Научные картины мира механическая. Становление современной физической картины мира

Формирование механической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.

Имена учёных, внесших основной вклад в создание МКМ: Н.Коперник, Г.Галилей, Р.Декарт, И.Ньютон, П.Лаплас и др.

Рис. 2. Гелиоцентрическая система

Николай Коперник был первым человеком, сумевшим нанести сокрушительный удар по геоцентрическим системам мира. В мае 1543 года увидела свет его книга «О вращениях небесных сфер». Учение Коперника противоречило церковным воззрениям на устройство мира и сыграло огромную роль в истории мировой науки.

Основоположником механической картины мира по праву считается Галилео Галилей (Galilei) (1564-1642), итальянский ученый, один из основателей точного естествознания. Всеми своими силами он боролся против схоластики, считая единственно верной основой познания опыт. Деятельность Галилея не нравилась церкви, он был подвергнут суду инквизиции (1633), вынудившей его отречься от своего учения. До конца жизни Галилей был принужден жить под домашним арестом на своей вилле Арчетри близ Флоренции. И только в 1992 году папа Иоанн Павел II реабилитировал Галилея и объявил решение суда инквизиции ошибочным. В годы детства и юности Галилея в науке господствовали представления об окружающем мире, сохранившиеся со времён античности. И Галилей был одним из первых, кто отважился выступить против них. Механическая картина мира возникла, когда главным критерием истины был признан опыт, а для описания явлений природы стали активно применять математику. Многие ставшие догмой утверждения Аристотеля не выдерживали проверки опытом. Аристотель, например, утверждал, что скорость падения тел пропорциональна их весу. Галилей в присутствии многочисленных свидетелей проводил наблюдения за падением с Пизанской башни тел различной массы (например, мушкетной пули и пушечного ядра). Оказалось, что скорость падения тел не зависит от их массы. Важнейшим достижением Галилея было открытие принципа относительности. Галилей сконструировал первый в мире термоскоп, который явился прообразом термометра. Направив подзорную трубу в небо, он сделал несколько выдающихся астрономических открытий: спутники Юпитера, фазы Венеры, строение Млечного Пути, солнечные пятна, кратеры и горы на Луне. Наблюдения за движением небесных тел сделали его убеждённым сторонником гелиоцентрической системы (рис.5.28.1). Открытия Галилея подрывали доверие к официальным взглядам на строение мира, пропитанным религиозными догмами.

Рене Декарт (Descartes, или Cartesius, 1596-1650), французский философ, математик, физик и физиолог, заложивший основы аналитической геометрии, определивший понятия переменной величины и функции, предположил существование закона сохранения количества движения, положил в основу своих построений принцип несотворимости и неуничтожимости движения. При этом все формы движения он сводил к механическому перемещению тел.

Исаак Ньютон (Newton) (1643-1727), английский математик, механик, астроном и физик, разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Он построил первый в мире зеркальный телескоп, чётко сформулировал основные законы классической механики, открыл закон всемирного тяготения, сформулировал теорию движения небесных тел, создав основы небесной механики. Пространство и время в механике Ньютона являются абсолютными. Следует сказать, что работы Ньютона в механике, оптике и математике намного опередили его время, а многие его работы актуальны и сейчас. На языке Ньютона говорит вся современная наука.

Лаплас (Laplace) Пьер Симон (1749-1827), французский астроном, математик, физик был автором классических трудов по теории вероятностей и небесной механике. Лапласом и Кантом была предложена гипотеза происхождения Солнечной системы из газопылевого облака, развитая современными астрономами.

Коротко перечислим основные черты механической картины мира.

Все материальные тела состоят из молекул, находящихся в непрерывном и хаотическом механическом движении. Материя - вещество, состоящее из неделимых частиц.

Взаимодействие тел осуществляется согласно принципа дальнодействия, мгновенно на любые расстояния (закон всемирного тяготения, закон Кулона), или при непосредственном контакте (силы упругости, силы трения).

Пространство - пустое вместилище тел. Всё пространство заполняет невидимая невесомая «жидкость» - эфир. Время - простая длительность процессов. Время абсолютно.

Всё движение происходит на основе законов механики Ньютона, все наблюдаемые явления и превращения сводятся к механическим перемещениям и столкновениям атомов и молекул. Мир выглядит как колоссальная машина с множеством деталей, рычагов, колёсиков.

Точно так же представляются и процессы, протекающие в живой природе.

Механика описывает все процессы, происходящие в микромире и макромире. В механической картине мира господствует лапласовский детерминизм - учение о всеобщей закономерной связи и причинной обусловленности всех явлений в природе.

Механика и оптика составляли основное содержание физики до начала XIX века. Картина мира строилась на достаточно очевидных и простых механических аналогиях. И в повседневной практической деятельности людей основные выводы классической механики не приводили к противоречиям с опытными данными.

Однако позже, с развитием средств измерения, стало известно, что при изучении многих явлений, например, небесной механики необходимо учитывать сложные эффекты, связанные с движением частиц со скоростями, близкими к световым.

Появились уравнения специальной теории относительности, с трудом вмещающиеся в рамки механических представлений. Изучая свойства микрочастиц, ученые выяснили, что в явлениях микромира частицы могут обладать свойствами волны.

Возникли трудности при описании электромагнитных явлений (испускание, распространение и поглощение света, электромагнитной волны), которые не могли быть разрешены классической ньютоновской механикой.

Однако с развитием науки механическая картина мира не была отброшена, а лишь был вскрыт её относительный характер. Механическая картина мира используется и сейчас во многих случаях, когда, например, в рассматриваемых нами явлениях материальные объекты движутся с небольшими скоростями, и мы имеем дело с небольшими энергиями взаимодействия. Механический взгляд на мир по-прежнему остается актуальным, когда мы сооружаем здания, строим дороги и мосты, проектируем плотины и прокладываем каналы, рассчитываем крыло самолета или решаем другие многочисленные задачи, возникающие в нашей повседневной человеческой жизни. (гелиоцентрическая система это представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты.)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ВВЕДЕНИЕ

В основе современного научного миропонимания лежит признание фундаментальности пространства и времени. Эта традиция восходит к временам Галилея и Ньютона.

Так Ньютон всю свою механику строил на законах, в которых в качестве физических величин фигурировали пространственные координаты x,y,z и время t. Он выдвинул совершенно новый принцип исследования природы, согласно которому вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты.

Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально- методологическим принципам и понятиям физики, механики.

Открытие принципов механики означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о «скрытых» качествах и т.п. спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом.

1. МЕХАНИСТИЧЕСКИЙ ПЕРИОД ЕСТЕСТВОЗНАНИЯ

1. 1 Сущность и причины появления механистической картины мира

К совершенству стремились в XVII-XIX веках именно частные науки, которые только-только начинали обретать статус самостоятельности и науки. Это был период прорыва их к новым горизонтам истин. Классическая механика выработала иные представления о мире, материи, пространстве и времени, движении и развитии, отмеченные от прежних и создала новые категории мышления - вещь, свойство, отношение, элемент, часть, целое, причина, следствие, система - сквозь призму которых сама стала смотреть на мир, описывать и объяснять его. Новые представления об устройстве мира привели к созданию и Новой Картины мира - механистической, в основе которой лежали представления о вселенной как замкнутой системе, уподобляемой механическим часам, которые состоят из незаменимых, подчиненных друг другу элементов, ход которых строго подчиняется законам классической механики. Законам механики подчиняются все и вся, входящие в состав вселенной, а, следовательно, законам этим приписываются универсальность. Как и в механических часах, в которых ход одного элемента строго подчинен ходу другого, так и во вселенной, согласно механистической картине мира, все процессы и явления строго причинно связаны между собой нет места случайности и все предопределено.

В механистической картине мира задаются мировоззренческие ориентации и методологические принципы познания. Механицизм, детерминизм, редукционизм образуют систему принципов, регулирующих исследовательскую деятельность человека. Открывая законы, описывающие природные явления и процессы, человек противопоставляет себя природе, возвышает себя до уровня хозяина природы. Так человек ставит свою деятельность на научную основу, ибо он, исходя из механистической картины мира, уверился в возможность с помощью научного мышления выявить универсальные законы функционирования мира. Эта деятельность оформляется в рационалистическую. Безусловно, предполагается, что такая деятельность целиком должна основываться на целевых установках, принципах, нормах, методах познания объекта. Поступки (научные) и действия исследователя, основанные на предписаниях методического характера обретают черты устойчивого образа деятельности. В рассматриваемый период исследовательская деятельность в астрономии, механике, физике была достаточно рационализирована, а сами эти науки занимали лидирующее место в естествознании.

Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально- методологическим принципам и понятиям физики, механики. Как это на самом деле происходило можно проследить на историко-научном материале биологии.

XVII- нач. XIX вв. - то период господства механической картины мира. Законы механики рассматриваются как универсальные и единые для всех отраслей естествознания. Эмпирические факты биологии, являющиеся фиксацией наблюдаемых в периоде единичных явлений, редуцируются к механическим закономерностям, Иными словами, способ формирования фактов в биологии строится на механистических представлениях о мире. Например, такие факты, как: «Птица, которую потребность влечет к воде, чтобы найти здесь себе жизненное пропитание, раздвигает пальцы на ногах, готовясь грести и плыть по водной поверхности»; «Кожа, соединяющая пальцы при основании, привыкает растягиваться благодаря этим беспрестанно повторяющимся раздвиганиям пальцев. Так, со временем образовались те широкие перепонки между пальцами уток, грей, какие видим сейчас», целиком детерминированы идеями механистического детерминизма. Это однозначно видно из интерпретации указанных фактов. «Частое пользование органом, обратившееся в привычку, увеличивает способность того органа, развивает его самого и сообщает ему размеры и силу действия»; «Неупотребление органа, сделавшееся постоянным вследствие усвоенных привычек, постепенно ослабляет этот орган и, в конце концов, приводит его к исчезновению и даже к полному уничтожению». Механистический подход к системе адаптации «животный организм-окружающая среда» дает соответствующий эмпирический материал.

1. 2 Принцип инерции и принцип относительности Галилея

Становление механистической картины мира справедливо связывают с именем Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и математической обработкой результатов измерений. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно он.

Одним из первых основополагающих событий, знаменующих собой начало классического периода естествознания, явилась формулировка Галилеем принципа инерции и принципа относительности. Принцип инерции утверждает, что любое тело сохраняет состояние покоя или движется равномерно и прямолинейно до тех пор, пока воздействие других тел не выведет его из этого состояния. Принцип относительности утверждает, что если система движется равномерно и прямолинейно, то, не выходя за ее пределы, никакими приборами невозможно обнаружить факт ее движения или покоя, так как такое движение не влияет на ход процессов, протекающих в данной системе. Какое из тел, движущихся равномерно и прямолинейно, действительно движется, а какое покоится однозначно сказать невозможно. Только задавшись точкой, относительно которой мы будем измерять характеристики движения (например скорость), можно внести в задачу элемент определенности.

Таким образом, впервые появилась необходимость ввести в задачи механики понятие системы отсчета.

Важнейшим результатом принципа относительности явилось правило сложения скоростей (рис.1) (v"= v 0 + v, где v" - скорость движения тела относительно неподвижной системы отсчета, v 0 - скорость движения подвижной системы отсчета относительно неподвижной, v - скорость движения тела относительно подвижной системы отсчета) и преобразование координат (x"= x - v 0 t, y"= y, z"= z, где x",y",z" - координаты тела в неподвижной системе координат, x,y,z - координаты тела в системе координат, движущейся относительно неподвижной со скоростью v 0 в направлении оси x").

Рис. 1. Правило сложения скоростей Галилея

Подход Галилея к изучению природы принципиально отличался от ранее существовавшего натурфилософского способа, при котором для объяснения явлений природы придумывались априорные, не связанные с опытом и наблюдениями, чисто умозрительные схемы.

Натурфилософия, что следует из ее названия, представляет собой попытку использовать общие философские принципы для объяснения природы. Такие попытки предпринимались еще с античной эпохи, когда недостаток конкретных данных философы стремились компенсировать общими философскими рассуждениями. Иногда при этом высказывались гениальные догадки, которые на многие столетия опережали результаты конкретных исследований. Достаточно напомнить хотя бы об атомистической гипотезе строения вещества, которая была выдвинута древнегреческим философом Левкиппом (V до н.э.) и более детально обоснована его учеником Демокритом (ок. 460 до н.э.-год смерти не изв.), а также об идее эволюции, высказанной Эмпедоклом (ок. 490-ок. 430 до н.э.) и его последователями. Однако после того, как постепенно возникали и отделялись от нерасчлененного философского знания конкретные науки, натурфилософские объяснения стали тормозом для развития науки.

В этом можно убедиться, сравнив взгляды на движение Аристотеля и Галилея. Исходя из априорной натурфилософской идеи, Аристотель считал «совершенным» движение по кругу, а Галилей, опираясь на наблюдения и эксперимент, ввел понятие инерциального движения. По его мнению, тело, не подверженное воздействию каких-либо внешних сил, будет двигаться не по кругу, а равномерно по прямой траектории или оставаться в покое. Такое представление, конечно, - абстракция и идеализация, поскольку в действительности нельзя наблюдать такую ситуацию, чтобы на тело не действовали какие-либо силы. Однако эта абстракция является плодотворной, ибо она мысленно продолжает тот эксперимент, который приближенно можно осуществить в действительности, когда, изолируясь от действия целого ряда внешних сил, можно установить, что тело будет продолжать свое движение по мере уменьшения воздействия на него посторонних сил.

Переход к экспериментальному изучению природы и математическая обработка результатов экспериментов позволили Галилею открыть законы движения свободно падающих тел. Принципиальное отличие нового метода исследования природы от натурфилософского состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом. Эксперимент можно рассматривать как вопрос, обращенный к природе. Чтобы получить на него определенный ответ, необходимо так сформулировать вопрос, чтобы ответ на него был однозначным. Для этого следует так построить эксперимент, чтобы по возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдению изучаемого явления в «чистом виде». В свою очередь, гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое предположение систематически проверяются опытом и измерениями. Именно благодаря этому Галилею удалось опровергнуть прежнее предположение, высказанное еще Аристотелем, что путь падающего тела пропорционален его скорости. Предприняв эксперименты с падением тяжелых тел (пушечных ядер), Галилей убедился, что этот путь пропорционален их ускорению, равному 9,81 м/с 2 . Из астрономических достижений Галилея следует отметить открытие спутников Юпитера, а также обнаружение пятен на Солнце и гор на Луне, что подрывало прежнюю веру в совершенство небесного космоса.

1. 3 Строение солнечной системы

Одним из наиболее значительных успехов классического естествознания, основанного на механике Ньютона, было практически исчерпывающее описание наблюдаемого движения небесных тел.

Первоначально считалось, что Земля неподвижна, а движение некоторых небесных тел (планет) казалось весьма сложным. Новый крупный шаг в развитии естествознания ознаменовался открытием законов движения планет. Галилей одним из первых высказал предположение о том, что наша планета не является исключением и тоже движется вокруг Солнца. Эта концепция (гелиоцентрическая) была встречена достаточно враждебно. Тихо Браге решил не принимать участия в дискуссиях, а заняться непосредственными измерениями координат тел на небесной сфере.

Если Галилей имел дело с изучением движения земных тел, то немецкий астроном Иоганн Кеплер (1571-1630) осмелился исследовать движения небесных тел, вторгся в область, которая раньше считалась запретной для науки.

Кроме того, для своего исследования он не мог обратиться к эксперименту и поэтому вынужден был воспользоваться многолетними систематическими наблюдениями за движениями планеты Марс, проведенными датским астрономом Тихо Браге (1546-1601). Перепробовав множество вариантов, Кеплер остановился на гипотезе, что траекторией Марса, как и других планет, является не окружность, а эллипс. Результаты наблюдений Тихо Браге соответствовали этой гипотезе и тем самым подтверждали ее.

Открытие законов движения планет Кеплером имело неоценимое значение для развития естествознания. Оно свидетельствовало, во-первых, о том, что между движениями земных и небесных тел не существует непреодолимой пропасти, поскольку все они подчиняются определенным естественным законам; во-вторых, сам путь открытия законов движения небесных тел в принципе не отличается от открытия законов земных тел. Правда, из-за невозможности осуществления экспериментов с небесными телами для исследования законов их движения пришлось обратиться к наблюдениям.

Тем не менее и здесь исследование осуществлялось в тесном взаимодействии теории и наблюдения, при тщательной проверке выдвигаемых гипотез измерениями движений небесных тел.

1. 4 Законы механики Ньютона их место в механистической картине мира

Формирование классической механики и основанной на ней механистической картины мира происходило по двум направлениям:

1) обобщение полученных ранее результатов и, прежде всего, законов движения свободно падающих тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

2) создание методов количественного анализа механического движения в целом.

Известно, что Ньютон создал свой вариант дифференциального и интегрального исчисления непосредственно для решения основных проблем механики: определения мгновенной скорости как производной от пути по времени движения и ускорения как производной от скорости по времени или второй производной от пути по времени. Благодаря этому, ему удалось точно сформулировать основные законы динамики и закон всемирного тяготения. В наши дни количественный подход к описанию движения кажется чем-то само собой разумеющимся, но в XVIII в. это было крупнейшим завоеванием научной мысли. Для сравнения достаточно отметить, что китайская наука, несмотря на ее несомненные достижения в эмпирических областях (изобретение пороха, бумаги, компаса и другие открытия), так и не смогла подняться до установления количественных закономерностей движения. Решающую же роль в становлении механики сыграл, как уже отмечалось, экспериментальный метод, который обеспечил возможность проверять все догадки, предположения и гипотезы с помощью тщательно продуманных опытов.

Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому он резко выступал против допущения так называемых скрытых качеств, с помощью которых последователи Аристотеля пытались объяснить многие явления и процессы природы.

Сказать, что каждый род вещей наделен особым скрытым качеством, при помощи которого он действует и производит эффект, - указывал Ньютон, - значит ничего не сказать.

В связи с этим он выдвигает совершенно новый принцип исследования природы, согласно которому вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты.

Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде «Математические начала натуральной философии», опубликованном в 1687 г.

Чтобы ясно оценить революционный переворот, осуществленный Ньютоном в механике и точном естествознании в целом, необходимо прежде всего противопоставить его метод принципов чисто умозрительным построениям прежней натурфилософии и широко распространенным в его время гипотезам о «скрытых» качествах. О натурфилософском подходе к изучению природы мы уже говорили, отметив, что в подавляющем большинстве такие взгляды были ничем не подкрепленными умозрениями и спекуляциями. И хотя в заголовке книги Ньютона тоже встречается термин «натуральная философия», в XVII и XVIII вв. он обозначал изучение природы, т.е. естествознание. Утверждение Ньютона, что гипотезы не должны рассматриваться в экспериментальной философии, было направлено против гипотез о «скрытых» качествах, подлинные же гипотезы, допускающие экспериментальную проверку, составляют основу и исходный пункт всех исследований в естествознании. Как нетрудно догадаться, сами принципы тоже являются гипотезами глубокого и весьма общего характера.

При разработке своего метода принципов Ньютон ориентировался на аксиоматический метод, блестяще примененный Евклидом при построении элементарной геометрии. Однако вместо аксиом он опирался на принципы, а математические доказательства отличал от экспериментальных, поскольку последние имеют не строго достоверный, а лишь вероятностный характер. Важно также обратить внимание на то, что знание принципов или законов, управляющих явлениями, не предполагает раскрытия их причин. В этом можно убедиться из оценки Ньютоном закона всемирного тяготения. Он всегда подчеркивал, что этот закон устанавливает лишь количественную зависимость силы тяготения от тяготеющих масс и квадрата расстояния между ними.

Что же касается причины тяготения, то он считал ее раскрытие делом дальнейших исследований.

Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моря, - писал Ньютон.

1. 5 Концепция биологической эволюции

Принцип роста энтропии входил в прямой конфликт с достижениями другой естественно-научной дисциплины - биологии, где примерно в то же самое время был сформулирован принцип биологической эволюции , движущей силой которой, по мнению Дарвина, является естественный отбор . В процессе эволюции происходит формирование новых видов живых организмов, которые, подчиняясь требованиям окружающей среды, оказываются все более сложными и совершенными, по сравнению со своими предшественниками. Таким образом, естествознание впервые вышло на уровень формулировки фундаментальных законов, описывающих живой мир. И сразу же возникает парадокс несогласия с данными физики, где уже твердо обосновался принцип роста энтропии. Не случайно Больцман считал, что жизнь является следствием глобальной случайности, имеющей крайне малую вероятность возникновения. С точки зрения физики XIX века, возникнув однажды, любая упорядоченная система (например живой организм или жизнь вообще) может только разрушаться, деградировать. В то же время мы воочию можем наблюдать, например, как формирует сам себя организм ребенка, упорядочивая рассеянные в окружающей среде элементы.

Парадоксы подобного рода вообще типичны для механистической картины мира. Их причина стала понятной только в XX веке.

1.6 Значение открытий механистического периода естествознания

Открытие принципов механики действительно означает подлинно революционный переворот, который связан с переходом от натурфилософских догадок и гипотез о «скрытых» качествах и т.п. спекулятивных измышлений к точному экспериментальному естествознанию, в котором все предположения, гипотезы и теоретические построения проверялись наблюдениями и опытом. Поскольку в механике отвлекаются от качественных изменений тел, постольку для ее анализа можно было широко пользоваться математическими абстракциями и созданным самим Ньютоном и одновременно Лейбницем (1646-1716) анализом бесконечно малых. Благодаря этому изучение механических процессов было сведено к точному математическому их описанию.

Для такого описания необходимо и достаточно было задать координаты тела и его скорость (или импульс mv), а также вывести уравнение его движения. Все последующие состояния движущегося тела точно и однозначно определялись его первоначальным состоянием. Таким образом, задав это состояние, можно было определить любое другое его состояние как в будущем, так и в прошлом. Выходит, что время не оказывает никакого влияния на изменение движущихся тел, так что в уравнениях движения знак времени можно было менять на обратный. Очевидно, что подобное представление было идеализацией реальных процессов, поскольку оно абстрагируется от фактических изменений, происходящих с течением времени.

Следовательно, для классической механики и механистической картины мира в целом характерна симметрия процессов во времени, которая выражается в обратимости времени. Отсюда легко возникает впечатление, что никаких реальных изменений при механическом перемещении тел не происходит.

Задав уравнение движения тела, его координаты и скорость в некоторый момент времени, который часто называют начальным его состоянием, мы можем точно и однозначно определить его состояние в любой другой момент времени в будущем или прошлом. Сформулируем характерные особенности механистической картины мира.

1. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым.

2. Все механические процессы подчиняются принципу строгого или жесткого детерминизма, суть которого состоит в признании возможности точного и однозначного определения состояния механической системы ее предыдущим состоянием.

Согласно этому принципу, случайность целиком исключается из природы. Все в мире строго детерминировано (или определено) предшествующими состояниями, событиями и явлениями. При распространении указанного принципа на действия и поведение людей неизбежно приходят к фатализму. Сам окружающий нас мир при механистической картине превращается в грандиозную машину, все последующие состояния которой точно и однозначно определяются ее предшествующими состояниями. Такую точку зрения на природу наиболее ясно и образно выразил выдающийся французский ученый XVIII в. Пьер Симон Лаплас (1749-1827):

Ум, которому были бы известны для какого-либо данного момента все силы, одушевляющие природу, если бы вдобавок он оказался достаточно обширным, чтобы подчинить все данные анализу, обнял бы в одной формуле движения величайших тел Вселенной наравне с движениями легчайших атомов; не осталось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее предстало бы перед его взором.

3. Пространство и время никак не связаны с движениями тел, они имеют абсолютный характер.

В связи с этим Ньютон и вводит понятия абсолютного, или математического, пространства и времени. Такая картина напоминает представления о мире древних атомистов, которые считали, что атомы движутся в пустом пространстве. Подобно этому в ньютоновской механике пространство оказывается простым вместилищем движущихся в нем тел, которые не оказывают на него никакого влияния.

4. Тенденция свести закономерности более высоких форм движения материи к законам простейшей его формы- механическому движению.

Такое стремление встретило критику со стороны биологов, медиков и некоторых химиков уже в XVIII в. Против него выступили также выдающиеся философы-материалисты Дени Дидро (1713-1784) и Поль Гольбах (1723-1789), не говоря уже о виталистах, которые приписывали живым организмам особую «жизненную силу», наличием которой они отличаются якобы от неживых тел. Из курса философии вы уже знаете, что механицизм, пытавшийся подходить ко всем без исключения процессам с точки зрения принципов и масштабов механики, явился одной из предпосылок возникновения метафизического метода мышления.

5. Связь механицизма с принципом дальнодействия, согласно которому действия и сигналы могут передаваться в пустом пространстве с какой угодно скоростью.

В частности, предполагалось, что гравитационные силы, или силы притяжения, действуют без какой-либо промежуточной среды, но сила их убывает с квадратом расстояния между телами. Сам Ньютон, как мы видели, вопрос о природе этих сил оставил решать будущим поколениям.

Все перечисленные и некоторые другие особенности предопределили ограниченность механистической картины мира, которые преодолевались в ходе последующего развития естествознания.

2 . И ЗМЕНЕНИЯ В МЕХАНИСТИЧЕСКОЙ КАРТИНЕ МИРА КАК ИЗМЕНЕНИЯ ПРИНЦИПОВ РАЦИОНАЛЬНОСТИ В ФИЗИКЕ XIX ВЕКА

Некоторые свойства механистической парадигмы остались неизменными к последним десятилетиям XIX века. Сохранялась идея абсолютного времени и абсолютного пространства, не зависимых между собой, по-прежнему предполагалось, что всегда можно построить, найти, угадать интуитивным путем некую функцию (которая уже перестала зависеть только от координат, а в которую могли входить и скорости), эта функция давала всю доступную наблюдению информацию о системе, в частности, позволяла определить траекторию любой части этой системы. Из этих свойств следовал и лапласовский детерминизм, остававшийся неизменным и после появления первых работ по статистической физике и классической термодинамике, поскольку возникающие там неопределенности и связанные с ними вероятности объяснялись не принципиальной невозможностью определить траекторию каждой из частиц, а лишь трудоемкостью процесса определения всех этих траекторий и незнанием начальных условий. Как заметил В.А.Фок по этому поводу, «...вековое развитие физики, включая XIX век, привело к тому, что абсолютный характер физических процессов, возможность их неограниченной детализации и их однозначная детерминированность стали считаться основанием физической науки. Эти принципы обычно не формулировались явно, но считались как бы априорными основами науки и научной философии».

Однако сведение описания физической системы к уравнениям аналитической механики, что тоже трактовалось как механическое объяснение, не давало достаточно наглядной модельной картины поведения системы, и поэтому оставалось некоторое неудовлетворение подобной редукцией. Одной из попыток выхода из сложившейся ситуации и можно считать предложенные Г.Герцем в 90-ые годы (книга вышла посмертно в 1894 г.) модификации традиционного механистического подхода. Книга Герца свидетельствует о том, насколько сильны были идеалы механистического объяснения и в самом конце XIX века, Герц так и начинает свою работу «Принципы механики»: «Все физики согласны с тем, что задача физики состоит в приведении явлений природы к простым законам механики. Однако в вопросе о том, какими являются эти простые законы, мнения расходятся. Большинство понимает под этими законами просто ньютоновские законы движения. На самом же деле последние получают свой внутренний смысл и физическое значение только благодаря невысказанной мысли, что силы, о которых говорят эти законы, имеют простую природу и простые свойства».

И внутри самой механики требования механической редукции также не были повсеместными, и один из наиболее влиятельных мыслителей конца века Э.Мах в своей «Механике», уже в той ее части, которая относится к первому изданию 1883 года, однозначно высказывается по поводу подобного редукционизма: «Воззрение, что механику следует рассматривать как основу всех остальных отраслей физики и что все физические процессы следует объяснять механически, есть, на мой взгляд, предрассудок. Не всегда исторически более древнее должно оставаться основой для понимания позднее найденного». Но отмечая, что этот подход обоснован возможностью описывать «отвлеченное количественное выражение фактического» и желанием обойтись «без лишних ненужных представлений», Мах констатирует в позднейшем дополнении, что в 1883 г. эта точка зрения поддержки у физиков еще не имела.

Но рассмотренные выше примеры с книгами по механике двух выдающихся ученых XIX века - Герца и Маха - позволяют нам получить первое подтверждение существованию связи между идеями и идеалами классической науки и проблемой механистического редукционизма, или, иначе говоря, требованием того, чтобы механистическая картина мира была принята в качестве основополагающей. А именно, объективно способствовавший становлению классической физики и прежде всего электромагнитной теории, уравнениями которой он и придал современную форму, Герц, требовавший редукции к механике, является сторонником одной единой возможной интерпретации, защищая классический идеал научной теории. Тогда как Мах отказывавший механицизму в том, что он служит основой физической картины мира, был, как это известно, одним из создателей современной методологии неклассической науки, вернее, создал предпосылки для ее возникновения.

К последней четверти XIX века произошло изменение понятия механической интерпретации, поскольку прямо лапласовско-ньютоновскую систему классической механики уже явно как образец для объяснения не использовали, однако, именно в идеале к механическим моделям и сводилось по-прежнему конечное объяснение физических явлений. Модели зачастую не объясняли механизм данного явления, а лишь указывали на возможность формальной аналогии при математическом соответствии. Любую интерпретацию старались в конечном итоге свести к механическим моделям. Это отметил и Ф.Клейн в 1926 г., выделив «процесс, постепенно подчинявший формальному методу классической механики все новые и более далекие области применения, в результате чего достигалось удовлетворительное овладение наблюдаемыми явлениями без всякого истинного проникновения в истинные свойства, лежащие в их основе» Действительно, сведение к механической интерпретации не определяло и не расшифровывало физических законов взаимодействия, однако помогало упорядочивать имеющийся эмпирический материал и математически строго описывать его в рамках гамильтоново-лагранжева формализма. К последней четверти XIX века процесс, который принято отождествлять с возникновением классической физики, явными примерами возникновения которой являлась электромагнитная теория Максвелла, уравнение теплопроводности Фурье, статистическая физика и т.д., был непосредственно связан с процессом укрепления несколько модифицированной, но механической парадигмы.

Модифицировалось и само понятие классической механики, перейдя в понятие классической физики, но оставался неизменным механистический модельный рационализм, лежавший в основе этого подхода, так же как и строгая определенность устанавливаемых действующих законов.

Сведение к механическим моделям не было основной задачей работавших физиков-теоретиков, и наличие феноменологических законов, не получивших механической интерпретации, является подтверждением данного факта, но интенция на получение интерпретируемой в терминах модифицированной классической механики картины явления оставалась неизменной на всем протяжении XIX века. Переход же от дискретного корпускулярного подхода, свойственного классической механике, к континуальной волновой картине, входившей в основание классической физики вновь на уровне гальмитоновского формализма и оптико-геометрической аналогии делал возможным расширение понятий, входивших в наборы классической механической интерпретации. Совершенно другой (и здесь не разбираемый) вопрос -это проблема сложности и реальной достижимости такой интерпретации. Принципиальной возможности механически моделировать, по наборам с бесконечным числом классических «механических» осцилляторов максвелловское электромагнитное поле дает тому подтверждение. Среди основных характеристик классической механики И.Пригожин называет детерминизм, выделяя еще одну особенность как механики, так и классической физики как таковой - ее статичность, как определяет это свойство Пригожин, что фактически означает, что рассматриваются физика и механика установившихся процессов, все имеющиеся в ней уравнения обладают свойством интегрирования, а пространство и время представляют собой независимые переменные.

Основные изменения, которые можно назвать переходом к иной парадигме и отказом от классики, связанные с тем, что, во-первых, пространственные и временные характеристики оказались связанными, т.е. уже, строго говоря, не могли фигурировать как независимые переменные в абсолютном пространстве - времени, во-вторых, рассматриваемые системы уже не были детерминистически определены, а вероятность входила как основная компонента в теорию и, в-третьих, что физика перестала быть статической и стала наукой и о необратимых процессах, т.е. время приобрело направление, происходили при постепенном отказе от механистического редукционизма и при замене его редукцией к становящейся классической физике. Но при этом изменялось отношение именно к модельному механизму, тогда как обращение к математической его форме, т.е. к уравнениям аналитической механики продолжало встречаться все чаще, но их уже в значительной мере собственно с механикой отождествлять впрямую было нельзя. Скорее они являлись свидетельствами все увеличивающейся роли математического формализма в содержании физических теорий.

На переходном этапе от идеалов классической науки к возникновению представлений науки неклассической и от механистической парадигмы к парадигме (впрочем как следует уже из сказанного выше недолго продержавшейся) классической физики, в этой работе мы выделяем значение трудов Л.Больцмана, во многом недооцененного именно с точки зрения эпистемологического переворота в науке, произошедшего при значительном содействии ученого. Парадоксальность ситуации состоит в том, что на протяжении практически всей своей карьеры Больцман выступал, и неоднократно, прежде всего сторонником механистического редукционизма, объективно способствуя его разрушению.

В том, что представляла собой физика после работ Больцмана, уже существовали принципиально недетерминистические системы, в ней появились системы, траектории которых однозначно определить было нельзя (что, правда, стало ясно только полвека спустя), и где время было связано с пространством. Все это и может пониматься как фактическое признание неудовлетворительности механической интерпретации.

Больцман проявлял особый интерес к философским и методологическим основаниям науки. Новаторство эпистемологической позиции Больцмана, его связь с новым взглядом на науку сказываются уже в том, что он считает принципиально допустимым плюрализм физических теорий. Так, в 1899 г. в популярном докладе, прочитанном на собрании естествоиспытателей, он прямо говорит о том, что может трактоваться как плюралистичность интерпретаций: «...наша задача состоит в нахождении не абсолютно правильной теории, но всего лишь наиболее простой теории, дающей наилучшее отображение явлений. В принципе, мыслима возможность появления двух совершенно различных теорий, причем обе одинаково просты и одинаково хорошо согласуются с явлениями: хотя эти теории полностью различны, обе они оказываются одинаково правильными. Утверждение, будто только одна теория является единственно правильной, выражает лишь наше субъективное убеждение, что не может быть другой теории, которая была бы столь же проста и давала бы столь же хорошо согласующуюся картину».

Рассмотренная выше картина изменения понимания механической интерпретации физических явлений свидетельствует, что механическая картина мира была основополагающей до самого конца ХIХ века. В связи с появлением спустя десятилетие специальной теории относительности А.Эйнштейна надо выделить все же принципиальную новизну подхода Больцмана. Она проявилась в следующем: когда Больцман рассматривал энтропию системы, связывая ее с вероятностью состояния системы, он определял стрелу времени как направленную в сторону возрастания энтропии. Но сама вероятность состояния системы выражалась у Больцмана через совокупность ее пространственных координат и координат в пространстве импульсов и тогда, в соответствии с определением Больцмана, на время накладывалось как бы ограничение, задававшее направление его изменения. Разумеется, это не есть полная взаимозависимость пространственных и временных переменных, как в теории Эйнштейна, и подобные виды зависимости в той или иной форме встречались и ранее, но Больцман впервые прямо связал в одной формуле пространственные координаты системы и направление ее развития, то есть вектор времени. Такая направленность времени, как представляется, как раз и связана с генетической обусловленностью концепций больцмановской теории: Больцман выбирает и строит ту теорию, в которой содержится генезис системы, откуда изначально особая смысловая зависимость от понятия времени, ранее игравшего в механике роль параметра.

В рассмотренной выше истории перехода от механики как единственно возможного языка и способа объяснения к прямому нарушению положений, лежавших в основе механической картины мира, опущена та часть, которая имеет непосредственное отношение к концепции поля как физического объекта, обладающего не ньютоновским по своему характеру силовым взаимодействием, как особого пространства, где взаимодействие передается не обязательно по прямой, где силы не центральны, а распространение взаимодействия происходит с конечной скоростью. Это обстоятельство мотивировано тем, что теория поля лежала несколько в стороне от рассмотренных выше концепций механического объяснения, поскольку центральное место в ее становлении имело понятие эфира. Но здесь важно отметить следующее: до того, как в работах А.Эйнштейна 1905 г. был получен некий синтез электродинамики и механики, концепция поля как самостоятельное понятие была сформулирована в 1895 г. Г.Лоренцем. Хотя у Лоренца поле еще не было онтологически самостоятельной концепцией, как у Эйнштейна, однако Лоренц уже явно сформулировал не ньютоновский характер этого понятия и, следовательно, его несводимость к механическим моделям. И для анализируемой специфики изменения концепции понимания и объяснения важно отметить, что у Лоренца, в качестве предпосылок построения теории называется неприменимость, непригодность наглядности, «обращения к картинам» как составляющей научной теории. В своей работе он всячески избегал «картинок» и декларировал подобное поведение как принцип: «Однако и хорошего может быть избыток... делая все слишком наглядным, мы можем перелететь через цель, и придать слишком много значения тому, что должно служить лишь иллюстрацией, так, что иллюстрацию мы примем за самую сущность... Особенно надо быть осторожным с избытком наглядности, когда речь идет о силах в физике». Использование Лоренцем оригинальной концепции поля, неньютоновского по своей природе, соединенной с отказом от наглядности концепций теории, делает особенно очевидной связь механической интерпретации с наглядным модельным подходом. Особенно если учесть, что такое понимание поля не было результатом специальной методологической рефлексии ученого, который тщательно избегал какого бы то ни было обращения к общим вопросам, ограничиваясь решением чисто физических задач. Это позволяет сделать вывод, что такое введение неньютоновского немеханического объекта всегда прямо связано с ориентацией на математический аппарат теории, в противовес поиску наглядных интерпретационных иллюстраций.

Механика вновь обрела свои права с возникновением специальной теории относительности, когда электродинамика, т.е. концепция поля и механика стали рассматриваться как равноправные физические понятия, не сводящиеся друг к другу.

ЗАКЛЮЧЕНИЕ

XIX век зачастую определяется как Век Прогресса или Век Науки. Именно в XIX веке и во многом благодаря дальнейшему распространению идеологии Просвещения, само понятие «рациональное» все более стало совпадать с понятием «научное».

Начав складываться с началом научной революции Нового Времени идеал классического естествознания не претерпел значительных изменений как за истекшие века, так и к началу XIX века, да, и на всем его протяжении. Из классической науки были исключены любые ценностные представления или исторические характеристики - научная истина была вневременной и вечной.

Сама природа неизменна и поэтому естествознание и в том числе и физика, имеет дело с объектами статичными, ее объекты изучения в свою очередь не изменяемы, не развиваются.

Наконец, классическое естествознание подразумевало наличие фиксированных причинно-следственных связей. Именно детерминистический характер классического естествознания и делал возможным предсказание исходов опытов и полное описание реальности. Любая неопределенность трактовалась естественным образом как свидетельство неполноты, недостаточной истинности теории. Идеальным же завершением теоретического описания было, начиная с конца XVIII века, сведение картины явления к системе механического характера.

В XIX веке и, прежде всего в его последней четверти, произошел парадигмальный сдвиг, выразившийся в том, что вместо редукции к механической картине мира стали использовать редукцию к теориям классической физики, возникшей как новая парадигмальная наука к концу века.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1) Агапова О.В., Агапов В.И. Лекции по концепциям современного естествознания. Вузовский курс. - Рязань, 2007.

2) Бочкарев А.И. Концепции современного естествознания. - Тольятти, 2007.

3) Герц Г. Принципы механики, изложенные в новой связи. М., 2006.

4) Гете И. Избранные сочинения по естествознанию. - М.: 2006.

5) Горелов А.А. Концепции современного естествознания. - М.: 2006.

6) Григорьян А.Т., Фрадлин Б.Н., Сотников В.С. Аксиоматика классической механики // Исследования... М., 2007. С. 5-37.

7) Дубнищева Т.Я. Концепции современного естествознания. - Новосибирск, 2007.

8) Дынин Б.С. Логика развитий представлений о науке у физиков XIX в. (1800-1870) // Проблемы развития науки в трудах естествоиспытателей XIX века. М., 2007. С. 29-49.

9) Разумовский О.С. Проблемы взаимосвязи ньютоновской аксиоматики с экстремальными принципами // Ньютон и философские проблемы физики XX века. М., 2007. С. 35-52.

10) Концепции современного естествознания. Серия «Учебники и учебные пособия». - Ростов н/Д, 2007.

Подобные документы

    Философская рациональность Аристотеля. Механистическая картина мира. Теория эволюции Дарвина. Сдвиг интереса от физики в сторону биологии. Квантовая механика. Теория относительности. Синергетика. Энтропия.

    реферат , добавлен 26.01.2007

    Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.

    реферат , добавлен 11.02.2011

    Квантово-полевая (неклассическая) картина мира, суть ее принципов. Особенности принципов соответствия и суперпозиции. Концепция детерминизма, динамические и статистические закономерности. Принципы эволюционно-синергетической (современной) картины мира.

    реферат , добавлен 30.10.2012

    Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат , добавлен 25.03.2016

    История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

    реферат , добавлен 06.07.2008

    Естественнонаучная картина мира как целостная система представлений об общих принципах и законах устройства мироздания. Эволюция естественнонаучной картины мира в истории человечества. Предпосылки, влияющие на развитие новых научных представлений.

    реферат , добавлен 17.04.2011

    Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.

    контрольная работа , добавлен 10.06.2015

    Реферат рассматривается эволюция с точки зрения синергетики. Естественно - научная картина мира. Механическая картина мира. Электромагнитная картина мира. Концепция необратимости и термодинамики. Концепция эволюции в биологии.

    реферат , добавлен 20.11.2003

    Понятие картины мира, ее сущность и особенности, история изучения. Сущность принципа глобального эволюционизма, его влияние на изменение представлений о картине мира в XIX веке. Синергетика как теория самоорганизации, ее роль в современном представлении.

    контрольная работа , добавлен 09.02.2009

    Понятие "научная картина мира". Физика как ведущая дисциплина в классической научной картине мира. Историческая смена физических картин мира. Современная картина мира. Главный предмет синергетики. Исторические формы проблемы происхождения жизни.

Механическая программа описания природы, выдвинутая еще в античном атомизме, наиболее полно реализовалась в классической механике Галилея-Ньютона, со становления которой начинается научный этап изучения природы.

Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира – механической . Он разработал методологию нового способа описания природы – научно-теоретического. Суть его в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверить их в условиях научного эксперимента. Такая методологическая концепция Галилея стала решающей в становлении всего классического естествознания.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. В рамках механической картины мира Ньютона и его последователей материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц – атомов и корпускул.

Пространство , в котором находится материя, было трехмерное и описывалось евклидовой геометрией, оно абсолютно, постоянно и всегда пребывает в покое.

Время представлялось как величина, не зависящая ни от пространства, ни от материи.

Считалось, что все физические процессы можно подчинить законам механики. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. А все физические явления сводились к перемещению материальных точек .

Философское обоснование механическому пониманию природы дал Р. Декарт, который считал, что мир можно описать совершенно объективно, без учета человека-наблюдателя (концепция абсолютной дуальности, т.е. независимости мышления и материи).

Ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX в.

Пространство считалось бесконечным, плоским, «прямолинейным», евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолютное, пустое, однородное и изотропное (нет выделенных точек и направлений) и выступало в качестве «вместилища» материальных тел, как независимая от них инерциальная система.

Время понималось абсолютным, однородным, равномерно текущим. Оно сразу и везде во всей Вселенной «единообразно и синхронно» и выступает как независимый от материальных объектов процесс длительности. Классическая механика сводила время к длительности, фиксируя определяющее свойство времени «показывать продолжительность события». (Аксенов Г.П. О причине времени // Вопросы философии. – 1996. – №1, с.43).



Значение указаний времени в механике считалось абсолютным, не зависящим от состояния движения тела отсчета.

Образ Вселенной в связи с этим представлялся гигантским механизмом, где события и процессы являют собой цепь взаимосвязанных причин и следствий. Отсюда утвердилась и вера в то, что теоретически можно точно реконструировать любую прошлую ситуацию во Вселенной или предсказать будущее с абсолютной определенностью. И. Р. Пригожин назвал эту веру в предсказуемость «основополагающим мифом классической науки».

В общих чертах научная картина XIX века представляла Вселенную как равновесную и неизменяемую с бесконечным временем существования, в которой вполне вероятны случайные локальные возмущения наблюдаемых неравновесных образований с заметной организацией структур (галактик, планетных систем и т.д.).

Такая «картина мира», появление жизни на нашей планете рассматривала как противоестественное явление или артефакт («искусственно сделанная»), как «отклонение» в существовании Вселенной, как временное явление и с остальным космосом не связанное.

Механический подход к описанию природы оказался необычно плодотворным. На основе ньютоновской механики были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и ряд других теорий. Физика как наука достигала огромных успехов в своем развитии и заняла лидирующее положение среди других наук.

Первая естественнонаучная картина мира сформировалась на основе изучения простейшей, механической формы движения материи. Она исследует законы перемещения земных и небесных тел в пространстве и времени. В дальнейшем, когда эти законы и принципы были перенесены на другие явления и процессы, они стали основой механистической картины мира.

Созданием классической механики наука обязана Ньютону, но почву для него подготовили Галилей и Кеплер, с краткой характеристики их научных результатов мы и начнем эту главу.

3.1. Галилей и Кеплер - научные предшественники Ньютона

Становление механистической картины мира справедливо связывают с именем Г. Галилея, который установил законы движения свободно падающих тел и сформулировал понятие об инерциальном движении и механический принцип относительности. Но главная заслуга Галилея состоит в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерением изучаемых величин и математической обработкой их результатов. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно Галилей.

Подход Галилея к изучению природы принципиально отличался от ранее существовавшего натурфилософского подхода, при котором для объяснения явлений природы придумывались априорные, т.е. не связанные с опытом и наблюдениями, чисто умозрительные схемы.

Натурфилософия, как показывает ее название, представляет собой попытку использовать априорные философские принципы для объяснения конкретных явлений природы. Такие попытки предпринимались, начиная еще с античной эпохи, когда недостаток конкретных


данных ученые стремились компенсировать общими философскими рассуждениями. Иногда при этом высказывались гениальные догадки, которые на многие столетия опережали результаты конкретных исследований. Достаточно напомнить хотя бы об атомистической гипотезе строения вещества, которая была выдвинута древнегреческим философом Левкиппом (V в. до н.э.) и более детально разработана его учеником Демокритом. Однако, по мере того как постепенно возникали конкретные науки и отделялись от нерасчлененного философского знания, натурфилософские объяснения стали тормозом для развития науки. В этом можно убедиться, сравнив взгляды на движение Аристотеля и Галилея.

Исходя из априорной натурфилософской идеи, Аристотель считал «совершенным» движение по кругу, а Галилей, опираясь на наблюдения и мысленный эксперимент, ввел понятие инерциального движения. По его мнению, тело, не подверженное воздействию каких-либо внешних сил, будет двигаться не по кругу, а равномерно по прямой траектории или оставаться в покое. Такое представление, конечно, является абстракцией и идеализацией, поскольку в действительности нельзя наблюдать такой случай, чтобы на тело не действовали какие-либо силы. Однако эта абстракция является плодотворной, ибо она мысленно продолжает тот эксперимент, который приближенно можно осуществить в действительности, когда, по мере устранения воздействия на тело целого ряда внешних сил (трения, сопротивления воздуха и т.п.), можно установить, что оно будет продолжать свое движение. С помощью мысленного эксперимента, служащего продолжением реального эксперимента, можно вообразить, что при отсутствии воздействия любых внешних сил оно будет двигаться равномерно по прямой траектории бесконечно.

Переход к экспериментальному изучению природы и математической обработке результатов экспериментов позволил Галилею открыть законы движения свободно падающих тел. Принципиальное отличие нового метода исследования природы от натурфилософского подхода состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом.

Эксперимент можно рассматривать как вопрос, обращенный к природе. При этом необходимо так сформулировать вопрос к природе, чтобы получить на него вполне однозначный и определенный ответ.

Экспериментальный метод представляет собой активное вмешательство в реальные процессы и явления природы, а не пассивное их наблюдение. Для этого следует так построить эксперимент, чтобы по


возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдать изучаемое явление в «чистом виде». В свою очередь, гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое утверждение систематически проверяются опытом и измерениями. Именно благодаря этому Галилею удалось опровергнуть прежнее предположение, высказанное еще Аристотелем, что путь падающего тела пропорционален его скорости. Предприняв эксперименты с падением тяжелых тел (пушечных ядер), Галилей убедился, что этот путь пропорционален их ускорению, равному 9,81 м/с 2 . Из астрономических достижений Галилея следует отметить открытие спутников Юпитера, а также обнаружение пятен на Солнце и гор на Луне.

Новый крупный шаг в развитии естествознания ознаменовался открытием законов движения планет. Если Галилей имел дело с изучением движения земных тел, то немецкий астроном И. Кеплер (1571- 1630) начал исследовать движения небесных тел, а тем самым осмелился вторгнуться в область, которая раньше считалась запретной для науки. Конечно, для этого он не мог обратиться к эксперименту и поэтому для определения орбит и законов движения планет вынужден был воспользоваться многолетними систематическими наблюдениями движения планеты Марс, сделанными датским астрономом Т. Браге (1546-1601). Перепробовав множество вариантов, Кеплер остановился на гипотезе, что траекторией Марса, как и других планет, является не окружность, как думали до него, а эллипс. Результаты наблюдений Браге соответствовали этой гипотезе и, следовательно, подтверждали ее, поэтому можно было уверенно распространить полученный результат на орбиты других планет.

Открытие законов движения планет Кеплером имело неоценимое значение для развития естествознания. Оно свидетельствовало, во-первых, о том, что между движениями земных и небесных тел не существует непреодолимой пропасти, так как они подчиняются определенным естественным законам; во-вторых, сам способ открытия законов движения небесных тел в принципе не отличается от открытия законов движения земных тел.


Однако из-за невозможности осуществления экспериментов с небесными телами для исследования законов их движения пришлось обратиться к систематическим наблюдениям. Тем не менее и здесь исследования осуществлялись в тесном взаимодействии гипотез и наблюдений, с последующей тщательной проверкой выдвигаемых гипотез с помощью измерения движений небесных тел.

3.2. Классическая механика Ньютона

В своей работе по созданию теоретической механики Ньютон опирался прежде всего на открытые Галилеем принцип инерции и закон свободного падения тел. Принцип инерции относится лишь к случаям, когда на тело не действуют внешние силы. Но в реальном мире вряд ли можно наблюдать такие ситуации. Об этом свидетельствует, в частности, закон свободного падения тел.

Однако этот закон является лишь частным случаем прямолинейного равноускоренного движения тел под воздействием силы тяжести. Ньютон же поставил своей целью найти общий закон движения тел, на которые действуют любые силы, а их траектории могут быть самыми разными. Поскольку движение тела зависит от приложенной к нему силы, а сила придает телу ускорение, постольку необходимо было найти количественный, математический метод для определения ускорения. Поэтому формирование классической механики происходило по двум направлениям:

1) обобщения полученных ранее результатов, и прежде всего законов движения свободно падающих тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

2) создания методов для количественного, математического анализа механического движения в целом.

Известно, что Ньютон создал свой вариант дифференциального и интегрального исчислений непосредственно для решения основных проблем механики: определения мгновенной скорости движения как производной от пути по времени и ускорения как производной от скорости по времени, или второй производной. Благодаря этому ему удалось точно сформулировать основные законы динамики и закон всемирного тяготения. Теперь количественный подход к описанию движения кажется чем-то само собой разумеющимся, но в XVII- XVIII вв. это было крупнейшим завоеванием научной мысли. Для сравнения достаточно отметить, что китайская наука, несмотря на ее несомненные достижения в эмпирических областях (изобретение по-


роха, бумаги, компаса и др.), так и не смогла в то время подняться до установления количественных закономерностей движения.

Решающую же роль в становлении механики сыграл, как уже отмечалось, экспериментальный метод, который обеспечил возможность проверять все догадки, предположения и гипотезы с помощью тщательно продуманных опытов.

Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому он резко выступал против допущения так называемых скрытых качеств, с помощью которых последователи Аристотеля и натурфилософы вообще пытались объяснить многие явления и процессы природы.

«Сказать, что каждый род вещей наделен особым скрытым качеством, при помощи которого он действует и производит эффекты, - указывал Ньютон, - значит ничего не сказать».

В связи с этим он выдвигает совершенно новый принцип исследования природы, который теперь характеризуют как метод принципов, а сам Ньютон называл их началами.

«Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты».

Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде «Математические начала натуральной философии», опубликованном в 1687 г. Встречающийся в заглавии этой книги термин «натуральная философия» в XVII-XVIII вв. обозначал физику, важнейшей частью которой считалась механика. С изложения основных ее законов он и начинает свой труд.

Первый закон, который часто называют законом инерции, постулирует:

Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Конечно, в реальных условиях движения полностью освободиться от воздействия внешних сил на тело никогда нельзя. Поэтому закон инерции представляет собой идеализацию, в которой отвлекаются от действительно сложной картины движения и представляют себе картину идеальную, которую можно составить в воображении путем предельного перехода, т.е. мысленного уменьшения воздействия на тело внешних сил и перехода к такому состоянию, когда это воздействие станет равным нулю.


Раньше думали, что тело будет сразу же останавливаться после того, как прекратится действие на него силы. Так нам подсказывает интуиция, но она нас обманывает, потому что после действия силы тело пройдет еще некоторый путь. Этот путь будет тем больше, чем меньшее противодействие оказывают на тело внешние силы. Если бы было возможно полностью исключить действие внешних сил, то тело продолжало бы двигаться вечно. Такого научного подхода к анализу движения придерживался Галилей, а за ним и Ньютон. Основываясь на ошибочной интуиции, Аристотель в своей «Физике» выдвинул противоположный взгляд, который долгое время господствовал в науке.

«Движущееся тело останавливается, если сила, толкающая его, прекращает свое действие».

Таким образом, о движении и действующей на тело силе, с точки зрения Аристотеля, можно судить по наличию скорости, а не по изменению скорости или ускорению, как утверждал Ньютон.

Второй основной закон движения занимает в механике центральное место. В отличие от кажущихся представлений он показывает, что чем большая сила прилагается к телу, тем большее ускорение, а не просто скорость оно приобретает. Ведь в принципе тело, движущееся с постоянной скоростью и прямолинейно, не испытывает действия каких-либо сил.


В самом возникновении механической картины мира главную роль сыграли совершенно новые идеи мировоззрения и новые идеалы изучения деятельности, которые сложились в культуре эпохи Возрождения и самого начала Нового времени. Возникшие в философии, они представляли собой сборник идей, которые в сою очередь обеспечили совершенно новое представление знания накопленное предшественниками и практических фактов полученных при изучении физических процессов и позволили создать совершенно новую систему представлений об данных процессах. И так же принцип единства материального сыграл очень важную роль в создании механической картины мира, он не рассматривал схоластическое разделение на небесный мир и земной, принцип закономерности и причинности природных процессов, принцип экспериментального представления знания и присоединение на создание исследования мира при помощи эксперимента с описанием ее законов математических законов. После построения механической картины мира, данные принципы переросли в ее философское обоснование .

Главную часть механической картины мира составили теории и законы механики, которая в XVII веке была наиболее развитым разделом физики. Вообще, механика являлась первой и главной фундаментальной физической теорией. Теории, идеи и принципы механики представляли собой перечень наиболее точных знаний о физических законах, наиболее полно отражали физические процессы в природе. Механика как наука изучает механическое движение материальных тел и возникающее при движении взаимодействия между телами. Под механическим движением подразумевают изменение взаимного положения тел или частиц по отношению друг к другу в пространстве с течением времени. Например, колебания частиц, движение твердых тел, морские и воздушные течения и т.д. Взаимодействия, которые происходят в процессе механического движения, они представляют собой действия тел относительно друг друга, в результате такого взаимодействия происходит изменение скоростей перемещения данных тел в пространстве и времени или их деформация.

Одним из главных понятиями механики как фундаментальной физической теории являются следующие понятия, такие как материальная точка - тело, формами и размерами которого можно пренебречь в данной задаче; абсолютно твердое тело - тело, расстояние которого между двумя точками остается постоянным, а его деформацией можно пренебречь. Такие понятия характеризуются при помощи следующих обозначений: масса - мера количества вещества; вес - сила, с которой тело взаимодействует с опорой. Масса является константой, в то время как вес можно менять. Эти понятия выражаются с помощью следующих физических величин: энергия, координаты, сила, импульсы.

Основными понятиями механической картины мира составили такие атомизмы как - теория, которая целый мир, включая человека, рассматривала как систему огромного числа материальных частиц - атомов. Они передвигались во времени и пространстве в соответствии с действующими законами механики. Материя - это вещество, которое состоит из абсолютно твердых, мельчайших, неделимых, перемещающихся частиц (атомов). Это объяснение и есть корпускулярное представление о материи.

Главным определением механической картины мира было понятие движения, которое представлялось как механическое перемещение тел. Тела обладают таким свойством как равномерное и прямолинейное движение, а отклонения от такого движения обусловлены действием на тело внешней силы. Механическое движение является единственной формой движения, т.е. изменение положения тела в пространстве и времени.

Все взаимодействия, сколько бы их не было, механическая картина мира переводила к гравитационному взаимодействию, которое обуславливало наличие сил притяжения тел относительно друг друга; величина таких сил определялась при помощи закона всемирного тяготения. Из этого следует, что если мы знаем массу одного тела и силу гравитации, тогда мы можем определить и массу другого тела. Гравитационные силы это универсальные силы, т.е. эти силы могут действовать постоянно и между телами и сообщают любым другим телам одинаковое ускорение.

Механическая картина мира (механические представления) формируются при помощи гелиоцентрической системы Н. Коперника, естествознания на основе эксперимента Г. Галилея, законами небесной механики И. Кеплера и механики И. Ньютона.

Исаак Ньютон считается создателем механика как науки. В 1686 году он представил свой труд «Математические начала натуральной философии», где он сформулировал эту физическую теорию, которая стала канонической.

Ньютон начинает свой рассказ с нескольких аксиом и определений, которые связаны друг с другом таким образом, что возникает то, что можно назвать «замкнутой системой». Каждому такому понятию был дан свой математический символ, а потом связи между различными понятиями рассматриваются в виде математических уравнений, которые записываются с помощью таких символов. Математическое представление системы обеспечивает невозможность возникновения противоречий символов внутри системы. Таким образом, взаимодействие и движение тел под действием внешних сил решаются в виде возможных ответов математического уравнения или же системы таких уравнений. Порядок определений и аксиом, который записан в виде некоторого числа уравнений, может рассматриваться как описание постоянной структуры природы, которая не зависит ни от конкретного местоположения протекания процесса, ни от времени и, следовательно, имеет силу, так сказать, вообще не зависящую ни от пространства ни от времени .

Связь разных понятий системы между друг другом настолько тесна, что если изменить хоть одно из этих понятий, то и весь смысл теории разрушается. На данном основании система Ньютона продолжительное время рассматривалась как законченная. Ученые считали, что в дальнейшем ее задачей будет является только практическое применение ньютоновской механики к все более глубоким областям науки. И фактически физика в течение более двух столетий развивалась только в данном направлении.

Построение своей собственной системы Ньютон начинает с введения таких определений, как базисные физические понятия, таких, как сила, масса, инерция, количество движения и т.д. Решая проблему взаимодействия тел относительно друг друга, Ньютон предложил принцип дальнодействия. Согласно данному принципу, взаимодействие между телами происходит мгновенно вне зависимости от расстояния, без взаимодействия материальных тел, то есть промежуточная среда в передаче взаимодействия участия не принимает.

После этих определений Ньютон вводит такие понятия, как абсолютное и относительное пространство, временя и движение, чему посвящено «Поучение», завершающее первую главу «Начал». Вторая же глава содержит аксиомы, которые представлены в виде трех законов движения. На базе данной аксиоматической основы разворачивается дедуктивное построение всей системы «Начал».

Понятия пространства и времени вводятся Ньютоном на уровне первичных терминов и получают физическое содержание при помощи аксиом, через законы движения. Хотя они и состоят из аксиом не только потому, что ими определяются, но и потому, что вводят картину реализации самих аксиом: законы движения классической механики справедливы только в инерциальных системах отсчета, которые и определяют друг друга как системы, которые двигаются инерциально по отношению к абсолютному пространству с течением времени. Следует учитывать, что абсолютное пространство Ньютона выступало в его системе в различных ипостасях: теологическое пространство как чувствилище бога; пространство картины мира как пустота; теоретическое пространство как универсальная инерциальная система отсчета; эмпирическое пространство как пространство относительное. Соответственно одна ипостась абсолютного пространства, которая предшествует законам движения, а другая ими же задается. Во всяком случае, можно тек же определить первоначальный статус абсолютного пространства и времени – ящик в котором отсутствуют стенки и чистая продолжительность. Это показано в известных положениях «Начал» Ньютона .

Абсолютное, истинное математическое время протекает равномерно и поэтому называется длительностью.

Абсолютное пространство безотносительно ко всему внешнему, и оно остается всегда одинаковым и лишено всякого движения.

И абсолютное время, и абсолютное пространство существуют совершенно вне зависимости от материи. Таким образом, материя, пространство и время представляют три независящих друг от друга сущности.

В соотношении с механической картиной мира Вселенная представляла собой хорошо отлаженную систему, которая действовала при помощи законов строгой необходимости, в которых все явления и предметы связаны между собой четкими причинно-следственными связями. В таком мире нет места случайностям, она полностью исключалась из картины мира. Случайным могла быть только то, причин чего мы не знаем. Так как наш мир рационален, а человек наделен разумом, то, в конце концов, он может получить точное, полное и исчерпывающее знание о бытии.

Разум и жизнь в механической картине мира не обладали точной спецификой. Человек в такой картине мира рассматривался как природное тело вместе с другими телами, и поэтому так и оставался необъяснимым в своих «невещественных» качествах. Поэтому присутствие в мире человека ничего не меняло. Если бы человек исчез однажды с лица земли, мир так бы и продолжал существовать, как и было до этого. По сути, классическое естествознание вообще не стремилось познать человека. Подразумевалось, что мир природный, в нем нет ничего человеческого, такой мир можно описать объективно, и такое описание будет точной и полной копией реальности. Познание человека как одного из объектов хорошо отлаженной системы автоматически устраняло его из такой картины мира.

Таким образом, можно выделить основные этапы формирования (построения) механической картины мира:

1. В пределах механической картины мира сложилась корпускулярная (дискретная) модель мира. Материя - вещественная субстанция, которая состоит из атомов и молекул. Атомы абсолютно непроницаемы, прочны, неделимы и характеризуются наличием веса и массы.

2. Концепция абсолютного времени и пространства: пространство постоянно, трехмерно и никак не зависит от материи; время не зависит ни от материи, ни от пространства; время и пространство никак не связаны с движением тел, они обладают абсолютным характером.

3. Движение – относительно простое механическое перемещение. Законы движения являются фундаментальными законами природы. Тела двигаются прямолинейно и равномерно, а отклонения от такого движения и есть действие на них внешней силы. Универсальным свойством тел является такая сила, как сила тяготения, которая является дальнодействующей. Принцип дальнодействия предложил Ньютон. И согласно его принципу, взаимодействие тел между собой происходит мгновенно на разных расстояниях, без каких-либо материальных посредников. Концепция дальнодействия была основана на понимании пространства и времени как особых сред, вмещающих в себя взаимодействующие тела.

4. Все механические процессы рассматривались законами механики и подчинялись принципу детерминизма. Детерминизм – это такой философский подход, который признает только объективную закономерность и причинную обусловленность всех явлений общества и природы, отрицание беспричинных явлений. Случайность исключалась из данной картины мира. Такой четкий детерминизм находил свое выражение в форме динамических законов. Динамический закон - это закон, управляющий поведением выбранного объекта и позволяющий устанавливать точную связь его состояний. Динамический закон, абстрагируясь от случайных явлений, выражает непосредственную необходимость. Поэтому он дает отражение объективной действительности с точностью, исключающей случайные связи.

5. Как основа механическая картина мира в XVIII - XIX вв. разработала небесную, земную и молекулярную механику. Макромир и микромир подчинялись одним и тем же механическим законам. Это и привело к абсолютизации механической картины мира, которая рассматривалась в то время как универсальная.

Развитие механической картины мира было обусловлено в основном развитием механики. Успешные открытия механики Ньютона в главной мере способствовал абсолютизации ньютоновских представлений, что выразилось в дальнейшем в попытках суммировать все многообразие явлений природы к механической форме движения материи. Такая точка зрения получила название механистического материализма (механицизм). Однако развитие физики показало неспособность этой методологии, так как описать магнитные, тепловые и электрические явления с помощью законов механики, а также движение атомов и молекул таких физических явлений не представлялось возможным. В результате в XIX веке в физике наступил кризис, который свидетельствовал, что физике было нужно существенное изменение взглядов на мир.

Проводя оценку механической картины мира как один из этапов развития физической картины мира, нужно иметь в виду, что с развитием науки основные положения механической картины мира не были просто изъяты. Развитие науки лишь открыло относительный характер механической картины мира. Несостоятельной оказалась не сама механическая картина мира, а ее исходная философская идея - механицизм. В недрах механической картины мира уже складывались элементы новой - электромагнитной картины мира.