Определение индукция. Понятие индукции

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

  • L = N х F: I.

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F: I,

где F - магнитный поток, I - ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI: dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I 2: 2.

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк - это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U: R,

где I характеризует силу тока, U - показывает напряжение, R - сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка - источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN 2 R 2: 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N 2 R 2: 2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

  • df: dt = L dl: dt.

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом - ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n 2 V,

где µ0 показывает магнитную проницаемость вакуума, n - это число витков, V - объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N 2 S: l,

где S - это площадь поперечного сечения, а l - длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

  • B= µ0nI,

где µ0 - это магнитная проницаемость вакуума, n - это число витков, а I - значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

  • E = LI 2: 2,

где L показывает значение индуктивности, а E - запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для в

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить формула используется следующая:

  • XL = W х L,

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное то формула будет выглядеть следующим образом:

Важными характеристиками колебательного контура являются резонансная частота, и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

  • Q = R√C: L.

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C: (1 - 4Π 2 f 2 LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f - это частота, L - индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида - апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp -пакета, Lm - главных шин, а Lb - индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc: n + µ0 l х d: (3b) + Lb,

где l - длина шин, b - ее ширина, а d - расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.



Добавить свою цену в базу

Комментарий

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий. В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  • индукция-отбор (или селекция);
  • индукция – исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей. Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений – селекция). Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция в логике

Индукция – процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.

Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.

Различают полную индукцию – метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию – наблюдения за отдельными частными случаями наводят на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции, который позволяет осуществить полную индукцию для бесконечного счётного множества объектов.

Научная индукция есть комбинация индукции и дедукции, теории и эмпирического исследования. В научной индукции основанием для вывода является не только перечисление примеров и констатация отсутствия контрпримера, но и обоснование невозможности контрпримера в силу его противоречия рассматриваемому явлению. Таким образом, вывод делается не только на основании внешних признаков, но и на представлении о сущности явления. Это означает, что нужно иметь теорию данного явления. Благодаря этому степень вероятности получения истинного вывода в научной индукции значительно повышается.

Пример. Для того чтобы убедиться в достоверности вывода «Всегда перед дождем ласточки летают низко над землей», достаточно понять, что ласточки перед дождем летают низко над землей потому, что низко летают мошки, за которыми они охотятся. А мошки летают низко потому, что перед дождем у них от влаги набухают крылышки.

Если в популярной индукции важно обозреть как можно большее число случаев, то для научной индукции это не имеет принципиального значения.

Пример. Легенда гласит, что Ньютону для открытия фундаментального закона всемирного тяготения достаточно было наблюдать один случай – падение яблока.

Правила индукции

Чтобы избегать ошибок, неточностей и неправильностей в своем мышлении, не допускать курьезов, нужно соблюдать требования, которые определяют правильность и объективную обоснованность индуктивного вывода. Ниже подробнее рассмотрены эти требования.

  1. Первое правило гласит, что индуктивное обобщение предоставляет достоверную информацию, только если проводится по существенным признакам, хотя в некоторых случаях можно говорить об определенной обобщенности несущественных признаков. Главной причиной того, что они не могут быть предметом обобщения, является то, что они не обладают таким важным свойством, как повторяемость. Это тем более важно потому, что индуктивное исследование заключается в установлении существенных, необходимых, устойчивых признаков изучаемых явлений.
  2. Согласно второму правилу важной задачей является точное определение принадлежности исследуемых явлений к единому классу, признание их однородности или однотипности, так как индуктивное обобщение распространяется только на объективно сходные предметы. В зависимость от этого можно поставить обоснованность обобщения признаков, которые выражены в частных посылках.
  3. Неправильное обобщение может приводить не только к недопониманию или искажению информации, но и к возникновению различного рода предрассудков и заблуждений. Главной причиной возникновения ошибок является обобщение по случайным признакам единичных предметов или обобщение по общим признакам, когда необходимости именно в этих признаках нет.

Правильное применение индукции – один из столпов правильного мышления вообще. Как было сказано выше, индуктивное умозаключение – это такое умозаключение, в котором мысль развивается от знания меньшей степени общности к знанию большей степени общности. То есть частный предмет рассматривается и обобщается. Обобщение возможно до известных пределов.

Любое явление окружающего мира, любой предмет исследования лучше всего поддается изучению в сравнении с другим однородным ему предметом. Так и индукция. Лучше всего ее особенности проявляются в сравнении с дедукцией. Проявляются эти особенности в основном в том, каким образом проходит процесс умозаключения, а также в характере вывода. Так, в дедукции заключают от признаков рода к признакам вида и отдельных предметов этого рода (на основе объемных отношений между терминами); в индуктивном умозаключении – от признаков отдельных предметов к признакам всего рода или класса предметов (к объему этого признака).

Поэтому между дедуктивными и индуктивными умозаключениями существует ряд отличий, позволяющих разделить их между собой.

Можно выделить несколько особенностей индуктивных умозаключений:

  • индуктивное умозаключение включает множество посылок;
  • все посылки индуктивного умозаключения – единичные или частные суждения;
  • индуктивное умозаключение возможно при всех отрицательных посылках.

Индукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин «индукция» впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными. Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции.

Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями. Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы.

Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями. Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции.

К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее – ошибочными умозаключениями. Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать – обманывает, следовательно, все женщины – обманщицы.

Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он – дурак;
  • он – умный;
  • я могу все;
  • и многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта.

Один из примеров индукции на приеме у специалиста: «Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму – насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине – невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры. Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод. Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.). Точность является следующей рекомендацией. Ведь из примеров использования методов индукции хорошо видно, что именно она является во многом залогом истинности утверждений. Не обошли стороной и гибкость ума, подразумевая возможность использования разных путей и подходов в решении поставленной задачи, а также учета вариативности развития событий.

И, конечно же, наблюдательность, которая является главным источником накопления эмпирического опыта. Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета.

Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Понятие индукции в физике

Электромагнитная индукция

Явлением электромагнитной индукции называется явление возникновения электрического тока в проводнике под действием переменного магнитного поля.

Важно, что в данном случае проводник должен быть замкнут. В начале XIX в. после опытов датского ученого Эрстеда стало ясно, что электрический ток создает вокруг себя магнитное поле. После встал вопрос о том, нельзя ли получить электрический ток за счет магнитного поля, т.е. произвести обратные действия. Если электрический ток создает магнитное поле, то, наверное, и магнитное поле должно создавать электрический ток. В первой половине XIX века ученые обратились именно к таким опытам: стали искать возможность создания электрического тока за счет магнитного поля.

Опыты Фарадея

Впервые удалось достичь успех в этом (т.е. получить электрический ток за счет магнитного поля) английскому физику Майклу Фарадею. Итак, обратимся к опытам Фарадея.

Первая схема была довольно простой. Во-первых, М. Фарадей использовал в своих опытах катушку с большим числом витков. Катушка накоротко была присоединена к измерительному прибору, миллиамперметру (мА). Нужно сказать, что в те времена не было достаточно хороших инструментов для измерения электрического тока, поэтому пользовались необычным техническим решением: брали магнитную стрелку, располагали рядом с ней проводник, по которому протекал ток, и по отклонению магнитной стрелки судили о протекающем токе. Так вот в данном случае токи могли быть очень невелики, поэтому использовался прибор мА, т.е. тот, который измеряет маленькие токи.

Вдоль катушки М. Фарадей перемещал постоянный магнит – относительно катушки магнит двигался вверх и вниз. Обращаем ваше внимание на то, что в этом эксперименте впервые было зафиксировано наличие электрического тока в цепи в результате изменения магнитного потока, который проходит сквозь катушку.

Фарадей обратил внимание и на тот факт, что стрелка мА отклоняется от своего нулевого значения, т.е. показывает, что в цепи существует электрический ток только тогда, когда магнит движется. Стоит только магниту остановиться, стрелка возвращается в первоначальное положение, в нулевое положение, т.е. никакого электрического тока в цепи в этом случае нет.

Вторая заслуга Фарадея – установление зависимости направления индукционного электрического тока от полярности магнита и направления его движения. Стоило Фарадею изменить полярность магнитов и пропускать магнит через катушку с большим числом витков, как тут же менялось направление индукционного тока, того, который возникает в замкнутой электрической цепи.

Итак, некоторое заключение. Изменяющееся магнитное поле создает электрический ток. Направление электрического тока зависит от того, какой полюс магнита проходит в данный момент через катушку, в каком направлении движется магнит.

И еще: оказывается, на значение электрического тока влияет количество витков в катушке. Чем больше витков, тем и значение тока будет больше.

Выводы из экспериментов

Какие выводы были сделаны М. Фарадеем в результате этих экспериментов? Индукционный электрический ток появляется в замкнутой цепи только тогда, когда существует переменное магнитное поле. Причем это магнитное поле должно изменяться.

Электростатическая индукция

Электростатическая индукция – явление наведения собственного электростатического поля при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.

Электростатическая индукция в проводниках

Перераспределение зарядов в хорошо проводящих металлах при действии внешнего электрического поля происходит до тех пор, пока заряды внутри тела практически полностью не скомпенсируют внешнее электрическое поле. При этом на противоположных сторонах проводящего тела появятся противоположные наведённые (индуцированные) заряды.

Электростатической индукцией в проводниках пользуются при их заряжении. Так, если проводник заземлить и поднести к нему заряженное отрицательно тело, не касаясь им проводника, то некоторое количество отрицательных зарядов перетечёт в землю, заместившись взамен положительными. Если теперь убрать заземление, а затем и заряженное тело, проводник останется положительно заряженным. Если же сделать то же самое, не заземляя проводник, то после убирания заряженного тела индуцированные на проводнике заряды перераспределятся, и все его части вновь станут нейтральными.

42. Понятие индукции

Такие понятия, как общее и частное, могут рассматриваться только во взаимосвязи. Ни одно из них не имеет самостоятельности, так как при рассмотрении процессов, явлений и предметов окружающего мира только через призму, скажем, частного картина получится неполной, без многих необходимых элементов. Слишком общий взгляд на те же предметы и картину даст тоже слишком общую, предметы будут рассмотрены слишком поверхностно. Для того чтобы проиллюстрировать сказанное, можно привести шуточную историю о враче. Однажды врачу пришлось лечить портного, болевшего горячкой. Он был очень слаб и врач считал, что шансы его на выздоровление невелики. Однако больной просил ветчины и врач разрешил. Через некоторое время портной выздоровел.

В своем дневнике врач сделал заметку, что «ветчина – эффективное средство от горячки». Спустя время тот же врач лечил сапожника, также болевшего горячкой, и прописал ветчину как лекарство. Больной умер. Врач записал в своем дневнике, что «ветчина – хорошее средство от горячки у портных, но не у сапожников».

Индукция – это переход от частного к общему. То есть это постепенное обобщение более частного, конкретного понятия.

В отличие от дедукции, при которой из истинных посылок выводится истинное заключение, достоверная информация, в индуктивном умозаключении даже из верных посылок вывод получается вероятностный. Это связано с тем, что истинность частного не определяет однозначно истинности общего. Так как индуктивное заключение носит вероятностный характер, дальнейшее построение на его основе новых умозаключений может исказить достоверную информацию, полученную ранее.

Несмотря на это, индукция очень важна в процессе познания, и за подтверждением этого не нужно далеко ходить. Любое положение науки, будь то наука гуманитарная или естественная, фундаментальная или прикладная, является результатом обобщения. При этом получить обобщенные данные можно только одним способом – путем изучения, рассмотрения предметов действительности, их природы и взаимосвязей. Такое изучение и является источником обобщенной информации о закономерностях окружающего нас мира, природы и общества.

Из книги Логика: конспект лекций автора Шадрин Д А

2. Правила индукции Чтобы избегать ошибок, неточностей и неправильностей в своем мышлении, не допускать курьезов, нужно соблюдать требования, которые определяют правильность и объективную обоснованность индуктивного вывода. Ниже подробнее рассмотрены эти

Из книги Логика автора Шадрин Д А

42. Понятие индукции Такие понятия, как общее и частное, могут рассматриваться только во взаимосвязи. Ни одно из них не имеет самостоятельности, так как при рассмотрении процессов, явлений и предметов окружающего мира только через призму, скажем, частного картина

Из книги Эволюционная теория познания [врождённые структуры познания в контексте биологии, психологии, лингвистики, философии и теории науки] автора Фоллмер Герхард

43. Правила индукции Чтобы избегать ошибок, неточностей и неправильностей в своем мышлении, не допускать курьезов, нужно соблюдать требования, которые определяют правильность и объективную обоснованность индуктивного вывода. Ниже подробнее рассмотрены эти

Из книги Рыцарь и Буржуа [Исследования по истории морали] автора Оссовская Мария

Проблема индукции С каждым новым философским открытием и с каждым последующим философским обсуждением, кажется, всё более подтверждается утверждение философа С.Д.Брода: индукция есть триумф естествознания и позор философии.(Stegmuller, 1971, 13)В статье, которая открывается

Из книги Объективное знание. Эволюционный подход автора Поппер Карл Раймунд

ГЛАВА I ПОНЯТИЕ ОБРАЗЦА И ПОНЯТИЕ ПОДРАЖАНИЯ Следует выбрать кого-нибудь из людей добра и всегда иметь его перед глазами, - чтобы жить так, словно он смотрит на нас, и так поступать, словно он видит нас. Сенека. Нравственные письма к Луцилию, XI, 8 Возьми себе, наконец, за

Из книги Одураченные случайностью [Скрытая роль шанса в бизнесе и жизни. Второе издание] автора Талеб Нассим Николас

12. Традиционная проблема индукции и несостоятельность всех принципов или правил индукции Теперь я вернусь к тому, что я называю традиционной философской проблемой индукции.Под этим названием я подразумеваю точку зрения человека, который видит вызов, брошенный Юмом

Из книги Человеческое познание его сферы и границы автора Рассел Бертран

Из книги Избранное. Логика мифа автора Голосовкер Яков Эммануилович

Из книги Учебник логики автора Челпанов Георгий Иванович

2. Понятие о микрообъекте как понятие о транссубъективной реальности или о транссубъективном предмете, именуемом «объект науки», которое приложимо к эстетикеЭто не предмет моих внешних чувств, сущий вне меня и моего сознания: не нечто объективно-реальное.Это не предмет

Из книги Философия в систематическом изложении (сборник) автора Коллектив авторов

Глава 19. Об индукции В предыдущей главе мы с Челпановым обсуждали дедукцию, или умозаключение от общего к частному. Например, от общего заключения «все негры белозубы» мы приходили к частному заключению «Пушкин белозуб». А от общего заключения «у всех пьяниц трясутся

Из книги Логика: Учебное пособие для юридических вузов автора Демидов И. В.

Основание индукции На чём мы основываемся, когда делаем общие выводы из частных посылок? Например, исследовав несколько школьников, мы делаем вывод: «все школьники тоскуют и страдают на уроках». Правомерно ли наше заключение?Георгий Иванович придерживается на этот счёт

Из книги Логика: Учебник для студентов юридических вузов и факультетов автора Иванов Евгений Акимович

V. Логика индукции Создание новой науки, открывшее эпоху в истории философии вообще, было и в логике началом второй эпохи – эпохи индуктивной логики. Не Бэкон, человек дилетантского склада ума и любитель разных планов, а сам творец новой науки создал и «Новый органон».

Из книги Логика. Учебное пособие автора Гусев Дмитрий Алексеевич

§ 1. Виды индукции В зависимости от характера исследования различают полную и неполную индукцию.Полная индукция - это умозаключение, в ко­тором общее заключение делается на основе изу­чения всех предметов или явлений данного клас­са. В этом случае рассуждение имеет

Из книги автора

2. Виды индукции 1. О каких видах индукции идет речь в следующих примерах, приведенных слушателями: «Допустим, что необходимо проверить рабочую дисциплину в отделах правоохранительного органа. Известно, что в его состав входят 10 отделов. Способ проверки - анализ

Из книги автора

3.14. Правила индукции Чтобы повысить степень вероятности выводов неполной индукции, следует соблюдать следующие важные правила.1. Необходимо подбирать как можно больше исходных посылок. Для примера рассмотрим следующую ситуацию. Требуется проверить уровень

Из книги автора

3.15. Ошибки индукции Говоря о дедуктивных умозаключениях, как можно было заметить, мы рассматривали ту или иную ошибку вместе с правилом, нарушение которого ее порождает. В данном случае сначала представлены правила неполной индукции, а потом, отдельно, – ее ошибки. Это

от лат. inductio - наведение), переход от единичного знания об отд. предметах данного класса к общему выводу о всех предметах данного класса; один из методов познания. Основой И. являются данные, полученные путем наблюдения и эксперимента. Индуктивные рассуждения занимают важное место в науч. исследованиях, включающих в себя как обязат. этап накопление опытных данных, выступающих основанием для последующего обобщения в форме классификаций, науч. гипотез и др. Однако для построения науч. теории только индуктивных обобщений недостаточно, т. к. сделанные путем индуктивного умозаключения выводы часто оказываются ложными после открытия новых фактов. Применение И. ограничено и тем, что полученные в ходе индуктивного умозаключения выводы сами по себе не являются необходимыми, поэтому индуктивный метод познания должен дополняться дедукцией, сравнением и т. д.

Различают полную И. (когда вывод делается в результате изучения всех без исключения предметов данного класса) и неполную И. (общий вывод делается на основе рассмотрения лишь нескольких, часто далеко не всех явлений данного рода). Поскольку обычно исчерпать все конкретное многообразие фактов практически невозможно, в реальном процессе познания используется неполная И. Вывод по неполной И. всегда носит характер вероятного знания. Достоверность выводов по неполной И. повышается при подборе достаточно большого кол-ва случаев, в отношении к-рых строится индуктивное обобщение, причем факты, из к-рых делается вывод, должны быть разнообразными, отражающими не случайные, но существ, признаки изучаемого явления. Соблюдение этих условий позволит избежать таких распространенных в практике обучения ошибок, как поспешность выводов, смешение простой последовательности к.-л. явлений с причинно-следственными отношениями между ними и др.

И. широко применяется в щк. обучении. Многие уч. тексты и объяснения учителя строятся по индуктивному типу. Напр., при разъяснении понятия об уд. весе берутся разные вещества в равных объемах и взвешиваются. Разл. вес этих веществ позволяет выдвинуть общее положение об отношении между весом вещества и его объемом, т. е. понятие об уд. весе. Это пример неполной И. (берутся не все, а только нек-рые вещества). Как и в науке, в шк. обучении чаще всего применяется именно неполная И. наиб. широко И. применяется в т. н. опытных науках и соответствующих им уч. предметах - зоологии, ботанике, географии и др. В мл. классах, когда дети имеют еще небольшой объем знаний о мире, знакомство с разл. фактами из жизни природы и общества полезно, т. к. обогащает опыт ребенка, способствует развитию умения наблюдать и анализировать изучаемые явления. Эти фактич. знания служат базой для усвоения обобщающих положений. В ст. классах к И. прибегают в тех случаях, когда нужно показать общую закономерность для всех явлений какой-то группы, но доказательства этого положения предложить учащимся еще нельзя. Применение И. в обучении позволяет сделать обобщающий вывод очевидным, убедительным, вытекающим из рассмотренных фактов и потому доказательным для учащихся. Эту важную особенность И. подчеркивали мн. педагоги. Так, Н. Ф. Бунаков писал об изучении грамматики: «Индуктивный метод исходит от конкретных фактов, то есть от самого языка как объекта изучения, от его разнообразных естественных явлений прежде всего, пользуясь наблюдательностью учеников, обращая ее на явления языка, к познанию его форм, к раскрытию их значения, затем направляют их мысль к сравнению, классификации и обобщению» (Избр. пед. соч. 1953, с. 173-74).

Вместе с тем И. нельзя превращать в универсальный метод в обучении. В соответствии с совр. тенденциями к увеличению в уч. программах сведений теоретич. характера и с введением в практику соответствующих им методов обучения проблемного типа возрастает роль др. логич. форм представления уч. материала, прежде всего дедукции, а также аналогии, гипотезы и др.

Одним из основных и важных элементов, используемых в радиотехнике, является катушка индуктивности. Эта наиболее распространенная деталь радиоаппаратуры характеризуется рядом специфических и неповторимых физических свойств, без понимания которых невозможно полноценно осознавать процессы, происходящие в цепях.

Понятия: индукция и индуктивность

В 1820 году датским ученым Хансом Эрстедом была найдена зависимость магнитного поля от тока: при протекании электрического тока по проводу вокруг него образовывается магнитное поле. С целью охарактеризовать магнитное поле был введен некий критерий – это магнитная индукция. Поскольку магнитная индукция имеет свою ориентацию, то она является векторной величиной и описывает силу поля в конкретной точке пространства и объясняет влияние поля на контур (катушку) или элементарные заряженные частицы. Используя закон правого винта, находится ориентация трасс поля В.

В физике величина модуля вектора магнитной индукции В прямо пропорционально зависит от максимальной силы, действующей на участок провода, и обратно пропорционально зависит от силы тока в проводнике и длины участка провода:

Исходя из формулы индукции, ее величина измеряется в особых мерах:

В=Н/Ам=Тл (Тесла).

Величина магнитной индукции в один Тесла представляет собой максимальную силу в один Ньютон, которая действует на некий отрезок шунта длиной один Метр, с протекающим в нем током силой один Ампер.

В зависимости от используемой модели, применяются разные методы вычисления модуля вектора магнитной индукции:

  1. Магнитное поле бесконечного прямого провода определяется как:

B=µ0I/2πr, где:

  • µ0 – магнитная постоянная, численно равная µ0=4π10-7 Тл×м/А;
  • I – ток проводника;
  • r – расстояние от измеряемой точки до проводника.

B= µ0IN/l, где:

  • N – число витков соленоида;
  • l – длина соленоида.

Соленоидом является катушка с равномерно распределенными витками, длина которой намного больше радиуса.

  1. Магнитное поле в центре кругового тока формулируется как:

Исходя из формул, независимо от выбора источника, генерирующего магнитное поле, модуль вектора магнитной индукции пропорционален силе тока в проводе B~I. Ток, протекающий в контуре, создает магнитное поле, которое также пронизывает и сам контур. Если в контуре поместить некоторую площадку, то эту площадку будет пронизывать магнитное поле, созданное круговым током в контуре. Соответственно, через площадку будет проходить некоторый магнитный поток.

Определение величины магнитного потока сквозь плоскую площадку выглядит как:

Φ=BScosα, где:

  • B – вектор магнитной индукции;
  • S – площадка (площадь);
  • α – угол между направлением нормали к площадке S и направлением вектора магнитной индукции В.

Учитывая пропорциональную зависимость вектора магнитной индукции от силы тока в контуре, можно прийти к выводу о такой же зависимости силы тока в контуре и магнитного потока Ф~I.

Поскольку отношение Ф/I зависит не только от тока контура, но и от площадки S, то данное отношение является характеристикой самого контура и называется индуктивностью контура:

Индуктивностью контура (катушки) называется физическая величина, равная отношению магнитного потока, созданного током в этом контуре (катушке), к силе тока.

Единицей измерения индуктивности контура (катушки) является отношение Вб(вебер)/А(ампер), называется Гн (генри). Величиной один Генри является индуктивность такого контура (катушки), в котором курсирует ток с силой один ампер, и создается поток в один вебер.

Индуктивность соленоида

Ток, протекая по цилиндрической обмотке из провода, возбуждает электромагнитное поле. Вектор индукции поля равен:

Поток магнитного поля соленоида пронизывает каждый из витков соленоида и, соответственно, равен:

Ф=Ф1N, где:

  • Ф1 – поток магнитного поля, пронизывающий один виток;
  • N – количество витков провода.

Поскольку поле внутри цилиндрической обмотки из провода однородное, то поток магнитного поля, проходящий через один виток, равен:

Ф1=BS= µ0INS/l,

а, соответственно, расчет полного магнитного потока соленоида равняется:

Ф= µ0INSN/l=µ0IN2S/l.

Вычислив этот поток соленоида, нетрудно определить индуктивность данной катушки (соленоида):

L=Ф/I= µ0IN2S/lI.

Сократив обе силы тока в числителе и знаменателе, получаем окончательное выражение, позволяющее определять индуктивность соленоида, или катушки:

Lсол. = µ0N2S/l.

Соленоид приходится частным случаем катушки индуктивности. При расчете катушек используют такое понятие, как относительная магнитная проницаемость вещества внутри катушки, обозначаемая µ. Соответственно,формула индуктивности выглядит как:

Из формулы видно, что на характеристику катушки влияют некоторые факторы:

  1. Количество витков – с ростом численности витков увеличивается количество магнитных линий, пересекающих контур (катушку);
  2. Диаметр катушки – потоки в катушке большего диаметра проявляют меньшее компенсирующее воздействие друг на друга;
  3. Линейный размер катушки – катушка с большими линейными размерами препятствует формированию магнитного потока;
  4. Свойства сердечника – вещество сердечника с лучшей магнитной проницаемостью лучше удерживает магнитный поток.

Формула индуктивности

Имеется большое множество разновидностей катушек индуктивности, отличающихся конфигурацией и областью применения. Ниже предоставлено ряд формул, показывающих, как найти индуктивность катушки:

  1. Измерение индуктивности стандартной катушки производится по формуле:

L=µ0µN2S/l, где:

  • L – характеристика катушки (Гн);
  • µ0 – магнитная const;
  • µ – проницаемость вещества сердечника;
  • N – количество оборотов проводника;
  • S – площадь диаметрального разреза (м2);
  • l – активная часть катушки в метрах.
  1. Индуктивность прямого проводника:

L=5.081(ln4l/d-1), где:

  • L – характеристика катушки (нГн);
  • l – размер проводника;
  • d – диаметр провода.
  1. Определять индуктивности катушек с воздушным сердечником возможно благодаря формуле:

L=r2N2/9r+10l, где:

  • r – наружный радиус;
  • l – активная часть катушки.
  1. Индуктивность многослойной катушки с воздушным сердечником:

L=0,8r2N2/6r+9l+10d, где:

  • L – характеристика катушки (мкГн);
  • l – активная часть катушки;
  • d – глубина катушки.
  1. Индуктивность плоской катушки:

L=r2N2/6r+11d, где:

  • L – характеристика катушки (мкГн);
  • r – усредненный радиус катушки;
  • d – глубина катушки.

В радиотехнике часто используется сопряжение нескольких катушек. При последовательном или параллельном соединении катушек индуктивности используются различные формулы, находящие общую индуктивность.

Суммарная индуктивность, при последовательном подсоединении, рассчитывается как:

Lобщ=L1+L2+…+Ln.

При параллельном соединении катушек суммарная индуктивность равна выражению:

1/Lобщ=1/L1+1/L2+…+1/Ln.

Катушка индуктивности

Катушкой индуктивности является компонент, состоящий из проводника, намотанного на сердечник, содержащий железо, либо без сердечника. Прибор мультиметр, или LC-метр, ответит на вопрос, как измерить индуктивность катушки. Этим прибором, в основном, пользуются радиолюбители.

К исключительным классам катушек индуктивности относятся дроссели. Дроссель –это такая катушка, целью которой выступает создание в цепи огромного противодействия для переменного тока с целью подавления высокочастотных токов. Постоянный ток через такой дроссель проходит, не встречая препятствия.

При выборе конкретной катушки индуктивности необходимо обратить внимание на некоторые важные параметры, влияющие на работу компонента:

  1. Необходимый показатель индуктивности;
  2. Предельный ток, на который рассчитан компонент;
  3. Допустимый разброс характеристики катушки;
  4. Отклонение параметра при колебании температуры;
  5. Устойчивость характеристики катушки;
  6. Активное сопротивление провода обмотки катушки;
  7. Добротность компонента;
  8. Диапазон частот, при которых катушка работает без потерь.

Свое применение катушки индуктивности нашли, как в аналоговой, так и цифровой схемотехнике. Конструкция, собранная на катушках индуктивности и конденсаторах, именуемая колебательным контуром, способна усиливать или вырезать колебания определенной частоты. Использование дросселей в каскадах блоков питания позволяет устранить остатки помех и шумы. Построение таких компонентов, как трансформатор, полностью обязано физическим особенностям катушки индуктивности. Также катушки индуктивности подразделяются на компоненты с постоянным показателем индуктивности и катушки с переменным показателем индуктивности. Телефонные аппараты, сглаживающие фильтры, цепи высоких частот имеют в своем составе катушки с постоянным значением индуктивности. В свою очередь, резонансные цепи ВЧ и ВЧ тракты приемных устройств в своем составе имеют катушки с переменным значением индуктивности.

Предоставленный материал в полной мере объясняет физические явления: индукция, магнитный поток и индуктивность. В статье рассмотрены разные виды катушек индуктивности, принципы их построения и особенности применения.

Видео