Тетраэдр. Задачи на построение сечений в тетраэдре

В каждой из этих граней отмечаются вершины противоположные вершине A, это будут вершины B, C и D. Полученные отрезки AB, AC, AD, BC, DC и BD между как граней куба, поэтому ABCD является правильным тетраэдром.

Обратите внимание

Тетраэдр является одним из пяти возможных правильных многогранников. К правильным многогранникам относятся так же: октаэдр, додекаэдр, икосаэдр и гексаэдр или куб. Куб – простейший для построения многогранник, все остальные могут быть построены с его помощью.

Стереометрия, как часть геометрии, гораздо ярче и интереснее именно тем, что фигуры здесь не плоскостные, а объемные. В многочисленных задачах требуется рассчитать параметры параллелепипедов, конусов, пирамид и других трехмерных фигур. Иногда уже на этапе построения возникают сложности, которые легко устраняются, если следовать простым принципам стереометрии.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - циркуль;
  • - транспортир.

Инструкция

Определитесь с количеством граней, а также количеством углов в многоугольниках самих граней перед . Если в условии говорится о правильном многограннике, то стройте его так, чтобы он был выпуклый (не ломанный), чтобы грани представляли собой правильные многоугольники, а в каждой вершине трехмерной фигуры сходилось одинаковое количество ребер.

Помните об особых многогранниках, для которых есть постоянные характеристики:
- тетраэдр состоит из треугольников, имеет 4 вершины, 6 ребер, сходящихся в вершинах по 3, а также 4 грани;
- гесаэдр, или куб, состоит из квадратов, имеет 8 вершин, 12 ребер, сходящихся по по 3 на вершинах, а также ;
- октаэдр состоит из треугольников, имеет 6 вершин, 12 ребер, примыкающих по 4 к вершинам, а также 8 граней;
- – это двенадцатигранная фигура, состоящая из пятиугольников, имеющая 20 вершин, а также 30 ребер, примыкающих к вершине по 3;
- , в свою очередь, имеет 20 треугольных граней, 30 ребер, примыкающих по 5 к каждой из 12 вершин.

Начните построение с , если ребра многогранника параллельны. Это касается параллелепипеда, . При этом будет удобнее начинать построение с рисования основания многогранника, а затем достраивать грани соответственно заданным углам относительно плоскости основания. Для куба и прямого параллелепипеда это будет прямой угол между плоскостью основания и боковых граней. Для наклонного параллелепипеда соблюдайте условия задачи, при необходимости используя транспортир. Помните, что плоскости верхней и нижней грани этой фигуры параллельны.

Постройте неправильный с учетом количества углов в каждой из граней, а также числа смежных . При построении многогранника не забывайте, что грани многогранных фигур не всегда равновеликие, с одинаковым количеством углов. Например, в основании может быть ромб, а боковые грани ее будут составлять с разной длиной ребер.

Видео по теме

Обратите внимание

Если в задаче просят изобразить тетраэдр, гексаэдр (или куб), октаэдр, додекаэдр, икосаэдр, то сразу отмечайте, что речь идет об изначально правильном многограннике с соответствующим числом граней.

Полезный совет

Многогранник в общем смысле состоит из определенного количества плоских многоугольников. При этом обязательно соблюдаются следующие условия:
- смежность многоугольников, из которых состоит многогранник. Это означает, что сторона одного многоугольника одновременно является стороной и другого – смежного;
- все многоугольники непрерывно связаны между собой. Это так называемый принцип «связности».

Изготовить модель тетраэдра можно из самых разных материалов. Один из наиболее доступных вариантов - склеить его из бумаги. При этом клей требуется не всегда, поскольку самоклеющаяся бумага тоже подходит для таких целей.

Вам понадобится

  • - бумага для построения развертки;
  • - бумага для модели;
  • - линейка;
  • - карандаш;
  • - транспортир;
  • - ножницы;
  • - компьютер с AutoCAD.

Инструкция

Начните с построения развертки. Если вы собираетесь клеить тетраэдр из обычной плотной бумаги, развертку можно сделать прямо на ней. Для самоклеющейся бумаги лучше начертите выкройку, как это выполняется в классическом моделировании. Можно использовать и компьютер с AutoCAD или любым другим графическим редактором, позволяющим строить правильные многоугольники.

, слайды 1-2)

    научиться применять аксиомы стереометрии при решении задач;

    научиться находить положение точек пересечения секущей плоскости с рёбрами тетраэдра;

    освоить методы построения этих сечений

    формировать познавательную активность, умения логически мыслить;

    создать условия самоконтроля усвоения знаний и умений.

Тип урока: Формирование новых знаний.

Ход урока

I. Организационный момент

II. Актуализация знаний учащихся

Фронтальный опрос. (Аксиомы стереометрии, свойства параллельных плоскостей)

Слово учителя

Для решения многих геометрических задач, связанных с тетраэдром, полезно уметь строить на рисунке их сечения различными плоскостями. (слайд 3) . Назовём секущей плоскостью тетраэдра любую плоскость, по обе стороны от которой имеются точки данного тетраэдра. Секущая плоскость пересекает грани тетраэдра по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением тетраэдра . Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники. Отметим также, что для построения сечения достаточно построить точки пересечения секущей плоскости с рёбрами тетраэдра, после чего остаётся провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.

На этом уроке вы сможете подробно изучить сечения тетраэдра, освоить методы построения этих сечений. Вы узнаете пять правил построения сечений многогранников, научитесь находить положение точек пересечения секущей плоскости с рёбрами тетраэдра.

Актуализация опорных понятий

    Первое правило. Если две точки принадлежат как секущей плоскости, так и плоскости некоторой грани многогранника, то прямая, проходящая через эти две точки, является линией пересечения секущей плоскости с плоскостью этой грани (следствие аксиомы о пересечении плоскостей).

    Второе правило . Если секущая плоскость параллельна некоторой плоскости, то эти две плоскости пересекаются с любой гранью по параллельным прямым (свойство двух параллельных плоскостей, пересечённых третьей).

    Третье правило. Если секущая плоскость параллельна прямой, лежащей в некоторой плоскости (например, плоскости какой-то грани), то линия пересечения секущей плоскости с этой плоскостью (гранью) параллельна этой прямой (свойство прямой, параллельной плоскости).

    Четвёртое правило. Секущая плоскость пересекает параллельные грани по параллельным прямым (свойство параллельных плоскостей, пересечённых третьей).

    Пятое правило . Пусть две точки А и В принадлежат секущей плоскости, а точки A 1 и B 1 являются параллельными проекциями этих точек на некоторую грань. Если прямые АВ и A 1 B 1 параллельны, то секущая плоскость пересекает эту грань по прямой, параллельной A 1 B 1 . Если же прямые АВ и A 1 B 1 пересекаются в некоторой точке, то эта точка принадлежит как секущей плоскости, так и плоскости этой грани (первая часть этой теоремы следует из свойства прямой, параллельной плоскости, а вторая вытекает из дополнительных свойств параллельной проекции).

III. Изучение нового материала (формирование знаний, умений)

Коллективное решение задач с объяснением (слайд 4)

Задача 1. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АД, М є ДС, Е є ВС.

Внимательно посмотрим на чертёж. Так как точки К и М принадлежат одной плоскости, то мы находим пересечение секущей плоскости с гранью АДС – это отрезок КМ. Точки М и Е также лежат в одной плоскости, значит пересечением секущей плоскости, и грани ВДС является отрезок МЕ. Находим точку пересечения прямых КМ и АС, которые лежат в одной плоскости АДС. Теперь точка Х лежит в грани АВС, то её можно соединить с точкой Е. Проводим прямую ХЕ, которая пересекается с АВ в точке Р. Отрезок РЕ есть пересечение секущей плоскости с гранью АВС, а отрезок КР есть пересечение секущей плоскости с гранью АВС. Следовательно, четырёхугольник КМЕР наше искомое сечение. Запись решения в тетради:

Решение.

    КМ = α ∩ АДС

    МЕ = α ∩ ВДС

    Х = КМ ∩ АС

    Р = ХЕ ∩ АВ

    РЕ = α ∩ АВС

    КР = α ∩ АДВ

    КМЕР – искомое сечение

Задача 2. (слайд 5)

Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АВС, М є ВДС, N є АД

Рассмотрим проекции каких-нибудь двух точек. В тетраэдре проекции точек находят из вершины на плоскость основания, т.е. М→М 1 , N→А. Находим пересечение прямых NM и AM 1 точку Х.Данная точка принадлежит секущей плоскости, так как лежит на прямой NM, принадлежит плоскости АВС, так как лежит на прямой АМ 1 . Значит, теперь в плоскости АВС у нас есть две точки, которые можно соединить, получаем прямую КХ. Прямая пересекает сторону ВС в точке L, а сторону АВ в точке Н. В грани АВC находим линию пересечения, она проходит через точки Н и К – это НL. В грани АВД линия пересечения – НN, в грани ВДС проводим линию пересечения через точки L и М – это LQ и в грани АДС получаем отрезок NQ. Четырёхугольник HNQL – искомое сечение.

Решение

    М → М 1 N → А

    Х = NМ ∩ АМ 1

    L = КХ ∩ ВС

    H = КХ ∩ АВ

    НL = α ∩ АВC, К є НL

    НN = α ∩ АВД,

    LQ = α ∩ ВДС, М є LQ

    NQ = α ∩ АДС

    HNQL – искомое сечение

IV. Закрепление знаний

Решение задачи с последующей проверкой

Задача 3. (слайд 6)

Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є ВС, М є АДВ, N є ВДС.

Решение

    1. М → М 1 , N → N 1

    Х = NМ ∩ N 1 М 1

    R = КХ ∩ АВ

    RL = α ∩ АВД, М є RL

    КР = α ∩ ВДС, N є КР

    LP = α ∩ АДС

    RLPK – искомое сечение

V. Самостоятельная работа (по вариантам)

(слайд 7)

Задача 4. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки М є АВ, N є АС, К є АД.

Решение

    КМ = α ∩ АВД,

    МN = α ∩ АВС,

    КN = α ∩ АДС

    KMN – искомое сечение

Задача 5. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки М є АВ, К є ДС, N є ДВ.

Решение

    MN = α ∩ АВД

    NK = α ∩ ВДС

    Х = NК ∩ ВС

    Р = АС ∩ МХ

    РК = α ∩ АДС

    MNKP – искомое сечение

Задача 6. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки М є АВС, К є ВД, N є ДС

Решение

    KN = α ∩ ДВС

    Х = КN ∩ ВС

    Т = МХ ∩ АВР = ТХ ∩ АС

    РТ = α ∩ АВС, М є РТ

    PN = α ∩ АДС

    ТР N K – искомое сечение

VI. Итог урока.

(слайд 8)

Итак, мы сегодня научились строить простейшие задачи на сечения тетраэдра. Напоминаю, что сечением многогранника называется многоугольник, полученный в результате пересечения многогранника с некоторой плоскостью. Сама плоскость при этом называется секущей плоскостью. Построить сечение значит определить, какие рёбра пересекает секущая плоскость, вид полученного сечения и точное положение точек пересечения секущей плоскости с этими рёбрами. То есть, те цели, которые были поставлены на уроке, решены.

VII. Домашнее задание.

(слайд 9)

Практическая работа «Построить сечения тетраэдра» в электронном виде или бумажном варианте. (Каждому было дано индивидуальное задание

Построение сечений тетраэдра и параллелепипеда. Содержание: 1. Цели и задачи. 2. Введение. 3. Понятие секущей плоскости. 4. Определение сечения. 5. Правила построения сечений. 6. Виды сечений тетраэдра. 7. Виды сечений параллелепипеда. 8. Задача на построение сечения тетраэдра с объяснением. 9. Задача на построение сечения тетраэдра с объяснением. 10. Задача на построение сечения тетраэдра по наводящим вопросам. 11. Второй вариант решения предыдущей задачи. 12. Задача на построение сечения параллелепипеда. 13. Задача на построение сечения параллелепипеда. 14. Пожелание учащимся. Цель работы: Развитие пространственных представлений у учащихся. Задачи: Познакомить с правилами построения сечений. Выработать навыки построения сечений тетраэдра и параллелепипеда при различных случаях задания секущей плоскости. Сформировать умение применять правила построения сечений при решении задач по темам «Многогранники». Для решения многих геометрических задач необходимо строить их сечения различными плоскостями. Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра). L Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам. L Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда). Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками. При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. 2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам. 3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях. Какие многоугольники могут получиться в сечении? Тетраэдр имеет 4 грани В сечениях могут получиться: Треугольники Четырехугольники Параллелепипед имеет 6 граней Треугольники Пятиугольники В его сечениях могут получиться: Четырехугольники Шестиугольники Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K D M AA 1. Проведем прямую через точки М и К, т.к. они лежат в одной грани (АDC). N K BB C C 2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB). 3. Аналогично рассуждая, проводим прямую MN. 4. MNK – искомое сечение. Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. 1. Проводим КF. 2. Проводим FE. 3. Продолжим EF, продолжим AC. D F 4. EF AC =М 5. Проводим MK. E M C 6. MK AB=L A L K Правила B 7. Проводим EL EFKL – искомое сечение Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. С какойпрямые точкой, лежащей в Какие можно Соедините получившиеся Какие сразу той жеточки граниможно можно продолжить, чтобы получить точки, лежащие в одной соединить? соединить полученную дополнительную точку? грани, назовите сечение. дополнительную точку? D иЕ АС ЕLFK FСЕК иточкой K, и FК F L C M A E K B Правила Второй способ Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. D F L C A E K B Правила Первый способ О Способ №1. Способ №2. Вывод: независимо от способа построения сечения одинаковые. Построить сечения параллелепипеда плоскостью, проходящей через точки В1, М, N Правила В1 D1 С1 A1 P К В D А Е N С O M 1. MN 3.MN ∩ BA=O 2.Продолжим 4. В1О MN,ВА 5. В1О ∩ А1А=К 6. КМ 7. Продолжим MN и BD. 8. MN ∩ BD=E 9. В1E 10. B1Е ∩ D1D=P , PN Параллелепипед и тетраэдр, сечения Диктант по теме «Тетраэдр, параллелепипед» Вариант I Вариант II 1. Какую поверхность мы называем тетраэдром? параллелепипедом? 2. Что такое грани, ребра, вершины параллелепипеда? тетраэдра? 3. Сформулируйте свойство параллелепипеда о диагоналях. о гранях. Диктант по теме «Тетраэдр, параллелепипед» Вариант I 4. Какие ребра тетраэдра называются противоположными? Вариант II 4. Какие грани параллелепипеда называются смежными? 5. Начертите изображение параллелепипеда. тетраэдра. Перечислите все элементы, укажите их количество. Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D. В1 D1 E A1 С1 В А М D С 1. AD 2. MD 3. ME AD, т.к. (ABC) (A1B1C1) 4. AE AEMD – сечение. Построение сечений тетраэдра Решим задачу D M B A C Решим задачу K M L A N Решим задачу D AC BD B A M C Решим задачу D M К АВС B A K N Какой другой вариант возможен? C Решим задачу D M B A K N C Решим задачу D M ABC K N ACD B N A M C Решим задачу D M ABC K N ACD N B A M C Домашнее задание повторить п. 1 – 14, подготовиться к зачету № 74, 75(б), 107, 79 Построение сечений параллелепипеда Решим задачу B1 C1 М АА1В1В A1 D1 M (BDD1) B A C D Решим задачу С1 B1 A1 D1 B A С D Решим задачу B1 A1 C1 D1 B A C D Решим задачу B1 A1 C1 D1 M B N A C K D Решим задачу B1 A1 C1 D1 M B N A C K D Решим задачу B1 A1 C1 D1 M B N A C K D Решим задачу B1 C1 A1 D1 M B N A C K D 1.Все вершины сечения лежат на рёбрах многогранника. 2.Все стороны сечения лежат в гранях многогранника. 3.В каждой грани лежит не более одной стороны сечения. 10 10 10 10 ВЫ МНОГОЕ УЗНАЛИ И МНОГОЕ УВИДЕЛИ! ТАК ВПЕРЕД, РЕБЯТА: ДЕРЗАЙТЕ И ТВОРИТЕ! СПАСИБО ЗА ВНИМАНИЕ.

Тема: « Построение сечений тетраэдра и параллелепипеда».

Предмет : геометрия

Класс: 10

Используемые педагогические технологии:

технология проектного обучения, информационные технологии .

Тема урока : Построение сечений тетраэдра и параллелепипеда

Тип урока : урок закрепления и развития знаний.

Формы работы на уроке : фронтальная, индивидуальная

Список используемых источников и программно-педагогических средств:

1. . Геометрия. 10-11 классы,- М: Просвещение, 2006г.

2. . Задачи на развитие пространственных представлений. Книга для учителя. - М.: Просвещение, 1991.

3. Г. Прокопенко. Методы решения задач на построение сечений многогранников. 10 класс . ЧПГУ, г. Челябинск. Еженедельная учебно-методическая газета "Математика" 31/2001.

4. А. Мордкович. Семинар девятый. Тема: Построение сечений многогранников (позиционные задачи). Еженедельное приложение к газете "Первое сентября". Математика. 3/94.

5. Мультимедийный интерактивный курс "Открытая математика. Стереометрия." Физикон

6. «Живая геометрия»

Образовательные:

Проверить знание теоретического материала о многогранниках (тетраэдр, параллелепипед).

Продолжить формирование умения анализировать чертеж, выделять главные элементы при работе с моделью многогранника, намечать ход решения задачи, предвидеть конечный результат.

Отработать навыки решения задач на построение сечений многогранников.

Развивать графическую культуру и математическую речь.

Формировать навыки использования компьютерных технологий на уроках геометрии.

Развивающие:

Развивать познавательный интерес учащихся.

Формировать и развивать у учащихся пространственное воображение.

Воспитательные:

Воспитывать самостоятельность, аккуратность, трудолюбие.

Воспитывать умения работать индивидуально над задачей.

Воспитывать волю и настойчивость для достижения конечных результатов.

Техническое обеспечение:

Компьютер с установленными программами «Живая геометрия», Power Point, мультимедиапроектор.

Раздаточный материал:

Бланки-карточки с заданиями для практической работы, бланки-карточки с ответами для взаимопроверки, опоры – памятки, презентация по теме «Аксиомы стереометрии, следствия из них», презентация ученика «Построение сечений параллелепипеда», цветные карандаши.

Структура урока.

Приветствие. Организационный момент.

Постановка цели и задачи урока.

Повторение изученного материала с использованием презентации.

Актуализация опорных знаний.

Практическая работа на построение сечений.

Взаимопроверка.

Домашнее задание

Рефлексия.

Ход урока:

1)Приветствие. Организационный момент.

2) Постановка цели и задачи урока.

Задачи на построение сечений в многогранниках занимают заметное место в курсе стереометрии. Их роль обусловлена тем, что решение этого вида задач способствует усвоению аксиом стереометрии, следствий из них, развитию пространственных представлений и конструктивных навыков. Умение решать задачи на построение сечений являет­ся основой изучения почти всех тем курса стереометрии. При решении многих стереометрических задач используют сечения многогранников плоскостью.

На предыдущих уроках мы с вами познакомились с аксиомами стереометрии, следствиями из аксиом и с теоремами о параллельности прямых и плоскостей в пространстве. Мы рассмотрели алгоритмы построения несложных сечений куба, тетраэдра и параллелепипеда. Эти сечения, как правило, задавались точками, расположенными на ребрах или гранях многогранника. Сегодня на уроке мы с вами повторим геометрические утверждения, позволяющие сформулировать правила построения сечений. А также научимся применять эти знания при решении задачи на построение сечения тетраэдра и параллелепипеда плоскостью, проходящей через три данные точки, такие, что никакие три из этих точек не лежат в одной грани.

3) Повторение изученного материала с использованием презентации.

Давайте повторим некоторые вопросы теории.

    Что такое секущая плоскость? Как можно задать секущую плоскость? Что такое сечение тетраэдра (параллелепипеда)? Какие многоугольники мы получали при построении сечений тетраэдра? А какие многоугольники мы можем получить при построении сечений параллелепипеда? Давайте повторим аксиомы стереометрии, следствия из них и способы задания плоскости (презентация 1, слайды 1-10)

4) Актуализация опорных знаний.

Презентация ученика «Построение сечений параллелепипеда».

Теперь давайте вспомним алгоритм построения сечения тетраэдра на примере двух задач (презентация 1, слайды 11-12). (построение комментируется пошагово учителем).

Пащенко Алексей с помощью своей презентации напомнит нам об алгоритмах построения сечений параллелепипеда (презентация 2, слайды 1-5) (ученик демонстрирует слайды, комментируя последовательность построения)

https://pandia.ru/text/78/168/images/image002_167.gif" width="327" height="244">

Практическая работа по построению сечений параллелепипеда. Приложение 1

Приложение 2

Опора-памятка

    Аксиома 1 . Через любые три точки, не лежащие на одной прямой, проходит плоскость, и причем только одна. Аксиома 2 . Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. Аксиома 3 . Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Следствия из аксиом: