Космическое излучение и его виды. Значение для космических полётов

Тамбовское областное государственное общеобразовательное учреждение

Общеобразовательная школа – интернат с первоначальной летной подготовкой

имени М. М. Расковой

Реферат

«Космическое излучение»

Выполнил: воспитанник 103 взвода

Краснослободцев Алексей

Руководитель: Пеливан В.С.

Тамбов 2008 г

1. Вступление.

2. Что такое космическое излучение.

3. Как возникает космическое излучение.

4. Воздействие космического излучения на человека и окружающую среду.

5. Средства защиты от космического излучения.

6. Образование Вселенной.

7. Заключение.

8. Библиография.

1. ВСТУПЛЕНИЕ

Человек не останется вечно на земле,

но в погоне за светом и пространством,

сначала робко проникнет за пределы

атмосферы, а затем завоюет себе всё

околосветное пространство.

К. Циолковский

XXI век – век нанотехнологий и гигантских скоростей. Наша жизнь течет беспрестанно и неминуемо, и каждый из нас стремится идти в ногу со временем. Проблемы, проблемы, поиски решений, огромный поток информации со всех сторон… Как со всем этим справиться, как найти свое место в жизни?

Попробуем остановиться и задуматься…

Психологи утверждают, что человек может бесконечно долго смотреть на три вещи: огонь, воду и звездное небо. Действительно, небо всегда привлекало человека. Оно удивительно красиво на восходе и закате солнца, оно кажется безгранично голубым и глубоким днем. И, глядя на пролетающие невесомые облака, наблюдая за полетами птиц, хочется оторваться от повседневной суеты, подняться в небо и почувствовать свободу полета. А звездное небо темной ночью… как оно загадочно и необъяснимо прекрасно! И как хочется приоткрыть завесу таинственности. В такие минуты ты ощущаешь себя маленькой частицей огромного, пугающего и все же непреодолимо манящего тебя пространства, которое носит название Вселенной.

Что такое Вселенная? Как она возникла? Что таит она в себе, что приготовила для нас: «всемирный разум» и ответы на многочисленные вопросы или гибель человечества?

Вопросы возникают нескончаемым потоком.

Космос… Для обычного человека он кажется недосягаемым. Но, тем не менее, воздействие его на человека постоянно. По большому счету именно космическое пространство обеспечило те условия на Земле, которые привели к зарождению привычной для нас с вами жизни, а значит и появлению самого человека. Влияние космоса в значительной степени ощутимо и сейчас. «Частицы вселенной» доходят до нас сквозь защитный слой атмосферы и оказывают воздействие на самочувствие человека, его здоровье, на те процессы, которые протекают в его организме. Это для нас, живущих на земле, а что говорить о тех, кто осваивает космическое пространство.

Меня заинтересовал такой вопрос: что такое космическое излучение и каково его влияние на человека?

Я учусь в школе-интернате с первоначальной летной подготовкой. К нам приходят мальчишки, которые мечтают покорить небо. И первый шаг к осуществлению своей мечты они уже сделали, оставив стены родного дома и решившись прийти в эту школу, где изучаются основы полетов, конструкции летательных аппаратов, где у них есть возможность каждый день общаться с людьми, неоднократно поднимавшимися в небо. И пусть это пока только самолеты, которые не могут в полной мере преодолеть земное притяжение. Но ведь это только первый шаг. Судьба и жизненный путь любого человека начинается с маленького, робкого, неуверенного шажка ребенка. Кто знает, может быть, кто-то из них сделает второй шаг, третий… и будет осваивать космические летательные аппараты и поднимется к звездам в безграничные просторы Вселенной.

Поэтому для нас этот вопрос достаточно актуален и интересен.

2. ЧТО ТАКОЕ КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ?

Существование космических лучей было обнаружено в начале ХХ века. В 1912 г. австралийский физик В. Гесс, поднимаясь на воздушном шаре, заметил, что разрядка электроскопа на больших высотах происходит значительно быстрее, чем на уровне моря. Стало ясным, что ионизация воздуха, которая снимала разряд с электроскопа, имеет внеземное происхождение. Первым высказал это предположение Милликен, и именно он дал этому явлению современное название – космическое излучение.

В настоящее время установлено, что первичное космическое излучение состоит из стабильных частиц высоких энергий, летящих в самых различных направлениях. Интенсивность космического излучения в районе Солнечной системы составляет в среднем 2-4 частицы на 1см 2 за 1с. Оно состоит из:

  • протонов – 91%
  • α-частиц – 6,6%
  • ядер других более тяжелых элементов – менее 1%
  • электронов – 1,5%
  • рентгеновских и гамма–лучей космического происхождения
  • солнечного излучения.

Первичные комические частицы, летящие из мирового пространства, взаимодействуют с ядрами атомов верхних слоев атмосферы и образуют так называемые вторичные космические лучи. Интенсивность космических лучей вблизи магнитных полюсов Земли приблизительно в 1,5 раза больше, чем на экваторе.

Среднее значение энергии космических частиц около 10 4 МэВ, а энергия отдельных частиц – 10 12 МэВ и более.

3. КАК ВОЗНИКАЕТ КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ?

По современным представлениям главным источником космического излучения высоких энергий являются взрывы сверхновых звезд. По данным, полученным с помощью принадлежащего NASA орбитального рентгеновского телескопа, были получены новые доказательства того, что значительный объем космического излучения, постоянно бомбардирующего Землю, произведен ударной волной, распространяющейся после взрыва сверхновой звезды, который был зарегистрирован еще в 1572 году. Судя по наблюдениям рентгеновской обсерватории «Чандра», останки сверхновой звезды продолжают разбегаться со скоростью более 10 миллионов км/ч, производя две ударные волны, сопровождаемые массированным выделением рентгеновского излучения. Причем, одна волна

движется наружу, в межзвездный газ, а вторая –

внутрь, к центру бывшей звезды. Можно также

утверждать, что значительная доля энергии

«внутренней» ударной волны уходит на ускорение атомных ядер до скоростей, близких к световым.

Частицы высоких энергий приходят к нам из других Галактик. Таких энергий они могут достигнуть, ускоряясь в неоднородных магнитных полях Вселенной.

Естественно, что источником космического излучения является и ближайшая к нам звезда – Солнце. Солнце периодически (во время вспышек) испускает солнечные космические лучи, которые состоят в основном из протонов и α-частиц, имеющих небольшую энергию.

4. ВОЗДЕЙСТВИЕ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ НА ЧЕЛОВЕКА

И ОКРУЖАЮЩУЮ СРЕДУ

Результаты исследования, проведенного сотрудниками университета Софии Антиполис в Ницце, показывают, что космическое излучение сыграло важнейшую роль в зарождении биологической жизни на Земле. Давно известно, что аминокислоты способны существовать в двух формах – левосторонней и правосторонней. Однако на Земле в основе всех биологических организмов, развившихся естественным образом, находятся только левосторонние аминокислоты. По мнению сотрудников университета, причину следует искать в космосе. Так называемое циркулярно-поляризованное космическое излучение разрушило правосторонние аминокислоты. Циркулярно-поляризованный свет – это форма излучения, поляризуемая космическими электромагнитными полями. Такое излучение образуется, когда частицы межзвездной пыли выстраиваются вдоль линий магнитных полей, пронизывающих всё окружающее пространство. На циркулярно-поляризованный свет приходится 17% всего космического излучения в любой точке космоса. В зависимости от стороны поляризации такой свет избирательно расщепляет один из типов аминокислот, что подтверждается экспериментом и результатами исследования двух метеоритов.

Космическое излучение является одним из источников ионизирующего излучения на Земле.

Природный радиационный фон за счет космического излучения на уровне моря составляет 0,32 мЗв в год (3,4 мкР в час). Космическое излучение составляет лишь 1/6 часть годовой эффективной эквивалентной дозы, получаемой населением. Уровни радиационного излучения неодинаковы для различных областей. Так Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы. Кроме того, чем выше от поверхности земли, тем интенсивнее космическое излучение. Так, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000 м над уровнем моря, получают из-за космических лучей эффективную эквивалентную дозу в несколько раз больше, чем те, кто живет на уровне моря. При подъеме с высоты 4000 м (максимальная высота проживания людей) до 12000 м (максимальная высота полета пассажирского транспорта) уровень облучения возрастает в 25 раз. А за 7,5 часа полета на обычном турбовинтовом самолете полученная доза облучения составляет примерно 50 мкЗв. Всего за счет использования воздушного транспорта население Земли получает в год дозу облучения около 10000 чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв в год, а в Северной Америке примерно 10 мкЗв.

]

Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц .

Физика космических лучей изучает:

  • процессы, приводящие к возникновению и ускорению космических лучей;
  • частицы космических лучей, их природу и свойства;
  • явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

Классификация по происхождению космических лучей:

  • вне нашей Галактики;
  • в Галактике;
  • на Солнце;
  • в межпланетном пространстве.

Первичными принято называть внегалактические, галактические и солнечные космические лучи.

Вторичными космическими лучами принято называть потоки частиц, возникающих под действием первичных космических лучей в атмосфере Земли и регистрирующихся на поверхности Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

Энергетический спектр космических лучей на 43 % состоит из энергии протонов , ещё на 23 % - из энергии ядер гелия (альфа-частиц) и на 34 % из энергии, переносимой остальными частицами [ ] .

По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % - из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны . При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента - по порождаемому ею синхротронному излучению , которое приходится на радиодиапазон (в частности, на метровые волны - при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей - и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами .

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: p (Z = 1) , {\displaystyle (Z=1),} α (Z = 2) , {\displaystyle (Z=2),} L (Z = 3...5) , {\displaystyle (Z=3...5),} M (Z = 6...9) , {\displaystyle (Z=6...9),} H (Z ⩾ 10) , {\displaystyle (Z\geqslant 10),} VH (Z ⩾ 20) {\displaystyle (Z\geqslant 20)} (соответственно, протоны, альфа-частицы, лёгкие, средние, тяжёлые и сверхтяжёлые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий , бериллий , бор) по сравнению с составом звёзд и межзвёздного газа . Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжёлые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра . Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии .

История физики космических лучей [ | ]

Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911-1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

В 1921-1925 годах американский физик Милликен , изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами.

В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления - открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц.

Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

Космические лучи ультравысоких энергий [ | ]

Энергия некоторых частиц превышает предел ГЗК (Грайзена - Зацепина - Кузьмина) - теоретический предел энергии для космических лучей 5⋅10 19 эВ , вызванный их взаимодействием с фотонами реликтового излучения . Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA (англ.) русск. . Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

Регистрация космических лучей [ | ]

Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего - газоразрядные счётчики или ядерные фотографические эмульсии , поднимаемые в стратосферу или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см² , рождает целый шквал частиц, в основном пионов и мюонов , которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение , регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

Значение для космических полётов [ | ]

Визуальный феномен космических лучей (англ. ) [ | ]

Космонавты МКС , когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света , возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.

Радиация [ | ]

Длительное воздействие космической радиации способно очень негативно отразиться на здоровье человека. Для дальнейшей экспансии человечества к иным планетам Солнечной системы следует разработать надёжную защиту от подобных опасностей - учёные из России и США уже ищут способы решения этой проблемы.

Новое свидетельство того, что космическое излучение, частицы, путешествующие в космосе и ударяющиеся о Землю, генерируются ударными волнами в остатках сверхновой, было обнаружено учеными NASA при помощи обсерватории Chandra.

Космическое излучение представляет собой заряженные электроны, протоны и ионы.

Специалисты использовали Chandra для изучения рентгеновских лучей, исходящих от электронов (электроны являются единственными частицами, которые испускают рентгеновское излучение).

Исследовался район Cassiopeia A, представляющий собой остаток сверхновой.

Ученые давно считали, что излучение возникает от волн, образовавшихся от взрыва звезд, называемых сверхновыми. Они являются одними из немногих мест в галактике, где имеется достаточно энергии для ускорения этих частиц.

Что такое космическое излучение?

Космическое излучение - это электромагнитное или корпускулярное излучение, имеющее внеземной источник. Различают первичное и вторичное космическое излучение.

Первичное космическое излучение представляет собой излучение, попадающее на Землю из космоса. Оно подразделяется по происхождению на галактическое и солнечное Космическое излучение губительно для всего живого, но лишь малая доля его достигает поверхности Земли, т.к. наша атмосфера служит щитом.

При взаимодействии космических частиц с атомами в земной атмосфере возникает вторичное космическое излучение. Оно состоит практически из всех известных в настоящее время частиц. Вторичное космическое излучение существенно на высоте 20-30 км от поверхности земли.

Интенсивность космического излучения зависит от географической широты и высоты над уровнем моря. На полюсах Земли интенсивность космических излучений больше. На больших высотах мощность космического излучения выше, ближе к поверхности Земли воздух играет роль защитного экрана.

Вокруг Земли существуют два радиационных пояса (иначе пояса Ван-Аллена) - внешний и внутренний. В этих областях магнитное поле задерживает огромное количество заряженных частиц. Внутренний пояс имеет максимальную плотность частиц (преимущественно протонов) над экватором на высоте около 3500 км, внешний слой (электронный) – на высоте около 22000 км. Радиационные пояса Земли – источник радиационной опасности при космических полетах.

Основная часть космических лучей галактического происхождения. Но в период максимальной солнечной активности с нарастанием количества вспышек на Солнце поток космических излучений увеличивается.




Знаете ли вы?

Разные животные кричат по-разному, бывает даже, что издаваемые ими звуки лежат за границами слышимости нашего уха.

Звуки, издаваемые жуками, колеблются в диапазоне частот 5 000 - 8 000 герц, саранчой - 3 000 - 15 000 герц.
Треск цикад определяется диапазоном 3 000 - 8 000 герц.
Своеобразные «барабанные дроби» некоторых рыб лежат в области 500 - 1 000 герц.
Звуки земноводных колеблются в основное в частотах 1 000 - 3 000 герц.

Характерна деталь: чем крупнее живое существо, тем «гуще» его голос.
Летучие мыши, в частности, пищат в полосе ультразвуковых частот.
А рев слона измеряется частотами 95-380 герц.

Аналогичное наблюдается и среди птиц.
Очень низким голосом кричит страус эму, у которого в момент крика в верхней трети шеи расширяется горловая трубка.
Исследования же 59 видов воробьиных показали, что частота их пения лежит в районе
4 280 герц.

Все организмы с момента своего появления на Земле существовали, развивались и эволюционировали при постоянном воздействии радиации. Радиация - это такое же естественное природное явление, как ветер, приливы и отливы, дождь и т. п.

Естественный радиационный фон (ЕРФ) присутствовал на Земле на всех этапах ее формирования. Он был задолго до того, как появилась жизнь, а затем и биосфера. Радиоактивность и сопровождающие ее ионизирующие излучения явились фактором, оказавшим влияние на современное состояние биосферы, эволюцию Земли, жизнь на Земле и элементный состав Солнечной системы. Любой организм подвергается воздействию характерного для данной местности радиационного фона. До 1940-х гг. он был обусловлен двумя факторами: распадом радионуклидов естественного происхождения, находящихся как в среде обитания данного организма, так и в самом организме, и космическими лучами.

Источники естественной (природной) радиации - это космос и природные радионуклиды, содержащиеся в естественной форме и концентрации во всех объектах биосферы: почве, воде, воздухе, минералах, живых организмах и т. д. Любой из окружающих нас предметов и мы сами в абсолютном смысле слова радиоактивны.

Основную дозу облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения проникают к поверхности земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи (в этом случае говорят о внешнем облучении) или они могут оказаться в воздухе, которым дышит человек, в пище или воде и попасть внутрь организма (такой способ облучения называют внутренним).

Облучению от естественных источников радиации подвергается любой житель Земли. Это зависит, в частности, от того, где люди живут Уровень радиации в некоторых местах земного шара, особенно там, где залегают радиоактивные породы, оказывается значительно выше среднего, а в других местах - ниже. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом, путем внешнего облучения.



Естественный радиационный фон формируется космическим излучением (16%) и излучением, создаваемым рассеянными в природе радионуклидами, содержащимися в земной коре, приземном воздухе, почве, воде, растениях, продуктах питания, в организмах животных и человека, (84%). Техногенный радиационный фон связан главным образом с переработкой и перемещением горных пород, сжиганием каменного угля, нефти, газа и других горючих ископаемых, а также с испытаниями ядерного оружия и ядерной энергетикой.

Естественный радиационный фон есть неотъемлемый фактор окружающей среды, оказывающий существенное воздействие на жизнедеятельность человека. Естественный радиационный фон колеблется в широких пределах в различных регионах Земли. Эквивалентная доза в организме человека в среднем 2 мЗв = 0,2 бэр. Эволюционное развитие показывает, что в условиях естественного фона обеспечиваются оптимальные условия для жизнедеятельности человека, животных, растений. Поэтому при оценке опасности, обусловленной ионизирующим излучением, крайне важно знать характер и уровни облучения от различных источников.

Поскольку радионуклиды, как и любые атомы, образуют в природе определенные соединения и в соответствие со своими химическими свойствами входят в состав определенных минералов, то распределение естественных радионуклидов в земной коре неравномерно. Космическое излучение, как говорилось выше, также зависит от ряда факторов и может отличаться в несколько раз. Таким образом, естественный радиационный фон в разных местах земного шара разный. С этим связана условность понятия «нормальный радиационный фон»: с высотой над уровнем моря фон увеличивается за счет космического излучения, в местах выхода на поверхность гранитов или богатых торием песков радиационный фон также выше и так далее. Поэтому можно говорить лишь о среднем естественном радиационном фоне для данной местности, территории, страны и т. д.



Среднее значение эффективной дозы, получаемое жителем нашей планеты от природных источников за год, составляет 2,4 мЗв .

Примерно 1/3 этой дозы формируется за счет внешнего излучения (примерно поровну от космоса и от радионуклидов) и 2/3 обусловлены внутренним облучением, то есть природными радионуклидами, находящимися внутри нашего организма. Средняя удельная активность человека составляет около 150 Бк/кг. Естественный радиационный фон (внешнее облучение) на уровне моря в среднем составляет около 0,09 мкЗв/ч. Это соответствует примерно 10 мкР/ч.

Космическое излучение - это поток ионизирующих частиц, который падает на Землю из космического пространства. В состав космического излучения входят:

Космическое излучение состоит из трех компонентов, различающихся происхождением:

1) излучение частиц, захваченных магнитным полем Земли;

2) галактическое космическое излучение;

3) корпускулярное излучение Солнца.

Излучение заряженных частиц, захваченных магнитным полем Земли - на расстоянии 1,2-8 земных радиусов расположены так называемые радиационные пояса, содержащие протоны с энергией 1-500 МэВ (в основном 50 МэВ), электроны с энергией около 0,1-0,4 МэВ и незначительное количество альфа-частиц.

Состав. Галактические космические лучи состоят в основном из протонов (79 %) и α-частиц (20 %), что отражает распространенность водорода и гелия во Вселенной. Из числа тяжелых ионов наибольшее значение имеют ионы железа вследствие относительно высокой интенсивности и большого атомного числа.

Происхождение. Источниками галактических космических лучей являются звездные вспышки, взрывы сверхновых, пульсарное ускорение, взрывы галактических ядер и т. п.

Время жизни. Время существования частиц в космическом излучении - порядка 200 млн лет. Удержание частиц происходит за счет магнитного поля межзвездного пространства.

Взаимодействие с атмосферой . Входя в атмосферу, космические лучи взаимодействуют с атомами азота, кислорода и аргона. Столкновения частиц с электронами происходят чаще, чем с ядрами, но при этом высокоэнергичные частицы теряют мало энергии. При столкновениях же с ядрами частицы практически всегда выбывают из потока, поэтому ослабление первичного излучения практически полностью обусловлено ядерными реакциями.

При столкновении протонов с ядрами из ядер выбиваются нейтроны и протоны, идут реакции расщепления ядер. Образующиеся вторичные частицы обладают значительной энергией и сами индуцируют такие же ядерные реакции, т. е. происходит формирование целого каскада реакций, образуется так называемый широкий атмосферный ливень. Одна первичная частица высокой энергии может породить ливень, включающий десять последовательных поколений реакций, в которых рождаются миллионы частиц.

Новые ядра и нуклоны, составляющие ядерно-активный компонент излучения, образуются в основном в верхних слоях атмосферы. В ее нижней части поток ядер и протонов значительно ослабляется за счет ядерных столкновений и далее - потерь на ионизацию. На уровне моря он формирует только единицы процентов мощности дозы.

Космогенные радионуклиды

В результате ядерных реакций, идущих под влиянием космических лучей в атмосфере и частично в литосфере, образуются радиоактивные ядра. Из них в создание дозы наибольший вклад вносят (β-излучатели: 3 H (Т 1/2 = 12,35 лет), 14 C (T 1/2 = 5730 лет), 22 Na (T 1/2 = 2,6 лет), - поступающие в организм человека вместе с пищей. Как следует из приведенных данных, наибольший вклад в облучение вносит углерод-14. Взрослый человек потребляет с пищей ~ 95 кг углерода в год.

Солнечное излучение, состоящее из электромагнитного излучения вплоть до рентгеновского диапазона, протонов и альфа-частиц;

Перечисленные виды излучения являются первичными, они почти полностью исчезают на высоте около 20 км вследствие взаимодействия с верхними слоями атмосферы. При этом образуется вторичное космическое излучение, которое достигает поверхности Земли и воздействует на биосферу (в том числе на человека). В состав вторичного излучения входят нейтроны, протоны, мезоны, электроны и фотоны.

Интенсивность космического излучения зависит от ряда факторов:

Изменений потока галактического излучения,

Активности солнца,

Географической широты,

Высоты над уровнем моря.

В зависимости от высоты интенсивность космического излучения резко возрастает.


Радионуклиды земной коры.

В земной коре рассеяны долгоживущие (с периодом полураспада в миллиарды лет) изотопы, которые не успели распасться за время существования нашей планеты. Они образовались, наверное, одновременно с образованием планет Солнечной системы (относительно короткоживущие изотопы распались полностью). Эти изотопы называются естественными радиоактивными веществами, это значит такими, которые образовались и постоянно вновь образовываются без участия человека. Распадаясь, они образуют промежуточные, также радиоактивные, изотопы.

Внешними источниками излучений являются более 60 естественных радионуклидов, находящихся в биосфере Земли. Естественные радиоактивные элементы содержатся в относительно небольшом количестве во всех оболочках и ядре Земли. Особое значение для человека имеют радиоактивные элементы биосферы, т.е. той части оболочки Земли (лито-, гидро-и атмосфере), где находятся микроорганизмы, растения, животные и человек.

В течение миллиардов лет шел постоянный процесс радиоактивного распада нестабильных ядер атомов. В результате этого общая радиоактивность вещества Земли, горных пород постепенно снижалась. Относительно короткоживущие изотопы распались полностью. Сохранились главным образом элементы с полураспадом, измеряемым миллиардами лет, а также относительно короткоживущие вторичные продукты радиоактивного распада, образующиеся последовательные цепочки преобразований, так называемые семейства радиоактивных элементов. В земной коре естественные радионуклиды могут быть более или менее равномерно рассеяны или сконцентрированы в виде месторождений.

Природные (естественные) радионуклиды можно разделить на три группы:

Радионуклиды, принадлежащие радиоактивным семействам (рядам),

Другие (не принадлежащие радиоактивным семействам) радионуклиды, вошедшие в состав земной коры при формировании планеты,

Радионуклиды, образовавшиеся под действием космического излучения.

В процессе формирования Земли в состав ее коры наряду со стабильными нуклидами вошли и радионуклиды. Большая часть этих радионуклидов относится к так называемым радиоактивным семействам (рядам). Каждый ряд представляет собой цепочку последовательных радиоактивных превращений, когда ядро, образующееся при распаде материнского ядра, тоже, в свою очередь, распадается, вновь порождая неустойчивое ядро и т. д. Началом такой цепочки является радионуклид, который не образуется из другого радионуклида, а содержится в земной коре и биосфере с момента их рождения. Этот радионуклид называют родоначальником и его именем называют все семейство (ряд). Всего в природе существует три родоначальника - уран-235, уран-238 и торий-232, и, соответственно, три радиоактивных ряда - два урановых и ториевый. Заканчиваются все ряды стабильными изотопами свинца.

Самый большой период полураспада у тория (14 млрд. лет), поэтому он со времени аккреции Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреции Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Около 0,0003% (по разным данным 0,00025-0,0004%) Массы земной коры - это уран. То есть в одном кубометре самого обычного грунта содержится в среднем 5 граммов урана. Есть места, где это количество в тысячи раз больше - это месторождения урана. В кубометре морской воды содержится около 1,5 мг урана. Этот природный химический элемент представлен двумя изотопами -238U и 235U, каждый из которых является родоначальником своего радиоактивного ряда. Подавляющая часть природного урана (99,3%) - это уран-238. Этот радионуклид весьма устойчив, вероятность его распада (а именно - альфа-распада) очень мала. Эта вероятность характеризуется периодом полураспада, равным 4,5 миллиарда лет. То есть со времен формирования нашей планеты его количество уменьшилось вдвое. Из этого, в свою очередь, следует, что радиационный фон на нашей планете раньше был выше. Цепочки радиоактивных превращений, порождающей природные радионуклиды уранового ряда:

Радиоактивный ряд включает как долгоживущие радионуклиды (то есть радионуклиды с большим периодом полураспада), так и короткоживущие, но в природе существуют все радионуклиды ряда, даже те, которые быстро распадаются. Это связано с тем, что с течением времени установилось равновесие (так называемое «вековое равновесие») - скорость распада каждого радионуклида равна скорости его образования.

Существуют природные радионуклиды, которые вошли состав земной коры в процессе формирования планеты и которые не принадлежат урановым или ториевому рядам. В первую очередь - это калий-40. Содержание 40 К в земной коре около 0,00027% (масс), период полураспада 1,3 миллиарда лет. Дочерний нуклид - каль-ций-40 - является стабильным. Калий-40 в значительном количестве входит в состав растений и живых организмов, вносит существенный вклад в общую дозу внутреннего облучения человека.

Природный калий содержит три изотопа: калий-39, калий-40 и калий-41, из которых только калий-40 радиоактивен. Количественное соотношение этих трех изотопов в природе выглядит так: 93,08 %, 0,012 % и 6,91 %.

Калий-40 распадается двумя путями. Около 88% его атомов испытывают бета-излучение и превращаются в атомы кальция-40. Остальные 12% атомов, испытывая К-захват, превращаются в атомы аргона-40. На этом свойстве калия-40 основан калий-аргоновый метод определения абсолютного возраста горных пород и минералов.

Третью группу природных радионуклидов составляют космогенные радионуклиды. Эти радионуклиды образуются под действием космического излучения из стабильных нуклидов в результате ядерных реакций. К ним относятся тритий, бериллий-7, углерод-14, натрий-22. Например, ядерные реакции образования трития и углерода-14 из азота под действием космических нейтронов:

Особое место среди природных радиоизотопов занимает углерод. Природный углерод состоит из двух стабильных изотопов, среди которых преобладает углерод-12 (98,89 %). Остальная часть почти целиком приходится на изотоп углерод-13 (1,11 %).

Помимо стабильных изотопов углерода известны еще пять радиоактивных. Четыре из них (углерод-10, углерод-11, углерод-15 и углерод-16) характеризуются весьма малыми периодами полураспада (секунды и доли секунды). Пятый радиоизотоп, углерод-14, имеет период полураспада 5730 лет.

В природе концентрация углерода-14 крайне мала. Например, в современных растениях один атом этого изотопа приходится на 10 9 атомов углерода-12 и углерода-13. Однако с появлением атомного оружия и ядерной техники углерод-14 получается искусственно при взаимодействии медленных нейтронов с азотом атмосферы, поэтому количество его постоянно растет.

Существует некоторая условность относительно точки зрения того, какой фон считать «нормальным». Так, при «среднепланетарной» годовой эффективной дозе на одного человека 2,4 мЗв во многих странах эта величина составляет 7-9 мЗв/год. То есть испокон веков миллионы людей живут в условиях природных дозовых нагрузок, которые в несколько раз выше, чем среднестатистические. Медицинские исследования и демографическая статистика показывают, что это никак не сказывается на их жизни, не оказывают никакого негативного влияния на их здоровье и здоровье их потомства.

Говоря об условности понятия «нормальный» природный фон, можно указать также ряд мест на планете, где уровень природной радиации превышает среднестатистический не только в разы, но и в десятки раз (таблица), этому воздействию подвержены десятки и сотни тысяч жителей. И это тоже норма, это тоже никак не сказывается на их здоровье. Более того, многие районы с повышенным радиационным фоном в течение столетий являются местами массового туризма (морские побережья) и признанными курортами (Кавказские Минеральные Воды, Карловы Вары и др.).

КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ

Существование космических лучей было обнаружено в начале ХХ века. В 1912 г. австралийский физик В. Гесс, поднимаясь на воздушном шаре, заметил, что разрядка электроскопа на больших высотах происходит значительно быстрее, чем на уровне моря. Стало ясным, что ионизация воздуха, которая снимала разряд с электроскопа, имеет внеземное происхождение. Первым высказал это предположение Милликен, и именно он дал этому явлению современное название – космическое излучение.

В настоящее время установлено, что первичное космическое излучение состоит из стабильных частиц высоких энергий, летящих в самых различных направлениях. Интенсивность космического излучения в районе Солнечной системы составляет в среднем 2-4 частицы на 1см2 за 1с.

Оно состоит из:

    протонов – 91%

    α-частиц – 6,6%

    ядер других более тяжелых элементов – менее 1%

    электронов – 1,5%

    рентгеновских и гамма–лучей космического происхождения

    солнечного излучения.

Первичные комические частицы, летящие из мирового пространства, взаимодействуют с ядрами атомов верхних слоев атмосферы и образуют так называемые вторичные космические лучи. Интенсивность космических лучей вблизи магнитных полюсов Земли приблизительно в 1,5 раза больше, чем на экваторе.

По современным представлениям главным источником космического излучения высоких энергий являются взрывы сверхновых звезд. По данным, полученным с помощью принадлежащего NASA орбитального рентгеновского телескопа, были получены новые доказательства того, что значительный объем космического излучения, постоянно бомбардирующего Землю, произведен ударной волной, распространяющейся после взрыва сверхновой звезды, который был зарегистрирован еще в 1572 году. Судя по наблюдениям рентгеновской обсерватории «Чандра», останки сверхновой звезды продолжают разбегаться со скоростью более 10 миллионов км/ч, производя две ударные волны, сопровождаемые массированным выделением рентгеновского излучения. Причем, одна волна движется наружу, в межзвездный газ, а вторая – внутрь, к центру бывшей звезды. Можно также утверждать, что значительная доля энергии «внутренней» ударной волны уходит на ускорение атомных ядер до скоростей, близких к световым.

Частицы высоких энергий приходят к нам из других Галактик. Таких энергий они могут достигнуть, ускоряясь в неоднородных магнитных полях Вселенной.

Естественно, что источником космического излучения является и ближайшая к нам звезда – Солнце. Солнце периодически (во время вспышек) испускает солнечные космические лучи, которые состоят в основном из протонов и α-частиц, имеющих небольшую энергию.

Ультрафиолетовое излучение (ультрафиолетовые лучи, УФ-излучение) - электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·1014-3·1016 Гц). Термин происходит от лат. ultra - сверх, за пределами и фиолетовый. Основной источник ультрафиолетового излучения на Земле - Солнце.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 102 Å (от 10−12 до 10−8 м).Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 до 6·1019 Гц и длиной волны 0,005-10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкое рентгеновское излучение характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткое рентгеновское излучение обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

Реликтовое излучение (лат. relictum - остаток), космическое микроволновое фоновое излучение (от англ. cosmic microwave background radiation) - космическое электромагнитное излучение с высокой степенью изотропности и со спектром, характерным для абсолютно чёрного тела с температурой 2,72548 ± 0,00057 К.

Существование реликтового излучения было предсказано теоретически Г. Гамовым в рамках теории Большого взрыва. Хотя в настоящее время многие аспекты первоначальной теории Большого взрыва пересмотрены, основы, позволившие предсказать эффективную температуру реликтового излучения, остались неизменны. Реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно её заполняет. Экспериментально его существование было подтверждено в 1965 году. Наряду с космологическим красным смещением, реликтовое излучение рассматривается как одно из главных подтверждений теории Большого взрыва.

Гамма-всплеск - масштабный космический выброс энергии взрывного характера, наблюдаемый в отдалённых галактиках в самой жёсткой части электромагнитного спектра. Гамма-всплески (ГВ) - наиболее яркие электромагнитные события, происходящие во Вселенной. Продолжительность типичного ГВ составляет несколько секунд, тем не менее он может длиться от миллисекунд до часа. За первоначальным всплеском обычно следует долгоживущее «послесвечение», излучаемое на более длинных волнах (рентген, УФ, оптика, ИК и радио).

Большинство наблюдаемых ГВ предположительно представляет собой сравнительно узкий луч мощного излучения, испускаемого во время вспышки сверхновой, когда быстро вращающаяся массивная звезда коллапсирует, превращаясь либо в нейтронную звезду, либо в кварковую звезду, либо в чёрную дыру. Подкласс ГВ - «короткие» всплески - по-видимому происходят от другого процесса, возможно, при слиянии двойных нейтронных звёзд.

Источники ГВ находятся на расстояниях в миллиарды световых лет от Земли, что означает их чрезвычайную мощность и редкость. За несколько секунд вспышки высвобождается столько энергии, сколько Солнцем выделяется за 10 миллиардов лет. За миллион лет в одной галактике обнаруживаются лишь несколько ГВ. Все наблюдаемые ГВ происходят за пределами галактики Млечный путь, кроме явления родственного класса, мягких повторяющихся гамма-всплесков, которые ассоциируются с магнетарами Млечного пути. Имеется предположение, что ГВ, произошедший в нашей галактике, мог бы привести к массовому вымиранию всего живого на Земле.

ГВ впервые был случайно зарегистрирован 2 июля 1967 года американскими военными спутниками «Vela».

Чтобы объяснить процессы, которые могут порождать ГВ, были построены сотни теоретических моделей, таких как столкновения между кометами и нейтронными звёздами. Но данных для подтверждения предложенных моделей было недостаточно, пока в 1997 не зарегистрировали первое рентгеновское и оптическое послесвечения, и определили их красное смещение прямым измерением с помощью оптического спектроскопа. Эти открытия и последующие исследования галактик и сверхновых, ассоциированных с ГВ, помогли оценить яркость и расстояния до ГВ, окончательно разместив их в отдалённых галактиках и связав ГВ со смертью массивных звёзд. Тем не менее процесс исследования ГВ ещё далеко не закончен и остаётся одной из самых больших загадок астрофизики. Неполной является даже наблюдательная классификация ГВ на длинные и короткие.

ГВ регистрируются приблизительно раз в день. Как было установлено в советском эксперименте «Конус», который осуществлялся под руководством Е. П. Мазеца на космических аппаратах «Венера-11», «Венера-12» и «Прогноз» в 1970-е годы, ГВ с равной вероятностью приходят с любого направления, что, вместе с экспериментально построенной зависимостью Log N - Log S (N - количество ГВ, дающих около Земли поток гамма-излучения больший или равный S), говорило о том, что ГВ имеют космологическую природу (точнее, связаны не с Галактикой или не только с ней, но происходят во всей Вселенной, причём мы их видим из удалённых участков Вселенной). Направление на источник оценивалось с помощью метода триангуляции.