни один мыслимый материал, а вода, содержащаяся в организме членов экипажа, немедленно закипит.

"Это все крайне неприятные проблемы", - замечает Эдельстайн с мрачным юмором.

Он и его отец приблизительно подсчитали, что для создания некоей гипотетической системы магнитной защиты, способной оградить корабль и находящихся в нем людей от смертоносного водородного дождя, звездолет может перемещаться со скоростью, не превышающей половины скорости света. Тогда люди на борту имеют шанс выжить.

Марк Миллис, физик, занимающийся проблемами поступательного движения, и бывший руководитель программы НАСА по прорывным разработкам в физике движения, предупреждает, что этот потенциальный предел скорости для полетов в космосе остается пока проблемой отдаленного будущего.

"На основании физических знаний, накопленных к настоящему времени, можно сказать, что развить скорость свыше 10% от скорости света будет крайне трудно, - говорит Миллис. – Опасность нам пока не угрожает. Простая аналогия: зачем переживать, что мы можем утонуть, если мы еще даже не вошли в воду".

Быстрее света?

Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени - если развивать дальше эту аналогию - и летать со сверхсветовой скоростью?

Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.

Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в "варп-двигателе" или "двигателе искривления" из сериала "Звездный путь".

Принцип действия этой силовой установки, известной еще как "двигатель Алькубьерре"* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.

Правообладатель иллюстрации NASA Image caption Нынешний рекорд скорости принадлежит трем астронавтам "Аполлона 10" - Тому Стаффорду, Джону Янгу и Юджину Сернану

По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном "пузыре искривления", который движется быстрее скорости света.

Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом "пузыре", не подвергаясь деформациям и избегая нарушений универсального предела скорости света.

"Вместо того чтобы плыть в толще воды нормального пространства-времени, - говорит Дэвис, - двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны".

Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время.

"Физика не содержит никаких противопоказаний относительно отрицательной массы, - говорит Дэвис, - но никаких ее примеров нет, и мы никогда не встречали ее в природе".

Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что "пузырь искривления" будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.

Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией.

Застрявшие в досветовых скоростях?

Неужели мы так и обречены застрять на этапе досветовых скоростей по причине нашей деликатной биологии?!

Речь ведь не столько о том, чтобы установить новый мировой (галактический?) рекорд скорости для человека, сколько о перспективе превращения человечества в межзвездное общество.

Со скоростью в половину скорости света - а это тот предел, который, согласно данным изысканий Эдельстайна, способен выдержать наш организм - путешествие к ближайшей звезде в оба конца займет более 16 лет.

(Эффекты расширения времени, под воздействием которых для экипажа звездолета в его системе координат пройдет меньше времени, чем для людей, оставшихся на Земле в своей системе координат, не приведут к драматическим последствиям на скорости, составляющей половину скорости света).

Марк Миллис полон надежд. Принимая во внимание, что человечество изобрело противоперегрузочные костюмы и защиту от микрометеоритов, позволяющие людям безопасно путешествовать в великой голубой дали и усеянной звездами черноте космоса, он уверен, что мы сможем найти способы выживания, на какие бы скоростные рубежи не вышли в будущем.

"Те же самые технологии, которые смогут помочь нам достигать невероятных новых скоростей перемещения, - размышляет Миллис, - обеспечат нас новыми, пока неведомыми возможностями для защиты экипажей".

Примечания переводчика:

*Мигель Алькубьерре выдвинул идею своего "пузыря" в 1994 году. А в 1995 году российский физик-теоретик Сергей Красников предложил концепцию устройства для космических путешествий быстрее скорости света. Идея получила название "трубы Красникова".

Это искусственное искривление пространства времени по принципу так называемой кротовой норы. Гипотетически корабль будет двигаться по прямой от Земли к заданной звезде сквозь искривленное пространство-время, проходя через другие измерения.

Согласно теории Красникова, космический путешественник вернется обратно в то же самое время, когда он отправился в путь.

Нынешний рекорд скорости в космосе держится уже 46 лет. Когда же он будет побит? Мы, люди, одержимы скоростью. Так, только за последние несколько месяцев стало известно о том, что студенты в Германии поставили рекорд скорости для электромобиля, а в США планируют так усовершенствовать гиперзвуковые самолеты, чтобы те развивали скорость в пять раз превышающую скорость звука, т.е. свыше 6100 км/ч.У таких самолетов не будет экипажа, но не потому, что люди не могут передвигаться с такой высокой скоростью. На самом деле люди уже перемещались со скоростью, которая в несколько раз выше скорости звука.Однако существует ли предел, преодолев который наши стремительно несущиеся тела уже не смогут выдерживать перегрузки?Нынешний рекорд скорости поровну принадлежит трем астронавтам, которые участвовали в космической миссии "Аполлон 10", - Тому Стаффорду, Джону Янгу и Юджину Сернану.В 1969 году, когда астронавты облетели вокруг Луны и возвращались обратно, капсула в которой они находились, развила скорость, которая на Земле равнялась бы 39,897 км/час."Я думаю, что сто лет назад мы вряд ли могли себе представить, что человек сможет перемещаться в космосе со скоростью почти в 40 тысяч километров в час", - говорит Джим Брей из аэрокосмического концерна Lockheed Martin.Брей - директор проекта обитаемого модуля для перспективного корабля "Орион" (Orion), который разрабатывается Космическим агентством США НАСА.По замыслу разработчиков, космический корабль "Орион" – многоцелевой и частично многоразовый - должен выводить астронавтов на низкую орбиту Земли. Очень может быть, что с его помощью удастся побить рекорд скорости, установленный для человека 46 лет назад.Новая сверхтяжелая ракета, входящая в Систему космических пусков (Space Launch System), должна, согласно плану, совершить свой первый пилотируемый полет в 2021 году. Это будет облет астероида, находящегося на окололунной орбите.Затем должны последовать многомесячные экспедиции к Марсу. Сейчас, по мысли конструкторов, обычная максимальная скорость "Ориона" должна составлять примерно 32 тысяч км/час. Однако скорость, которую развил "Аполлон 10", можно будет превзойти даже при сохранении базовой конфигурации корабля "Орион"."Orion предназначен для полетов к различным целям в течение всего своего срока эксплуатации, - говорит Брей. – Его скорость может оказаться значительно выше той, что мы сейчас планируем".Но даже "Орион" не будет представлять пик скоростного потенциала человека. "По сути дела, не существует другого предела скорости, с какой мы можем перемещаться, кроме скорости света", - говорит Брей.Скорость света один миллиард км/час. Есть ли надежда, что нам удастся преодолеть разрыв между 40 тысячами км/час и этими величинами?Удивительным образом скорость как векторная величина, обозначающая быстроту перемещения и направление движения, не является для людей проблемой в физическом смысле, пока она относительно постоянна и направлена в одну сторону.Следовательно, люди – теоретически – могут перемещаться в пространстве лишь чуть медленнее "скоростного предела вселенной", т.е. скорости света.Но даже если допустить, что мы преодолеем значительные технологические препятствия, связанные с созданием скоростных космических кораблей, наши хрупкие, состоящие в основном из воды тела столкнутся с новыми опасностями, сопряженными с эффектами высокой скорости.Могут возникнуть и пока только воображаемые опасности, если люди смогут передвигаться быстрее скорости света благодаря использованию лазеек в современной физике или с помощью открытий, разрывающих шаблон. Как выдержать перегрузкиВпрочем, если мы намерены передвигаться со скоростью свыше 40 тысяч км/час, нам придется достигать ее, а затем замедляться, не спеша и сохраняя терпение.Быстрое ускорение и столь же быстрое замедление таят в себе смертельную опасность для организма человека. Об этом свидетельствует тяжесть телесных травм, возникающих в результате автомобильных катастроф, при которых скорость падает с нескольких десятков километров в час до нуля.В чем причина этого? В том свойстве Вселенной, которое носит название инерции или способности физического тела, обладающего массой, противостоять изменению его состояния покоя или движения при отсутствии или компенсации внешних воздействий.Эта идея сформулирована в первом законе Ньютона, который гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние"."Состояние покоя и движение с постоянной скоростью - это нормально для человеческого организма, - объясняет Брей. - Нам скорее следует беспокоиться о состоянии человека в момент ускорения".Около века назад создание прочных самолетов, которые могли маневрировать на скорости, привело к тому, что пилоты стали говорить о странных симптомах, вызываемых изменениями скорости и направления полета. Эти симптомы включали в себя временную потерю зрения и ощущение либо тяжести, либо невесомости.Причина заключается в перегрузках, измеряемых в единицах G, которые представляют собой отношение линейного ускорения к ускорению свободного падения на поверхности Земли под воздействием притяжения или гравитации. Эти единицы отражают воздействие ускорения свободного падения на массу, например, человеческого тела.Перегрузка в 1 G равна весу тела, которое находится в поле тяжести Земли и притягивается к центру планеты со скоростью 9,8 м/сек (на уровне моря).Перегрузки, которые человек испытывает вертикально с головы до пят или наоборот, являются поистине плохой новостью для пилотов и пассажиров.При отрицательных перегрузках, т.е. замедлении, кровь приливает от пальцев на ногах к голове, возникает чувство перенасыщения, как при стойке на руках."Красная пелена" (чувство, которое испытывает человек, когда кровь приливает к голове) наступает, когда распухшие от крови, полупрозрачные нижние веки поднимаются и закрывают зрачки глаз.И, наоборот, при ускорении или положительных перегрузках кровь отливает от головы к ногам, глаза и мозг начинают испытывать недостаток кислорода, поскольку кровь скапливается в нижних конечностях.Сначала зрение туманится, т.е. происходит потеря цветного зрения и накатывает, что называется, "серая пелена", потом наступает полная потеря зрения или "черная пелена", но человек остается в сознании.Чрезмерные перегрузки ведут к полной потере сознания. Это состояние называют обмороком, вызванным перегрузкой. Многие пилоты погибли из-за того, что на их глаза опускалась "черная пелена" - и они разбивались.Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание.Пилоты, одетые в специальные противоперегрузочные комбинезоны и обученные особым образом напрягать и расслаблять мышцы торса для того, чтобы кровь не отливала от головы, способны управлять самолетом при перегрузках примерно в девять G."На протяжении коротких периодов времени человеческое тело может переносить гораздо более сильные перегрузки, чем девять G, - говорит Джефф Свентек, исполнительный директор Ассоциации аэрокосмической медицины, расположенной в городе Александрия, штат Вирджиния. - Но выдерживать высокие перегрузки на протяжении длительного периода времени способны очень немногие".Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений.Рекорд кратковременной выносливости поставил капитан ВВС США Эли Бидинг-младший на авиабазе Холломэн в штате Нью-Мексико. В 1958 году он при торможении на специальных санях с ракетным двигателем после разгона до 55 км/ч за 0.1 секунду испытал перегрузку в 82.3 G.Этот результат зафиксировал акселерометр, закрепленный у него на груди. На глаза Бидинга также упала "черная пелена", но он отделался только синяками во время этой выдающейся демонстрации выносливости человеческого организма. Правда, после заезда он провел три дня в госпитале. А теперь в космосАстронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки - от трех до пяти G - во время взлетов и при возвращении в плотные слои атмосферы соответственно.Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях "Орион", то с мелкими космическими камнями – микрометеоритами – все сложнее.Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа "Орион" оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля."Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов", - говорит Джим Брей.Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой. Космические полеты следующего поколенияЭта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.Новые корабли НАСА, которые угрожают побить рекорд скорости "Аполлона 10", по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы."Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, - говорит Брей, - однако все мы хотели бы стать свидетелями революции в двигателях".Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения "всегда остается еще 50 лет" - и так будет всегда, как гласит старый девиз этой отрасли."Это весьма передовые технологии, - говорит Дэвис, - но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века". По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи.Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека. Энергетический градНа скорости в несколько сот миллионов километров в час любая пылинка в космосе, от распыленных атомов водорода до микрометеоритов, неизбежно становится пулей, обладающей высокой энергией и способной прошить корпус корабля насквозь."Когда вы передвигаетесь с очень высокой скоростью, это означает, что частицы, летящие вам навстречу, движутся с теми же скоростями", - говорит Артур Эдельстайн.Вместе с покойным отцом, Уильямом Эдельстайном, профессором радиологии в Медицинской школе Университета имени Джона Хопкинса, он работал над научным трудом, в котором рассматривались последствия воздействия атомов космического водорода (на людей и технику) во время сверхбыстрых космических путешествий в космосе.Хотя его содержание не превышает одного атома на кубический сантиметр, рассеянный в космосе водород может приобрести свойства интенсивной радиационной бомбардировки.Водород начнет разлагаться на субатомные частицы, которые будут проникать внутрь корабля и подвергать воздействию радиации как экипаж, так и оборудование.На скорости, равной 95% скорости света, воздействие такой радиации будет означать почти мгновенную смерть.Звездолет нагреется до температур плавления, перед которыми не устоит ни один мыслимый материал, а вода, содержащаяся в организме членов экипажа, немедленно закипит."Это все крайне неприятные проблемы", - замечает Эдельстайн с мрачным юмором.Он и его отец приблизительно подсчитали, что для создания некоей гипотетической системы магнитной защиты, способной оградить корабль и находящихся в нем людей от смертоносного водородного дождя, звездолет может перемещаться со скоростью, не превышающей половины скорости звука. Тогда люди на борту имеют шанс выжить.Марк Миллис, физик, занимающийся проблемами поступательного движения, и бывший руководитель программы НАСА по прорывным разработкам в физике движения, предупреждает, что этот потенциальный предел скорости для полетов в космосе остается пока проблемой отдаленного будущего."На основании физических знаний, накопленных к настоящему времени, можно сказать, что развить скорость свыше 10% от скорости свет будет крайне трудно, - говорит Миллис. – Опасность нам пока не угрожает. Простая аналогия: зачем переживать, что мы можем утонуть, если мы еще даже не вошли в воду". Быстрее света?Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени - если развивать дальше эту аналогию - и летать со сверхсветовой скоростью?Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в "варп-двигателе" или "двигателе искривления" из сериала "Звездный путь".Принцип действия этой силовой установки, известной еще как "двигатель Алькубьерре"* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном "пузыре искривления", который движется быстрее скорости света.Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом "пузыре", не подвергаясь деформациям и избегая нарушений универсального предела скорости света."Вместо того чтобы плыть в толще воды нормального пространства-времени, - говорит Дэвис, - двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны".Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время."Физика не содержит никаких противопоказаний относительно отрицательной массы, - говорит Дэвис, - но никаких ее примеров нет, и мы никогда не встречали ее в природе".Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что "пузырь искривления" будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией. Застрявшие в досветовых скоростях?Неужели мы так и обречены застрять на этапе досветовых скоростей по причине нашей деликатной биологии?!Речь ведь не столько о том, чтобы установить новый мировой (галактический?) рекорд скорости для человека, сколько о перспективе превращения человечества в межзвездное общество.Со скоростью в половину скорости света - а это тот предел, который, согласно данным изысканий Эдельстайна, способен выдержать наш организм - путешествие к ближайшей звезде в оба конца займет более 16 лет.(Эффекты расширения времени, под воздействием которых для экипажа звездолета в его системе координат пройдет меньше времени, чем для людей, оставшихся на Земле в своей системе координат, не приведут к драматическим последствиям на скорости, составляющей половину скорости света).Марк Миллис полон надежд. Принимая во внимание, что человечество изобрело противоперегрузочные костюмы и защиту от микрометеоритов, позволяющие людям безопасно путешествовать в великой голубой дали и усеянной звездами черноте космоса, он уверен, что мы сможем найти способы выживания, на какие бы скоростные рубежи не вышли в будущем."Те же самые технологии, которые смогут помочь нам достигать невероятных новых скоростей перемещения, - размышляет Миллис, - обеспечат нас новыми, пока неведомыми возможностями для защиты экипажей".Примечание:*Мигель Алькубьерре выдвинул идею своего "пузыря" в 1994 году. А в 1995 году российский физик-теоретик Сергей Красников предложил концепцию устройства для космических путешествий быстрее скорости звука. Идея получила название "трубы Красникова".Это искусственное искривление пространства времени по принципу так называемой кротовой норы. Гипотетически корабль будет двигаться по прямой от Земли к заданной звезде сквозь искривленное пространство-время, проходя через другие измерения.Согласно теории Красникова, космический путешественник вернется обратно в то же самое время, когда он отправился в путь.

В большом адронном коллайдере фотоны разгоняются до скорости 299 792 455 м/с. Это всего на три метра в секунду меньше скорости света. Всего три метра в секунду, неужели, нельзя чуть поднажать и разогнать фотоны выше скорости света?

Ответ: нельзя. Даже теоретически ни один объект не может двигаться быстрее. И этому есть объяснение. Если коротко, во вселенной абсолютно все двигается с этой скоростью и не может ее превысить.

Для начала стоит отметить, что согласно теории относительности, при увеличении скорости растет и масса. На малых скоростях это не заметно, но при приближении к скорости света она начинает стремительно расти. Разгоняться будет сложнее и сложнее, и энергии всей вселенной не хватит, чтобы увеличивать скорость дальше.

Вот только увеличение массы объясняет не все. Например, почему фотоны - безмассовые частицы - также не могут развить скорость света? Дело в самом устройстве пространства и времени, которое мы часто представляем неправильно. Отталкиваться стоит от того, что мы живем в четырехмерном мире. Кроме трех пространственных измерений, у нас есть еще время.

Для начала возьмем двухмерный мир, где ось х – это пространственная координата, а t - временная. Допустим, какой-то объект перемещается вдоль оси х. Мы можем обозначать его положение в каждый момент времени. Все эти точки образуют так называемую мировую линию.

Если что-то покоится, его мировая линия – это вертикальная прямая, если объект движется, то наклонная. Чем больше скорость, тем больше наклон, потому что за меньшее количество времени преодолевается большее расстояние. Можно даже обозначить наклон, соответствующий скорости света.

Получается, что в нашей реальности не существует неподвижных объектов . И статичные и динамичные объекты передвигаются по оси времени.

Теперь начинается самое интересное, мы переходим к четырехмерному миру и к ответу на вопрос, почему нельзя превысить скорость света. Если пространство четырехмерное, то и скорость тоже должна быть четырехмерной. Ее называют 4-скорость.

На нашем графике – это будет касательная к мировой линии.

Но лучше сделать другой график, где будет видно ее составляющие.

Если вы сидите и ничего не делаете, то перемещаетесь только во времени. Со скоростью одна секунда в секунду. Если начать движение, то появится другая составляющая (скорость в пространстве) и вектор 4-скорости будет наклонен. И оказывается, что размер 4-скорости всегда один и тот же – она равняется скорости света. То есть мы все абсолютно всегда несемся в пространстве и времени с одной и той же 4-скоростью. И ни увеличить, ни уменьшить, мы ее не можем. Единственная возможность – менять ее направление. Если начать двигаться, мы ничего не добавляем к 4-скорости, мы просто изменяем ее наклон.

Чем быстрее мы движемся, тем больше наклон.

Отметим, что чем больше скорость движения в пространстве, тем меньше скорость движения во времени – это и есть тот эффект замедления времени, которым знаменита теория относительности.

Когда 4-скорость достигнет горизонтали на графике, она станет равна скорости света. И как не поворачивай 4-скорость, больше ей уже не стать. Вот он предел. Он следует напрямую из свойств нашего мира.