Электромагнитное поле соленоида. Магнитное поле соленоида

село Полтавское Аннотация: в статье представлен вывод формул индукции поля соленоида, созданного переменным током. Эту формулу можно использовать для углубленного изучения учащимися темы «Магнитное поле» и при решении задач. Ключевые слова: индукция, соленоид, магнитный поток, частота, индуктивность, индуцированное напряжение, мощность переменного тока. При переменном токе соленоид создаёт переменное магнитное поле. При этом, как известно, индуктивность соленоида определяется формулой [ 1, с.101 ] : L = , где (1) где U – индуцированное в соленоиде напряжение, n – частота переменного тока, I – сила переменного тока. С другой стороны индуктивность соленоида определяется формулой [ 2, с.253 ] : L = , (2) где Ф – магнитный поток соленоида. Приравнивая выражения (1) и (2), получим: Ф = . (3) При этом полный магнитный поток соленоида определяется и другой формулой [ 2, с.242 ] : Ф =В × S × N , (4) где В – индукция магнитного поля, N – число витков соленоида, S – площадь поперечного сечения магнитного поля. Приравняв выражения (3) и (4), получим В = . (5) Таким образом, индукция поля соленоида, созданного переменным током, прямо пропорциональна индуцированному в соленоиде напряжению. Как известно, магнитную индукцию поля, созданного постоянным током, текущим по виткам бесконечно длинного соленоида, внутри этого соленоида на его оси определяют по формуле [ 2, с.232 ] : В = (в вакууме), (6) где n = NI – число ампер-витков соленоида, l длина соленоида, µ о магнитная постоянная. Единица магнитной индукции (тесла) может быть установлена по формуле (6): [ В ] = × = , (7) С другой стороны единица магнитной индукции (тесла) может быть установлена по формуле (5): [ В ] = , (8) Перемножив выражения (7) и (8), получим: [ В ] 2 = × = = , (9) Тогда заменив единицы измерения в выражении (9) физическими величинами, получим формулу для индукции поля соленоида, созданного переменным током: В 2 = , отсюда В = , (10) где V - объём соленоида, Р – мощность переменного тока. Таким образом, индукция магнитного поля соленоида увеличивается при увеличении мощности переменного тока и уменьшается при увеличении объёма соленоида. Задача 1. Магнитная индукция поля внутри соленоида, состоящего из 2000 витков диаметра 2,8см, подключённого к источнику переменного тока с частотой 50Гц, равна 0,72мТл. Каково индуцированное в соленоиде напряжение?
Дано: СИ: Решение:
N = 2000 витков d = 2,8 см В = 0,72 мТл n = 50 Гц = 2,8 × 10 -2 м =0,72 × 10 -3 Тл Индукция поля соленоида определяется формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), найдём . (3)
U – ?
Подставляя исходные данные в выражение (3), получим: = 0,278 В.
Ответ: U = 0,278 В.
Задача 2. Индуцированное в соленоиде напряжение 0,2В. Магнитная индукция поля внутри соленоида, созданного переменным током с частотой 50 Гц, равна 0,52 мТл и диаметр магнитного поля равен 2,8см. Сколько витков содержит соленоид?
Дано: СИ: Решение:
U = 0,2 В d = 2,8 см В = 0,52 мТл n = 50 Гц = 2,8 × 10 -2 м =0,52 × 10 -3 Тл Индукция поля соленоида выражается формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), получим . (3)
N – ?
Подставляя исходные данные в выражение (3), получим: витков
Ответ: N = 2000 витков.
Задача 3. Магнитная индукция поля внутри соленоида с числом витков 400 и объёмом 6,15 × 10 -5 м 3 равна 0,72 мТл. Частота переменного тока 50Гц. Какова мощность переменного тока?
Дано: СИ: Решение:
B = 0,72 мТл n = 50 Гц µ о =1,256 × 10 -6 V = 6,15 × 10 -5 м 3 N = 400 витков =0,72 × 10 -3 Тл Индукция поля соленоида определяется по формуле (10): В = , отсюда Р = . Подставляя исходные данные, получим:
P – ?
» 3,2 мкВт. Ответ: Р » 3,2 мкВт.
Литература
1. Мякишев Г.Я., Буховцев Б.Б. Физика. Учебник для общеобразовательных учреждений. М.: Просвещение, 2007. 336 с. 2. Мустафаев Р.А., Кривцов В.Г. Физика. М.: Высшая школа, 1989. 496 с.

Магнитное поле соленоида.

В уточнённой модели соленоида конечной длины учтём более реальный вид навивки тонкого провода на каркас соленоида. Основным токонесущим элементом конструкции будем считать винтовую линию. Рассмотрим соленоид с каркасом в форме цилиндрической поверхности, поперечное сечение которой является окружностью радиуса . Пусть продольная ось соленоида, как в предыдущем примере, совпадает с осью аппликат, координаты конечных сечений соленоида на оси аппликат имеют значения и , тонкий проводник намотан на каркас равномерно с шагом , то есть число витков на единицу длины соленоида составляет величину , по проводнику течёт ток .


Радиус-вектор точки наблюдения М по условию определен координатами:

Радиус-вектор расположения элемента контура с током опишем с помощью параметрического представления:

Легко видеть, что при возрастании величины параметра на величину радиус-вектор совершит полный оборот вокруг продольной оси соленоида и сместится на шаг навивки относительно исходного положения в пространстве. Будем считать, что электрический ток течет по проводнику в направлении, определяемом увеличением параметра . Проекции вектора на оси декартовой системы координат имеют вид:

(3)

В соответствии с дифференциальной формой закона Био-Савара-Лапласа (1) раздела 6.2 получаем проекции вектора магнитной индукции на оси декартовых координат для произвольной точки наблюдения:

(3)

, (4) . (5)

Как это ни удивительно, но уточнённая модель приводит к более простым зависимостям для проекций дифференциала вектора магнитной индукции: для расчёта величин проекций искомого вектора понадобится только однократное интегрирование по параметру . Пределы интегрирования определяются при этом условием, что тонкий проводник достиг крайнего сечения соленоида:

Выпишем квадратуры для проекций вектора магнитной индукции на оси декартовой системы координат для произвольной точки наблюдения:

, (7)

, (8)

. (9)

Численные значения проекций вектора магнитной индукции на оси декартовой системы координат легко вычисляются с помощью пакета символьных вычислений Maple, если заданы характеристики системы токов и координаты точки наблюдения. Ниже для определенности положим Проведем вычисления осевой составляющей индукции магнитного поля в сечении z=0 в зависимости от координаты x (радиальное направление!). Результаты расчета представлены на рис. 2. Здесь имеет смысл обратить внимание на небольшую неоднородность магнитного поля внутри соленоида (|x|<1) и наличие осевой составляющей магнитного поля вне соленоида (последнее характерно для соленоида конечных размеров).


В качестве второго примера вычислим распределение осевой составляющей магнитной индукции вдоль оси соленоида при сохранении параметров системы токов (рис. 3). Здесь можно отметить качественное совпадение результатов расчета с подобными результатами упрощенной модели соленоида (рис.2 предыдущего раздела).


На практике чаще всего параметр навивки - отношение шага навивки к радиусу поперечного сечения соленоида - не играет существенной роли, но в отдельных случаях подробный расчет может оказаться полезным.

6.2.6. Поверхностная модель земного магнетизма .

У.Гильберт 400 лет тому назад установил, что Земля является «большим магнитом»: поведение стрелки компаса на земной поверхности похоже на поведение намагниченной стрелки в окрестности экспериментального магнитного шара. Во времена У.Гильберта ещё не было ни теории электричества, ни теории магнитного поля. В современных условиях интересно попробовать смоделировать образование магнитного поля Земли, играющего такую важную роль как обеспечении радиационной безопасности жизни на Земле, так и в практической навигации.

Допустим, что по поверхности сферы радиуса течёт ток постоянной по величине погонной плотности в азимутальном направлении. Величина погонной плотности тока определяется выражением

Здесь - дифференциал сила тока, - элемент дуги на поверхности сферы, перпендикулярный направлению тока, - дифференциал угловой координаты сферической системы координат.



Элемент длины «контура», связанного с описанным дифференциалом силы тока определяется выражением

, (2)

координаты точки расположения элемента имеют вид

, (3)

а его проекции на координатные направления декартовой системы координат

Если координаты точки наблюдения М определены проекциями радиус-вектора {x,y,z}, то не представляет труда выписать последовательно выражения для разности радиус-векторов точки наблюдения и точки расположения элемента контура с током, для модуля этой разности, для векторного произведения и получить зависимости для дифференциалов проекций вектора магнитной индукции в точке наблюдения:

(5)

Для реализации практических вычислений в приведенные соотношения вместо «штрихованных» величин необходимо подставить их выражения с использованием координат сферической системы координат (4).

В соответствии с принципом суперпозиции необходимо просуммировать вклад всех элементов «контуров» с током в величину каждой из проекций вектора магнитной индукции в точке наблюдения. Если декартовы координаты точки наблюдения записать с помощью сферических координат, то проекции вектора магнитной индукции на оси декартовой системы координат в точке наблюдения описываются следующими квадратурами:

Здесь , и - угловые координаты точки наблюдения в сферической системе координат.

Располагая полученными соотношениями, можно вычислить направляющие косинусы вектора магнитной индукции относительно исходной декартовой системы координат

, (7)

и записать уравнения для расчёта координат силовой линии в дифференциальной форме:

( для фиксированной точки силовой линии).

Интересно проанализировать зависимости «горизонтальной» и «вертикальной» составляющих вектора магнитной индукции над поверхностью несущей ток сферы от «северной широты» точки наблюдения. Численные результаты при этом таковы. На экваторе () горизонтальная составляющая поля направлена по меридиану в сторону «южного полюса», вертикальная составляющая равна нулю. На широте 45 0 () имеют место и горизонтальная, и вертикальная составляющие магнитного поля, причем абсолютная величина горизонтальной составляющей меньше, чем аналогичная величина на экваторе, а направленность в сторону южного полюса сохранилась. На «северном полюсе» () горизонтальная составляющая магнитного поля обращается в нуль, а вертикальная достигает максимального значения. Полученный результат объясняет причину трудностей определения местоположения в окрестности «северного полюса» сферы: компас теряет способность указывать направление на полюс.

6.2.7. Объёмная модель земного магнетизма .

Рассмотрим более сложную модель распределения электрического тока в земном шаре. Теперь нам предстоит рассчитать магнитное поле, образованное электрическим током, текущим в объёме сферы в азимутальном направлении с известной объёмной плотностью тока.

Допустим, что по объёму сферического тела радиуса течёт ток с постоянной по величине объёмно плотностью в азимутальном направлении. Элемент сила тока с учётом его направления в пространстве при этом можно описать с помощью выражения

В этом выражении - элемент объёма, в котором течёт ток, - координаты этого элемента объёма в сферической системе координат. Допустим, что координаты точки наблюдения имеют вид: { }. В соответствующей декартовой системе координат имеем

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.

Лабораторная работа № 9

Изучение магнитного поля соленоида

1.Цель работы

Изучение распределения магнитного поля конечного соленоида при помощи явления электромагнитной индукции.

2.Краткое теоретическое введение

Соленоид – это цилиндрическая катушка, обмотка которой состоит из большого числа витков проволоки, образующих винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов, имеющих общую ось. Индукция магнитного поля в любой точке соленоида равно векторной сумме индукций магнитных полей, создаваемых в данной точке всеми витками. Вектор магнитной индукций в точке, лежащей на оси соленоида конечных размеров, направлен вдоль оси, а его значение вычисляется по формуле:

, (1)

где L - длина соленоида, R –радиус его витков,

Х – расстояние от края соленоида до исследуемой точки,

I – сила тока, протекающего по виткам,

n - число витков на единицу длина соленоида,

Относительная магнитная проницаемость среды,

μ0 - магнитная постоянная.

Единицей измерения индукции магнитного поля в системе СИ является «Тесла»: [B] = Тл

Из выражения (1) следует, что индукция магнитного поля максимальна на оси соленоида в точке, соответсвующей его середине:

. (2)

Если длина соленоида намного превышает радиус его витков, то соленоид можно условно считать бесконечно длинным. Магнитное поле внутри бесконечно длинного соленоида является однородным, при этом его индукция равна:

. (3)

Распределение магнитного поля соленоида конечной длины является более сложным по сравнению с простейшим случаем бесконечно длинного соленоида. Для многих других конфигураций магнитного поля, теоретический расчет которых затруднителен, предпочтительней определять магнитную индукцию экспериментально.

Величину можно измерить, использую, например, явление электромагнитной индукции. Если в некоторую точку магнитного поля поместить не большой контур, то при изменениях магнитного потока, пронизывающего этот контур, в последнем возникнет э. д.с., индукции, электромагнитной индукции (закону Фарадея), имеем:

В настоящей работе в качестве контура используется измерительная катушка (ИК), состоящая из большого количества витков N. Возникающая в ней э. д.с. индукции складывается из э. д.с. отдельных витков, т.е.

, (5)

где S –площадь поперечного сечения ИК.

Если в обмотке соленоида протекает переменный ток, то магнитное поле, создаваемое этим током, также является переменным, т. е.

, (6)

где В0 - амплитудное значение магнитной индукции,

– циклическая частота переменного тока.

Из формул (5) и (6) следует, что э. д.с. индукции, наведения ИК, изменяется во времени по закону:

e = e0 sin(wt) (7)

где e0 - амплитудное значение э. д.с., равное

e0 = NSwB0 = kB0 , (8)

Коэффициент называется градуировочной постоянной измерительной установки. Ее можно определить экспериментально.

Вольтметр, используемый для измерения э. д.с. индукции e, показывает эффективное значение переменного напряжения U, связанное с амплитудным значением э. д.с. (e0) соотношением:

https://pandia.ru/text/80/314/images/image011_30.gif" width="92" height="26"> . (10)

Из формул (9) и (10) следует, что отношение эффективного напряжения в любой точке нахождения ИК к его максимальному эффективному значению в центре соленоида равно отношению магнитной индукции в этой точке к максимальной магнитной индукции в центре соленоида:

. (11)

Поэтому распределение индукции магнитного поля соленоида можно изучать, не вычисляя градуировочную постоянную измерительной установки k.

3.Описание экспериментальной установки.

Внутри исследуемого соленоида при помощи стрежня с указателем, скользящим вдоль шкалы, может перемещаться измерительная катушка. Ось катушки параллельна оси соленоида. ИК можно передвигать и в направлении, перпендикулярном оси соленоида. Установка собирается по электрической схеме, приведенной на рис.1. Обмотка соленоида питается переменным током, измеряемым амперметром и изменяемым при помщи реостата. Э. д.с. индукции, возникающая в ИК, измеряется вольтметром. Это эффективное значение э. д.с. индукции, связанное с амплитудным значением индукции магнитного поля соленоида в точке нахождения ИК по формуле (9).

Измерения сводятся к фиксации координаты расположения ИК относительно соленоида и значения э. д.с. индукции, соответствующего этому положения.

4.Рабочее задание

Задание 4.1. Распределение индукции магнитного поля конечного соленоида.

4.1.1. Соберите электрическую цепь по схеме на рис.1

4.1.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.1.3. Изменяя положение ИК относительно соленоида, измерьте э. д.с. индукции. ИК следует перемещать вдоль оси соленоида 2 см, записывая для каждой координаты показания вольтметра в таблицу 4.1.

4.1.4..gif" width="84" height="45">, пользуясь расчетными формулами (1),(2). Сравните экспериментальную и теоретическую зависимости. Оцените систематическую погрешность проведенных измерений.

Таблица 4.1.

Задание 4.2. Зависимость величины магнитной индукции от силы тока в соленоиде.

4.2.1. Установите ИК в середине соленоида, где магнитное поле максимально.

4.2.2. Для разных значений тока в соленоиде измерьте э. д.с. индукции, наведенной в ИК. Для этих же значений тока рассчитайте значения магнитной индукции в центре конечного соленоида, пользуясь формулой (2). Результаты измерений и вычислений занесите в таблицу 4.2.

4.2.3. Постройте, желательно используя метод наименьших квадратов, график зависимости 0 " style="border-collapse:collapse;border:none">

Ток соленоида, Ic, A

Э. д.с. индукции

Индукция магнитного поля

Предел измерения

Показание прибора

Значение тока

Вmax, 10-3 Тл

Рис 1.Электрическая схема экспериментальной установки

Задание 4.3. Радиальное распределение индукции магнитного поля конечного соленоида.

4.3.1. Установите ИК на краю соленоида.

4.3.2. Установите фиксированный ток в обмотке соленоида 1,5А.

4.3.3. Передвигая Ик в направлении, перпендикулярном оси соленоида, измерьте э. д.с. индукции. ИК следует перемещать на 0,5 см, записывая для каждой координаты показания вольтметра в таблицу 4.3.

4.3.4. Зная значение градуировочной постоянной измерительной установки, вычислите по формуле (9) для каждой координаты значение индукции магнитного поля.

4.3.5. Постройте график зависимости В = f(х).

4.3.6. Установите ИК в центре соленоида.

4.3.7. Выполните для этого положения ИК задания п. п. 4.3.4.-4.3.6.

4.3.8. Перепишите в тетрадь следующие постоянные величины: длину соленоида, его диаметр, число его витков, длину измерительной катушки, ее диаметр, число ее витков.

Таблица 4.3.

В приложении приведена программа для обработки результатов лабораторной работы на ЭВМ. При вводе экспериментальных данных не забудьте перевести их в систему единиц СИ.

5.Контрольные вопросы

5.1. Что такое индукция магнитного поля?

5.2. Какие методы измерения магнитной индукции Вы знаете?

5.3. В чем заключается явление электромагнитной индукции?

5.4. Можно ли в данной работе использовать источник постоянного тока?

5.5. Какова природа возникновения э. д.с. индукции в ИК?

5.6. Выведите формулу индукции магнитного поля бесконечно длинного соленоида.

5.7. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?

5.8. Каков источник систематической погрешности?

6.Литература

6.1. Калашников.-М.:Наука, 1977.

6.2. Сивухин курс физики.-М.: Наука, 1977.

6.3. Матвеев и магнетизм. -М.: Высшая школа, 1991.

6.4. , Малов общей физики: Электричество и магнетизм.-М.: Просвещение, 1980.