Механическая работа. Формула

В физике понятие "работа" имеет другое определение, чем то, которое используется в повседневной жизни. В частности, термин "работа" используется, когда физическая сила заставляет объект перемещаться. В общем, если мощная сила заставляет объект перемещаться очень далеко, то выполняется много работы. И если сила - небольшая или объект не перемещается очень далеко, - то только небольшая работа. Сила может быть рассчитана по формуле: Работа = F × D × косинус(θ) , где F = сила (в Ньютонах), D = смещение (в метрах), и θ = угол между вектором силы и направлением движения.

Шаги

Часть 1

Нахождения значения работы в в одном измерении
  1. Найдите направление вектора силы и направление движения. Чтобы начать, важно сначала определить в каком направлении движется объект, а также откуда применяется сила. Имейте в виду, что объекты не всегда движутся в соответствии с силой, приложенной к ним, - например, если вы потяните небольшую тележку за ручку, то вы применяете диагональную силу (если вы выше, чем тележка), чтобы переместить ее вперед. В этом разделе, однако, мы будем иметь дело с ситуациями, в которых сила (усилие) и перемещение объекта имеют одинаковое направление. Для получения информации о том, как найти работу, когда эти предметы не имеют одинакового направления, читайте ниже.

    • Чтобы сделать этот процесс легким для понимания, давайте следовать примеру задачи. Скажем, игрушечный вагон тянется прямо вперед поездом перед ним. В этом случае вектор силы и направление движения поезда указывают на одинаковый путь - вперед . В следующих шагах мы будем использовать эту информацию, чтобы помочь найти работу, выполненную объектом.
  2. Найдите смещение объекта. Первую переменную D или смещение, которая нам нужна для формулы работы, как правило, легко найти. Смещение - это просто расстояние, на которое сила заставила объект переместиться от его исходного положения. В учебных задачах эта информация, как правило, либо дана (известна), либо ее можно вывести (найти) из другой информации в задаче. В реальной жизни все, что вам нужно сделать, чтобы найти смещение, это измерить расстояние движения объектов.

    • Обратите внимание, что единицы измерения расстояния должны быть в метрах в формуле для вычисления работы.
    • В нашем примере игрушечного поезда, предположим, что находим работу, выполненную поездом, когда он проходит по трассе. Если он стартует в определенной точке и останавливается в месте около 2 метров по трассе, то мы можем использовать 2 метра для нашего значения "D" в формуле.
  3. Найдите силу, применяющуюся к объекту. Далее найдите величину силы, которая используется для перемещения объекта. Это является мерой "прочности" силы - чем больше ее величина, тем сильнее она толкает объект и тем быстрее он ускоряет свой ход. Если величина силы не предусмотрена, ее можно вывести из массы и ускорения перемещения (при условии, что нет других конфликтующих сил, действующих на него) с помощью формулы F = M × A.

    • Обратите внимание, что единицы измерения силы должны быть в Ньютонах для вычисления формулы работы.
    • В нашем примере, предположим, что не знаем величину силы. Тем не менее, давайте допустим, что знаем , что игрушечный поезд имеет массу 0,5 кг и что сила заставляет его ускоряться со скоростью 0,7 метров/секунду 2 . В этом случае можем найти величину путем умножения M × A = 0.5 × 0.7 = 0.35 Ньютон .
  4. Умножьте Сила× Расстояние. После того, как узнаете величину силы, действующую на ваш объект, и расстояние, на которое он был перемещен, остальное будет сделать легко. Просто умножьте эти два значения друг на друга, чтобы получить значение работы.

    • Пора решить наш пример задачи. При значении силы 0,35 Ньютон и значении смещения - 2 метра, наш ответ является вопросом простого умножения: 0.35 × 2 = 0.7 Джоулей .
    • Вы, возможно, заметили, что в формуле, приведенной в введении, есть дополнительная часть к формуле: косинус (θ). Как обсуждалось выше, в этом примере сила и направление движения применяются в одном направлении. Это означает, что угол между ними равен 0 o . Поскольку косинус (0) = 1, то мы не должны включать его - мы просто умножаем на 1.
  5. Обозначьте ответ в Джоулях. В физике значения работы (и нескольких других величин) почти всегда даются в единице измерения, которая называется Джоуль. Один джоуль определяется как 1 Ньютон силы применяющейся на 1 метр, или другими словами, 1 Ньютон × метр. Это имеет смысл, - так как вы умножаете расстояние на силу, это логично, что ответ, который вы получите, будет иметь единицу измерения, равную умножению единицы величины вашей силы и расстояния.

    Часть 2

    Вычисление работы с помощью угловой силы
    1. Найдите силу и смещение, как обычно. Выше мы имели дело с задачей, в которой объект движется в том же направлении, что и сила, которая прилаживается к нему. На самом деле не всегда так бывает. В тех случаях, когда сила и движение объекта находятся в двух разных направлениях, разница между этими двумя направлениями также должна быть учтена в уравнении для получения точного результата. Для начала найдите величину силы и смещения объекта, как вы это обычно делаете.

      • Давайте посмотрим на другой пример задачи. В этом случае, предположим, что мы тянем игрушечный поезд вперед, как в примере задачи выше, но, на этот раз мы на самом деле тянем вверх под диагональным углом. В следующем шаге будем принимать это во внимание, но сейчас будем придерживаться основ: перемещения поезда и величины силы, действующей на него. Для наших целей, скажем, сила имеет величину 10 Ньютон и что он проехал те же 2 метра вперед, как раньше.
    2. Найдите угол между вектором силы и перемещением. В отличие от приведенных выше примеров с силой, которая находится в другом направлении, чем движение объекта, необходимо найти разницу между этими двумя направлениями в виде угла между ними. Если эта информация не предоставляется вам, то возможно, потребуется измерить угол самостоятельно или вывести его из другой информации в задаче.

      • В нашем примере задачи, предположим, что сила, которая применяется, равна приблизительно 60 o выше горизонтальной плоскости. Если поезд все еще движется прямо вперед (то есть, по горизонтали), то угол между вектором силы и движения поезда будет равен 60 o .
    3. Умножьте Force × Distance × Cosine(θ). После того, как узнаете смещение объекта, величину силы, действующей на него, и угол между вектором силы и его движением, решение почти такое же легкое, как и без того, чтобы принимать угол во внимание. Просто возьмите косинус угла (для этого может потребоваться научный калькулятор) и умножьте его на силу и перемещение, чтобы найти ответ на свою задачу в Джоулях.

      • Решим пример нашей задачи. С помощью калькулятора находим, что косинус 60 o равен 1/2. Включив это в формулу, можем решить задачу следующим образом: 10 Ньютонов × 2 метра × 1/2 = 10 Джоулей .

    Часть 3

    Использование значения работы
    1. Измените формулу, чтобы найти расстояние, силу или угол. Формула работы, указанная выше, является не просто полезной для нахождения работы - она также ценна для нахождения любых переменных в уравнении, когда вы уже знаете значение работы. В этих случаях просто выделите переменную, которую ищете, и решите уравнение в соответствии с основными правилами алгебры.

      • Например, предположим, что мы знаем, что наш поезд тянут с силой в 20 Ньютон под диагональным углом более 5 метров пути для выполнения 86,6 Джоулей работы. Тем не менее, мы не знаем, угла вектора силы. Чтобы найти угол, мы просто выделим эту переменную и решим уравнение следующим образом: 86.6 = 20 × 5 × Косинус(θ) 86.6/100 = Косинус(θ) Arccos(0.866) = θ = 30 o
    2. Разделите на время, проведенное в движении, чтобы найти мощность. В физике работа тесно связана с другим типом измерения под названием "мощность". Мощность - это просто способ определения количества скорости, с которой работа проводится в определенной системе в течение долгого периода времени. Таким образом, чтобы найти мощность, все, что вам нужно сделать, это разделить работу, используемую для перемещения объекта на время, которое требуется для завершения перемещения. Измерения мощности обозначаются в единицах - Вт (которые равны Джоуль/секунду).

      • Например, для примера задачи в указанном выше шаге, предположим, что перемещение поезда на 5 метров заняло 12 секунд. В этом случае, все, что нужно сделать, это разделить работу, выполненную для перемещения его на 5 метров (86,6 Дж), на 12 секунд, чтобы найти ответ для вычисления мощности: 86.6/12 = "7.22 Вт .
    3. Используйте формулу TME i + W nc = TME f , чтобы найти механическую энергию в системе. Работа также может быть использована, чтобы найти количество энергии, содержащееся в системе. В приведенной выше формуле TME i = начальная полная механическая энергия в системе TME f = окончательная полная механическая энергия в системе и W nc = работа, выполненная в системах связи за счет не-консервативных сил. . В этой формуле, если сила применяется в направлении движения, то она - положительная, а если давит на (против) него, то она - отрицательная. Заметим, что обе переменные энергии можно найти по формуле (½)mv 2 , где m = масса и V = объем.

      • Например, для примера задачи в двух шагах выше, предположим, что поезд изначально имел общую механическую энергию 100 Дж. Поскольку сила в задаче тянет поезд в направлении, которое он уже проходил, она - положительная. В этом случае конечная энергия поезда - TME i + W nc = 100 + 86.6 = 186.6 Дж .
      • Обратите внимание, что не-консервативные силы - это силы, чья мощность для воздействия на ускорение объекта зависит от пути, пройденного объектом. Трение является хорошим примером - объект, который толкнули по короткому, прямому пути, будет ощущать последствия трения в течение короткого времени, в то время как объект, который толкнули по длинному, извилистому пути к такому же конечному местонахождению, в целом будет ощущать больше трения.
    • Если вам удастся решить задачу, то улыбнитесь и порадуйтесь за себя!
    • Тренируйтесь в решении как можно большего числа задач, это гарантирует полное понимание.
    • Продолжайте практиковаться, и пробуйте снова, если вам не удастся в первый раз.
    • Изучите следующие моменты, касающиеся работы:
      • Работа, проделанная силой, может быть либо положительной, либо отрицательной. (В этом смысле термины "положительные или отрицательные" несут свой математический смысл, а обычное значение).
      • Выполненная работа является отрицательной, когда сила действует в противоположном к перемещению направлении.
      • Выполненная работа является положительной, когда сила действует в направлении перемещения.

1. Механическая работа ​\(A \) ​ - физическая величина, равная произведению вектора силы, действующей на тело, и вектора его перемещения: ​\(A=\vec{F}\vec{S} \) ​. Работа - скалярная величина, характеризуется числовым значением и единицей.

За единицу работы принимают 1 джоуль (1 Дж). Это такая работа, которую совершает сила 1 Н на пути 1 м.

\[ [\,A\,]=[\,F\,][\,S\,]; [\,A\,]=1Н\cdot1м=1Дж \]

2. Если сила, действующая на тело, составляет некоторый угол ​\(\alpha \) ​ с перемещением, то проекция силы ​\(F \) ​ на ось X равна ​\(F_x \) ​ (рис. 42).

Поскольку ​\(F_x=F\cdot\cos\alpha \) ​, то \(A=FS\cos\alpha \) .

Таким образом, работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

3. Если сила ​\(F \) ​ = 0 или перемещение ​\(S \) ​ = 0, то механическая работа равна нулю ​\(A \) ​ = 0. Работа равна нулю, если вектор силы перпендикулярен вектору перемещения, т.е. ​\(\cos90^\circ \) ​ = 0. Так, нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта сила перпендикулярна направлению движения тела в любой точке траектории.

4. Работа силы можетбыть как положительной, так и отрицательной. Работа положительная ​\(A \) ​ > 0, если угол 90° > ​\(\alpha \) ​ ≥ 0°; если угол 180° > ​\(\alpha \) ​ ≥ 90°, то работа отрицательная ​\(A \) ​ < 0.

Если угол ​\(\alpha \) ​ = 0°, то ​\(\cos\alpha \) ​ = 1, ​\(A=FS \) ​. Если угол ​\(\alpha \) ​ = 180°, то ​\(\cos\alpha \) ​ = -1, ​\(A=-FS \) ​.

5. При свободном падении с высоты ​\(h \) ​ тело массой ​\(m \) ​ перемещается из положения 1 в положение 2 (рис. 43). При этом сила тяжести совершает работу, равную:

\[ A=F_тh=mg(h_1-h_2)=mgh \]

​При движении тела вертикально вниз сила и перемещение направлены в одну сторону, и сила тяжести совершает положительную работу.

Если тело поднимается вверх, то сила тяжести направлена вниз, а перемещение вверх, то сила тяжести совершает отрицательную работу, т.е.

\[ A=-F_тh=-mg(h_1-h_2)=-mgh \]

6. Работу можно представить графически. На рисунке изображён график зависимости силы тяжести от высоты тела относительно поверхности Земли (рис. 44). Графически работа силы тяжести равна площади фигуры (прямоугольника), ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс
в точке ​\(h \) ​.

Графиком зависимости силы упругости от удлинения пружины является прямая, проходящая через начало координат (рис. 45). По аналогии с работой силы тяжести работа силы упругости равна площади треугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке ​\(x \) ​.
​\(A=Fx/2=kx\cdot x/2 \) ​.

7. Работа силы тяжести не зависит от формы траектории, по которой перемещается тело; она зависит от начального и конечного положений тела. Пусть тело сначала перемещается из точки А в точку В по траектории АВ (рис. 46). Работа силы тяжести в этом случае

\[ A_{AB}=mgh \]

Пусть теперь тело движется из точки А в точку В сначала вдоль наклонной плоскости АС, затем вдоль основания наклонной плоскости ВС. Работа силы тяжести при перемещении по ВС равна нулю. Работа силы тяжести при перемещении по АС равна произведению проекции силы тяжести на наклонную плоскость ​\(mg\sin\alpha \) ​ и длины наклонной плоскости, т.е. ​\(A_{AC}=mg\sin\alpha\cdot l \) ​. Произведение ​\(l\cdot\sin\alpha=h \) ​. Тогда \(A_{AC}=mgh \) . Работа силы тяжести при перемещении тела по двум различным траекториям не зависит от формы траектории, а зависит от начального и конечного положений тела.

Работа силы упругости также не зависит от формы траектории.

Предположим, что тело перемещается из точки А в точку В по траектории АСВ, а затем из точки В в точку А по траектории ВА. При движении по траектории АСВ сила тяжести совершает положительную работу, при движении по траектории В А работа силы тяжести отрицательна, равная по модулю работе при движении по траектории АСВ. Следовательно работа силы тяжести по замкнутой траектории равна нулю. То же относится и к работе силы упругости.

Силы, работа которых не зависит от формы траектории и по замкнутой траектории равна нулю, называют консервативными. К консервативным силам относятся сила тяжести и сила упругости.

8. Силы, работа которых зависит от формы пути, называют неконсервативными. Неконсервативной является сила трения. Если тело перемещается из точки А в точку В (рис. 47) сначала по прямой, а затем по ломаной линии АСВ, то в первом случае работа силы трения ​\(A_{AB}=-Fl_{AB} \) ​, а во втором ​\(A_{ABC}=A_{AC}+A_{CB} \) ​, \(A_{ABC}=-Fl_{AC}-Fl_{CB} \) .

Следовательно, работа ​\(A_{AB} \) ​ не равна работе ​\(A_{ABC} \) ​.

9. Мощностью называется физическая величина, равная отношению работы к промежутку времени, за который она совершена. Мощность характеризует быстроту совершения работы.

Мощность обозначается буквой ​\(N \) ​.

Единица мощности: ​\([N]=[A]/[t] \) ​. ​\([N] \) ​ = 1 Дж/1 с = 1 Дж/с. Эта единица называется ватт (Вт). Один ватт - такая мощность, при которой работа 1 Дж совершается за 1 с.

10. Мощность, развиваемая двигателем, равна: ​\(N = A/t \) ​, ​\(A=F\cdot S \) ​, откуда ​\(N=FS/t \) ​. Отношение перемещения ко времени представляет собой скорость движения: ​\(S/t = v \) ​. Откуда ​\(N = Fv \) ​.

Из полученной формулы видно, что при постоянной силе сопротивления скорость движения прямо пропорциональна мощности двигателя.

В различных машинах и механизмах происходит преобразование механической энергии. За счёт энергии при её преобразовании совершается работа. При этом на совершение полезной работы расходуется только часть энергии. Некоторая часть энергии тратится на совершение работы против сил трения. Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно. Эта величина называется коэффициентом полезного действия (КПД) .

Коэффициентом полезного действия называют величину, равную отношению полезной работы ​\((A_п) \) ​ ко всей совершённой работе \((A_с) \) : ​\(\eta=A_п/A_с \) ​. Выражают КПД в процентах.

Часть 1

1. Работа определяется по формуле

1) ​\(A=Fv \) ​
2) \(A=N/t \) ​
3) \(A=mv \) ​
4) \(A=FS \) ​

2. Груз равномерно поднимают вертикально вверх за привязанную к нему верёвку. Работа силы тяжести в этом случае

1) равна нулю
2) положительная
3) отрицательная
4) больше работы силы упругости

3. Ящик тянут за привязанную к нему верёвку, составляющую угол 60° с горизонтом, прикладывая силу 30 Н. Какова работа этой силы, если модуль перемещения равен 10 м?

1) 300 Дж
2) 150 Дж
3) 3 Дж
4) 1,5 Дж

4. Искусственный спутник Земли, масса которого равна ​\(m \) ​, равномерно движется по круговой орбите радиусом ​\(R \) ​. Работа, совершаемая силой тяжести за время, равное периоду обращения, равна

1) ​\(mgR \) ​
2) ​\(\pi mgR \) ​
3) \(2\pi mgR \) ​
4) ​\(0 \) ​

5. Автомобиль массой 1,2 т проехал 800 м по горизонтальной дороге. Какая работа была совершена при этом силой трения, если коэффициент трения 0,1?

1) -960 кДж
2) -96 кДж
3) 960 кДж
4) 96 кДж

6. Пружину жёсткостью 200 Н/м растянули на 5 см. Какую работу совершит сила упругости при возвращении пружины в состояние равновесия?

1) 0,25 Дж
2) 5 Дж
3) 250 Дж
4) 500 Дж

7. Шарики одинаковой массы скатываются с горки по трём разным желобам, как показано на рисунке. В каком случае работа силы тяжести будет наибольшей?

1) 1
2) 2
3) 3
4) работа во всех случаях одинакова

8. Работа по замкнутой траектории равна нулю

А. Силы трения
Б. Силы упругости

Верным является ответ

1) и А, и Б
2) только А
3) только Б
4) ни А, ни Б

9. Единицей мощности в СИ является

1) Дж
2) Вт
3) Дж·с
4) Н·м

10. Чему равна полезная работа, если совершённая работа составляет 1000 Дж, а КПД двигателя 40 %?

1) 40000 Дж
2) 1000 Дж
3) 400 Дж
4) 25 Дж

11. Установите соответствие между работой силы (в левом столбце таблицы) и знаком работы (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами.

РАБОТА СИЛЫ
A. Работа силы упругости при растяжении пружины
Б. Работа силы трения
B. Работа силы тяжести при падении тела

ЗНАК РАБОТЫ
1) положительная
2) отрицательная
3) равна нулю

12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Работа силы тяжести не зависит от формы траектории.
2) Работа совершается при любом перемещении тела.
3) Работа силы трения скольжения всегда отрицательна.
4) Работа силы упругости по замкнутому контуру не равна нулю.
5) Работа силы трения не зависит от формы траектории.

Часть 2

13. Лебёдка равномерно поднимает груз массой 300 кг на высоту 3 м за 10 с. Какова мощность лебёдки?

Ответы

Одно из важнейших понятий механики – работа силы .

Работа силы

Все физические тела в окружающем нас мире приводятся в движение с помощью силы. Если на движущееся тело в попутном или противоположном направлении действует сила или несколько сил со стороны одного или нескольких тел, то говорят, что совершается работа .

То есть, механическая работу совершает действующая на тело сила. Так, сила тяги электровоза приводит в движение весь поезд, тем самым совершая механическую работу. Велосипед приводится в движение мускульной силой ног велосипедиста. Следовательно, эта сила также совершает механическую работу.

В физике работой силы называют физическую величину, равную произведению модуля силы, модуля перемещения точки приложения силы и косинуса угла между векторами силы и перемещения.

A = F · s · cos (F, s) ,

где F модульсилы,

s – модуль перемещения.

Работа совершается всегда, если угол между ветрами силы и перемещения не равен нулю. Если сила действует в направлении, противоположном направлению движения, величина работы имеет отрицательное значение.

Работа не совершается, если на тело не действуют силы, или если угол между приложенной силой и направлением движения равен 90 о (cos 90 o = 0).

Если лошадь тянет телегу, то мускульная сила лошади, или сила тяги, направленная по ходу движения телеги, совершает работу. А сила тяжести, с которой извозчик давит на телегу, работы не совершает, так как она направлена вниз, перпендикулярно направлению перемещения.

Работа силы – величина скалярная.

Единица работы в системе измерений СИ - джоуль. 1 джоуль – это работа, которую совершает сила величиной в 1 ньютон на расстоянии 1 м, если направления силы и перемещения совпадают.

Если на тело или материальную точку действуют несколько сил, то говорят о работе, совершаемой их равнодействующей силой.

В случае, если приложенная сила непостоянна, то её работа вычисляется как интеграл:

Мощность

Сила, приводящая в движение тело, совершает механическую работу. Но как совершается эта работа, быстро или медленно, иногда очень важно знать на практике. Ведь одна и та же работа может быть совершена за разное время. Работу, которую выполняет большой электромотор, может выполнить и маленький моторчик. Но ему для этого понадобится гораздо больше времени.

В механике существует величина, характеризующая быстроту выполнения работы. Эта величина называется мощностью .

Мощность – это отношение работы, выполненной за определённый промежуток времени, к величине этого промежутка.

N = A /∆ t

По определению А = F · s · cos α , а s/∆ t = v , следовательно

N = F · v · cos α = F · v ,

где F – сила, v скорость, α – угол между направлением силы и направление скорости.

То есть мощность – это скалярное произведение вектора силы на вектор скорости движения тела .

В международной системе СИ мощность измеряется в ваттах (Вт).

Мощность в 1 ватт – это работа в 1 джоуль (Дж), совершаемая за 1 секунду (с).

Мощность можно увеличить, если увеличить силу, совершающую работу, или скорость, с которой эта работа совершается.

Коэффициент полезного действия показывает отношение полезной работы, которая выполняется механизмом или устройством, к затраченной. Часто за затраченную работу принимают количество энергии, которое потребляет устройство для того, чтобы выполнить работу.

Вам понадобится

  1. - автомобиль;
  2. - термометр;
  3. - калькулятор.

Инструкция

  1. Для того чтобы рассчитать коэффициент полезного действия (КПД) поделите полезную работу Ап на работу затраченную Аз, а результат умножьте на 100% (КПД=Ап/Аз∙100%). Результат получите в процентах.
  2. При расчете КПД теплового двигателя, полезной работой считайте механическую работу, выполненную механизмом. За затраченную работу берите количество теплоты, выделяемое сгоревшим топливом, которое является источником энергии для двигателя.
  3. Пример. Средняя сила тяги двигателя автомобиля составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная теплота сгорания топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.
  4. В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД измеряется в дольных единицах от 0 до 1, чтобы перевести результат в проценты, умножьте его на 100.
  5. Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.
  6. Для электродвигателя найдите затраченную работу как произведение мощности на время ее выполнения. Например, если электродвигатель крана мощностью 3,2 кВт поднимает груз массой 800 кг на высоту 3,6 м за 10 с, то его КПД равен отношению полезной работы Ап=m∙g∙h, где m – масса груза, g≈10 м/с² ускорение свободного падения, h – высота на которую подняли груз, и затраченной работы Аз=Р∙t, где Р – мощность двигателя, t – время его работы. Получите формулу для определения КПД=Ап/Аз∙100%=(m∙g∙h)/(Р∙t) ∙100%=%=(800∙10∙3,6)/(3200∙10) ∙100%=90%.

Какая формула у полезной работы?

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу Аз и полезную работу Ап. Если, например, наша цель-поднять груз массой m на высоту Н, то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:
Ап =FH= mgH

Что такое работа в физике определение формула. нн

Виктор Чернобровин

В физике "механической работой" называют работу какой-нибудь силы (силы тяжести, упругости, трения и т. д.) над телом, в результате действия которой тело перемещается. Иногда можно встретить выражение " тело совершило работу", что в принципе означает "сила, действующая на тело, совершила работу".

Евгений Макаров

Работа есть физическая величина, численно равная произведению силы на перемещение в направлении действия этой силы и ей же вызванное.
Соответственно формула A = F*s. Если перемещение по направлению не совпадает с направлением действия силы, то появляется косинус угла.

Aysha Allakulova

роман воробьев

Работа - это процесс, требующий приложения умственных или физических усилий, который целью своей ставит получение определенного результата. Именно работа, как правило, определяет социальный статус человека. И является, по сути, главным двигателем прогресса в обществе. Работа, как явление, присуще только живым организмам и прежде всего человеку.

Механик

Механическая работа - это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы .

Помогите понять формулу!!

Сёма

в каждом конкретном случае мы рассматриваем разную полезную энергию, но обычно это работа или теплота, которая нас интересовала (например, работа газа по перемещению поршня) , а затраченная энергия - энергия, которую мы предали, чтобы наше всё заработало (например, энергия, выделившаяся при сгорании дров под цилиндром с поршнем, внутри которого газ, который, расширяясь совершил работу, которую мы рассмотрели как полезную)
ну как-то так должно быть

Возьмем для примера паровоз.
Чтобы паровоз прошел x км нужно затратить y тонн угля. При сгорании угля выделится всего Q1 теплоты, но не вся теплота преобразуется в полезную работу (по законам термодинамики это невозможно) . Полезная работа в данном случае - движение паровоза.
Пусть при движении на паровоз действует сила сопротивления F (она возникает вследствие трения в механизмах и из-за др. факторов) .
Так, пройдя x км, паровоз совершит работу Q2 = x*F
Таким образом,
Q1 - затраченная энергия
Q2 - полезная работа

ДельтаQ = (Q1 - Q2) - энергия, затраченная на преодоление трения, на нагревание окружающего воздуха и т. д.

Техническая Поддержка

КПД - полезная РАБОТА к затраченной.
Например, кпд=60%, на нагревание идет 60 джоулей от сгорания вещества. Это полезная работа.
Нас интересует затраченная, т. е сколько всего тепла выделилось, если на нагревание пошло 60 дж.
Распишем.

КПД=Апол/Азатр
0.6=60/Азатр
Азатр=60/0.6=100дж

Как видим, если сгорает при таком КПД вещество и при сгорании выделяется 100 ДЖ (затраченная работа) , то на нагревание пошло только 60%, то есть 60Дж (полезная работа) . Остальное тепло рассеялось.

Прохоров Антон

Надо понимать в прямом смысле: Если речь идет о тепловой энергии, то затраченной считаем ту энергию, которую дает топливо, а полезной считаем ту энергию, которую сумели использовать для достижения своей цели, например, какую энергию получила кастрюля с водой.
Полезная энергия всегда меньше затраченной!

Futynehf

КПД коэффициент полезного действия вырожается в процентах, характеризует процент который пошел на полезную работу от всего затраченного. Проще затраченная энергия это энергия полезная + энергия потерь тепла в системе (если речь идет о тепле и т д) трения. тепло с выхлопными газами если имеется в виду автомобиль

Формула кпд? работа полезная и полная?

Орбитальная группировка

Коэффициент полезного действия
Коэффициент полезного действия
(кпд) , характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wполная/Wcyммарная.
В электрических двигателях кпд - отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых двигателях - отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах - отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой. Для вычисления кпд разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие кпд позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.
http://ru.wikipedia.org/wiki/Работа_силы
Поле́зная нагру́зка - термин, который применяется в очень многих областях науки и техники.
Часто вводится параметр «эффективности» , как отношение «веса» полезной нагрузки к полному «весу» системы. При этом «вес» может измеряться как в килограммах/тоннах, так и битах (при передаче пакетов по сети) , или минутах/часах (при расчёте эффективности процессорного времени) , или в других единицах.
http://ru.wikipedia.org/wiki/Полезная_нагрузка

Что такое полезная работа,а что такое затраченная?

Bладимир Попов

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную илизатраченную работу Аз и полезную работу Ап. Если, например, наша цель-поднять груз массой ш на высоту Н, то полезная работа - это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

Если же мы применяем для подъема груза блок или какой- либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже) , что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:
Аз > Ап.
Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.
Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Великолепная

Кпд (коэффициент полезного действия) показывает какую долю от всей затраченной работы составляет полезная работа.
Чтобы найти кпд, надо найти отношение полезной работы к затраченной:

Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией , необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.


Угол между вектором силы и перемещением

1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.


На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

Работа силы тяжести



Работа реакции опоры



Работа силы трения



Работа силы натяжения веревки



Работа равнодействующей силы

Работу равнодействующей силы можно найти двумя способами: 1 способ - как сумму работ (с учетом знаков "+" или "-") всех действующих на тело сил, в нашем примере
2 способ - в первую очередь найти равнодействующую силу, затем непосредственно ее работу, см. рисунок


Работа силы упругости

Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины. Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

Мощность

Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением , которое характеризует быстроту изменения скорости). Определяется по формуле

Коэффициент полезного действия

КПД - это отношение полезной работы, совершенной машиной, ко всей затраченной работе (подведенной энергии) за то же время

Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

КПД наклонной плоскости - это отношение работы силы тяжести, к затраченной работе по перемещению вдоль наклонной плоскости.

Главное запомнить

1) Формулы и единицы измерения;
2) Работу выполняет сила;
3) Уметь определять угол между векторами силы и перемещения

Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными . Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной .

Есть условия, при которых нельзя использовать формулу
Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:

Значение работы некоторой силы зависит от выбора системы отсчета.