Индий. Химические элементы

Индий - металл серебристо-белого цвета с сильным блеском, внешне сходный с цинком. По твердости близок к литию, легко режется ножом. Плотность индия 7.31 г/см3, плавится при температуре 156,5°C. При этом, подобно галлию, температура кипения на пару тысяч градусов выше температуры плавления - 2080°C.

По химическим свойствам похож на алюминий и галлий, поскольку эти металлы находятся в одной группе периодической системы химических элементов, но в целом в реакциях менее активен. Устойчив во влажной атмосфере, не растворяется в щелочах. Реагирует почти со всеми кислотами, медленно растворяется даже в слабых органических.

Индий относится к редким и рассеянным элементам, он не образует собственных месторождений и добывается в качестве побочного продукта при переработке руд других металлов. Для получения индия промышленное значение имеют только те минералы, в которых его содержится не меньше, чем 0,1%. Как правило, больше всего его в сфалерите (сульфид цинка), но и там его количество не превышает 0.5 %. Таким образом, производство индия всегда сопутствует производству цинка, в меньшей степени – олова и свинца. Схема извлечения индия при этом довольно сложная, поскольку металл не обладает отличительными химическими свойствами, которые могли бы помочь в его выделении отдельно от других металлов; при этом последовательно применяются такие методы как ионный обмен, экстракция, а также гидролитическое осаждение и цементация, использующие небольшие различия в степени гидролиза солей и стандартных потенциалах разных металлов. Образующийся на последней стадии черновой металл очищают различными методами, в частности зонной плавкой, позволяющей получить индий чистотой до 99.99999%.

Наиболее обширно используется индий и его соединения в технике: изготовление жидкокристаллических экранов (тонкая пленка из оксида индия-олова), микроэлектроника (примесь к германию и кремнию), уплотнитель в технике высокого вакуума (в частности, космических аппаратов), покрытие зеркал (в частности астрономических, где имеет значение постоянство коэффициента отражения в видимой части спектра), термоэлектрические материалы на основе арсенида индия, производство очень стабильных аккумуляторов с высокой удельной энергоёмкостью для специальных целей (система из оксида ртути и индия), покрытие некоторых элементов двигателей для снижения износа. Помимо этого, индий является важным компонентом припоев (вследствие высокой адгезии индия такая добавка позволяет спаивать металлы со стеклом и другими материалами), из его изотопов изготовляют радиофармацевтические препараты, его ортофосфат добавляют в зубные цементы, а ряд соединений индия обладает люминесцентными свойствами, что находит применение в различных областях. Также сплав индия (5%) с золотом и серебром используется в качестве декоративного металла (так называемое зеленое золото)

Таким образом, с развитием техники растет и потребление индия. При этом производство ЖК-экранов потребляет не менее половины от всего добываемого металла Производство первичного индия (от 500 до 800 тонн в год) время от времени догоняет потребность, что вызывает непостоянство цен. По некоторым оценкам, запасы природного индия будут исчерпаны к 2030 году, если не возрастет степень его вторичной переработки и повторного использования.

Индий был открыт в 1863 г. Райхом (Reich) и Рихтером (Richter) в остатках от переработки цинковой обманки из Фрейбергского месторождения, которую они исследовали спектроскопически на присутствие таллия. Новый элемент был обнаружен по своеобразной индиго-синей линии и был назван по ее цвету. Вначале индий считали двухвалентным. Однако Менделеев на основании свойств индия поставил его на правильное место в периодической системе и установил его трехвалентность. Валентность, равная трем, была вскоре подтверждена определением удельной теплоемкости, путем вычисления атомного объема и открытием соответствующих квасцов.

Получение:

В качестве исходного продукта для получения индия в первую очередь используются полупродукты от выплавки свинца и цинка из руд, содержащих индий. Цинк с относительно высоким содержанием индия обрабатывают соляной кислотой в количестве, недостаточном для полного растворения цинка. Индий при этом остается в шламе, из раствора этого шлама большая часть имеющихся тяжелых металлов осаждается сероводородом. Из фильтрата после прибавления аммиака индий выделяется в виде гидроксида, обычно вместе с железом. Способ отделения железа от индия зависит от содержания последнего.
Получение металлического индия из оксида нагреванием в токе водорода или электролизом кислых растворов не представляет особых трудностей из-за легкой восстанавливаемости соединений индия.

Физические свойства:

Индий - серебристо-белый, обладающий сильным блеском металл. Он очень мягкий, легко режется ножом и плавится при весьма низкой температуре (температура плавления 156,4°). Температура кипения, напротив, довольно высока (2300°). Удельный вес 7,31. Удельная теплоемкость 0,057.

Химические свойства:

В атмосфере сухого воздуха индий не теряет блеск, при нагревании он покрывается пленкой, но сильно окисляться начинает только при температуре выше температуры плавления. При нагревании в токе хлора индий энергично сгорает. Он непосредственно соединяется и с другими галогенами, а также с серой.
С обычными кислотами реагирует медленно, быстрее с азотной кислотой, со щелочами не взаимодействует.

Важнейшие соединения:

В соединениях степень окисления индия обычно +3, реже, особенно в соединениях с галогенами и халькогенами +2 и +1. Для соединений индия в низших степенях окисления характерно диспропорционирование в водной среде на соединения индия(III) и свободный металл.
Оксид индия In 2 O 3 образуется пря нагревания гидроксида, сульфата или нитрата. Это светло-желтый порошок, при нагревании темнеющий, растворимый в кислотах и нерастворимый в воде, щелочах и аммиаке.
Гидроксид индия(III) , In 2 O 3 ·aq выпадает из раствора солей индия при добавлении аммиака. Гидроксид - белый, студенистый осадок, нерастворимый в разбавленном аммиаке, может легко образовать коллоидный раствор, что препятствует его выпадению. Легко растворим в кислотах и в избытке щелочей, является амфотерным соединением.
Соли : например, нитрат In(NО 3) 3 ·41/2Н 3 О; сульфат In 2 (SO 4) 3 . Соли трехвалентного индия, как правило, бесцветны, за исключением оксалатов, фосфатов и сульфидов, легко растворимы в воде. В растворе они сильно гидролизованы.
В щелочной среде образуются кислородсодержащие соли, в которых индий входит в состав аниона, называемые индатами . Индий также может образовывать ацидосоединения. В водном растворе индий не образует аммиачных комплексов.
Галогениды InCl 3 и InВг 3 бесцветны, InI 3 существует в желтой и красной модификации, растворимы (InF 3 очень мало растворим). В парообразном состоянии галогениды ассоциированы в димерные молекулы, так же как галогениды алюминия.
Двойные соли (ацидосоли): например, K 3 InCl 6 ·11/2H 2 O (гексахлороиндат(III) калия); NH 4 In(SO 4) 2 ·12H 2 O (аммониевые квасцы индия).
Хлорид индия(II) InCl 2 получают при нагревании индия в токе хлористого водорода в виде янтарно-желтого расплава, который застывает в бесцветные кристаллы. Считают, что в решетке места катионов заполнены статистически распределенными ионами In+ и In3+, In. Вода разлагает InCl 2 на металлический индий и InCl 3 . Реакция идет в две стадии:
1) 2InCl 2 = InCl + InCl 3
2) 3InCl = 2In + InCl 3 .

Применение:

Индий используется вместо серебра для покрытия рефлекторов; рефлекторы, покрытые индием, со временем не тускнеют, и поэтому их коэффициент отражения остается постоянным.
Индий применяется также для покрытия вкладышей подшипников и в качестве одного из компонентов сплава для плавких предохранителей.
В качестве присадок к германию и в виде интерметаллических соединений с мышьяком и с сурьмой индий применяется в полупроводниковой электронике.
Мировое производство (без СССР) - около 45 т/год (1979).

Сфалерит, марматит, франклинит, алунит, каламин, родонит, флогопит, мангантанталит, сидерит, касситерит, вольфрамит, самарскит. Таков далеко не полный перечень минералов, в которых содержится элемент №49 – индий.

СССР, Финляндия, Япония, Швеция, США, ФРГ, Перу, Канада – вот неполный перечень стран, в которых есть месторождения индия. Несмотря на это, еще в 1924 г. мировой запас металлического индия весил... 1 г.

Тому несколько причин. Во-первых, это физико-механические свойства индия. Они очень своеобразны, спутать этот металл с каким-либо другим невозможно. Своеобразны и, как казалось тогда, бесполезны. Во-вторых, извлечь индий из минералов достаточно сложно. Это один из рассеянных элементов.

Ни в одном из перечисленных минералов среднее содержание элемента №49 не превышает десятых долей процента. Собственно индиевые минералы – рокезит CuInS 2 , индит FeIn 2 S 4 и джалиндит In(ОН) 3 – очень редки. Крайне редко встречается и самородный индий, хотя при нормальных условиях этот металл кислородом воздуха не окисляется и вообще ему присуща значительная химическая стойкость.

Именно из-за крайней рассеянности индий был открыт лишь во второй половине XIX в. Об открытии элемента свидетельствовали не слитки или крупицы, а лишь характерная синяя линия в спектре.

История индия

В середине прошлого века два крупных немецких ученых Густав Роберт Кирхгоф и Роберт Вильгельм Бунзен пришли к выводу об индивидуальности линейчатых спектров химических элементов и разработали основы спектрального анализа. Это был один из первых методов исследования химических объектов физическими средствами.

Этим методом Бунзен и Кирхгоф в 1860...1861 гг. открыли рубидий и цезий. Взяли его на вооружение и другие исследователи. В 1862 г. англичанин Уильям Крукс в ходе спектроскопического исследования шлама, присланного с одного из немецких сернокислотных заводов, обнаружил линии нового элемента – таллия. А еще через год был открыт индий, причем самый молодой по тому времени метод анализа и самый молодой элемент сыграли в этом открытии не последние роли.

В 1863 г. немецкие химики Рейх и Рихтер подвергли спектроскопическому анализу цинковую обманку из окрестностей города Фрейберга. Из этого минерала ученые получили хлорид цинка и поместили его в спектрограф, надеясь обнаружить характерную для таллия ярко-зеленую линию. Надежды оправдались, однако не эта линия принесла Рейху и Рихтеру мировую известность.

В спектре оказалась и линия синего цвета (длина волны 4511 Å), примерно такого же, какой дает известный краситель индиго. Ни у одного из известных элементов такой линии не было.

Так был открыт индий – элемент, названный по цвету характерной для него индиговой линии в спектре.

До 1870 г. индий считался двухвалентным элементом с атомным весом 75,6. В 1870 г. Д.И. Менделеев установил, что этот элемент трехвалентен, а его атомный вес 113: так получалось из закономерностей периодического изменения свойств элементов. В пользу этого предположения говорили также новые данные о теплоемкости индия. Какие рассуждения привели к этому выводу, говорится в отрывке из статьи Д.И. Менделеева (см. ниже «Менделеев об индии»).

Позже было установлено, что природный индий состоит из двух изотопов с массовыми числами 113 и 115. Преобладает более тяжелый изотоп – на его долю приходится 95,7%.

До 1950 г. считалось, что оба эти изотопа стабильны. Но в 1951 г. выяснилось, что индий-115 подвержен бета-распаду и постепенно превращается в олово-115. Процесс этот происходит очень медленно: период полураспада ядер индия-115 очень велик – 6·10 14 лет. Из-за этого и не удавалось обнаружить радиоактивность индия раньше.

В последние десятилетия искусственным путем получено около 20 радиоактивных изотопов индия. Самый долгоживущий из них 114 In имеет период полураспада 49 дней.

Как получают индий

Говорят, что в химии нет бесполезных отходов. Одним из доказательств справедливости такого взгляда на вещи может служить тот факт, что индий получают из отходов (или промежуточных продуктов) производства цинка, свинца, меди, олова. Используются пыли, возгоны, кеки (так называются твердые остатки, полученные после фильтрации растворов). Во всех этих веществах индия немного – от тысячных до десятых долей процента.

Вполне естественно, что выделение столь малых количеств элемента №49, отделение его от массы других элементов – цинка, кадмия, сурьмы, меди, мышьяка и прочих – дело очень сложное. Но «игра стоит свеч»: индий нужен, индий дорог*.

* В 1960 г. в США килограмм индия стоил 40,2 доллара, в то время как килограмм серебра – 29,3 доллара.

Технология извлечения индия, как и многих других металлов, обычно состоит из двух стадий: сначала получают концентрат, а затем уже черновой металл.

На первой стадии концентрирования индий отделяют от цинка, меди и кадмия. Это достигается простым регулированием кислотности раствора или, точнее говоря, величины pH. Гидроокись кадмия осаждается из водных растворов при pH, равном 8, гидроокиси меди и цинка – при 6. Для того чтобы «высадить» гидроокись индия, pH раствора нужно довести до 4.

Хотя технологические процессы, основанные на осаждении и фильтровании, известны давно и считаются хорошо отработанными, они не позволяют извлечь из сырья весь индий. К тому же они требуют довольно громоздкого оборудования.

Более перспективным считается метод жидкостной экстракции. Это процесс избирательного перехода одного или нескольких компонентов смеси из водного раствора в слой несмешивающейся с ним органической жидкости. К сожалению, в большинстве случаев в «органику» переходит не один элемент, а несколько. Приходится экстрагировать и реэкстрагировать элементы по нескольку раз – переводить нужный элемент из воды в растворитель, из растворителя снова в воду, оттуда в другой растворитель и так далее, вплоть до полного разделения.

Для некоторых элементов, в том числе и для индия, найдены реактивы-экстрагенты с высокой избирательной способностью. Это позволяет увеличивать концентрацию редких и рассеянных элементов в сотни и тысячи раз. Экстракционные процессы легко автоматизировать, это одно из самых важных их достоинств.

Из сложных по составу сернокислых растворов, в которых индия было намного меньше, чем Zn, Cu, Cd, Fe, As, Sb, Co, Mn, Tl, Ge и Se, индий хорошо, избирательно, экстрагируется алкилфосфорными кислотами. Вместе с индием в них переходят в основном ионы трехвалентного железа и сурьмы.

Избавиться от железа несложно: перед экстракцией раствор нужно обрабатывать таким образом, чтобы все ионы Fe 3+ восстановились до Fe 2+ , а эти ионы индию не попутчики. Сложнее с сурьмой: ее приходится отделять реэкстракцией или на более поздних этапах получения металлического индия.

Метод жидкостной экстракции индия алкилфосфорными кислотами (из них особенно эффективной оказалась ди-2-этилгексилфосфорная кислота) позволил значительно сократить время получения этого редкого металла, уменьшить его себестоимость и, главное, извлекать индии более полно.

Но так получают только черновой индий. А в числе главных потребителей элемента №49 – полупроводниковая техника (об этом ниже); значит, нужен высокочистый индий. Поэтому черновой индий рафинируют электрохимическими или химическими методами. Сверхчистый индий получают зонной плавкой и методом Чохральского – вытягиванием монокристаллов из тиглей.

На что индий не годен

Индий – довольно тяжелый (плотность 7,31 г/см 3) и красивый металл серебристо-белого цвета. Его поверхность не замутнена окисной пленкой, на свету ярко блестит даже расплавленный индий.

Тем не менее, никому не придет в голову делать украшения из этого металла. Ювелиры совершенно не интересуются им, как, впрочем, и большинство конструкторов. В качестве конструкционного материала индий абсолютно ни на что не пригоден. Стержень из индия легко согнуть, порезать на кусочки, можно даже отщипнуть кусочек индия ногтями. Удивительно хилый металл! Известно, что свинец тоже не блещет выдающимися прочностными характеристиками, он самый непрочный из металлов, с которыми мы встречаемся в повседневной жизни. У индия же предел прочности на растяжение в 6 раз меньше, чем у свинца.

В качестве примера очень мягкого, податливого к обработке металла приводят обычно чистое золото или тот же свинец. Индий в 20 раз мягче чистого золота. Из десяти минералов, составляющих шкалу твердости по Моосу, девять (все, кроме талька) оставляют на индии след. Однако, как это ни странно, добавка индия увеличивает твердость свинца и особенно олова.

Недостаточные твердость и прочность индия закрыли ему доступ во многие области техники. К примеру, индий достаточно хорошо захватывает тепловые нейтроны, можно было бы использовать его как материал для регулирующих стержней в реакторах. Однако в справочнике по редким металлам он не фигурирует даже в числе возможных конструкционных материалов атомной техники – слишком непрочен. (Правда, есть сведения, что за рубежом пытались делать регулирующие стержни из сплава серебра, кадмия и индия).

Но, несмотря на исключительно скверные прочностные характеристики индия, его производство растет и растет довольно быстро.

На что индий годен

Естественно, что в XIX в. рассеянный и непрочный индий не находил практического применения. Лишь в 30-х годах нашего столетия появились промышленные способы получения элемента №49 – следствие того, что инженеры поняли, наконец, где и как использовать его своеобразнейшие свойства.

Вначале индий применяли главным образом для изготовления подшипников. Добавка индия улучшает механические свойства подшипниковых сплавов, повышает их коррозионную стойкость и смачиваемость.

Широко распространены свинцово-серебряные подшипники с индиевым поверхностным слоем. Делают их так. На стальную основу наносят электролитическим способом тонкий слой серебра. Назначение этого слоя – придать подшипнику повышенное сопротивление усталости. Поверх серебряного слоя таким же образом наносят слой пластичного свинца, а на него – слой еще более пластичного индия.

Но, как мы уже упоминали, сплав свинца и индия прочнее и тверже, чем каждый из этих металлов в отдельности. Поэтому четырехсложный (если считать и стальную основу) подшипник нагревают – для лучшей диффузии индия в свинцовый слой. Часть индия проникает в свинец и превращает его в свинцово-индиевый сплав. Происходит, конечно, и обратный процесс – диффузия свинца в слой индия. Но толщину последнего слоя рассчитывают таким образом, чтобы и после прогрева рабочая поверхность подшипника была если не полностью индиевой, то сильно обогащенной индием.

Такие подшипники устанавливают в авиационных и автомобильных двигателях. Четырехслойная конструкция – это пятикратный срок службы подшипника по сравнению с обычными.

В некоторых странах Европы производят также свинцово-бронзовые подшипники с индиевым поверхностным слоем.

Индий нашел применение и в производстве некоторых сплавов, особенно легкоплавких. Известен, например, сплав индия с галлием (соответственно 24 и 76%), который при комнатной температуре находится в жидком состоянии. Его температура плавления всего 16°C. Другой сплав, в состав которого вместе с индием входят висмут, свинец, олово и кадмий, плавится при 46,5°C и применяется для пожарной сигнализации.

Иногда индий и его сплавы применяют в качестве припоя. Будучи расплавленными, они хорошо прилипают ко многим металлам, керамике, стеклу, а после охлаждения «схватываются» с ними накрепко. Такие припои применяются в производстве полупроводниковых приборов и в других отраслях техники.

Полупроводниковая промышленность вообще стала основным потребителем индия. Некоторые соединения элемента №49 с элементами V группы обладают ярко выраженными полупроводниковыми свойствами. Наибольшее значение приобрел антимонид индия (интерметаллическое соединение последнего с сурьмой), у которого особенно сильно меняется электропроводность под действием инфракрасного излучения. Он стал основой инфракрасных детекторов – приборов, «видящих» в темноте нагретые предметы (от электроплитки до выхлопной трубы танка или мотора тягача). Кстати, получить это соединение очень просто – нагреванием механической смеси индия и сурьмы. Делается это, конечно, в более чем стерильных условиях – в кварцевых ампулах, в вакууме.

Арсенид индия InAs тоже применяется в инфракрасных детекторах, а также в приборах для измерения напряженности магнитного поля. Для производства квантовых генераторов, солнечных батарей, транзисторов и других приборов перспективен и фосфид индия. Однако получить это соединение очень трудно: оно плавится при 1070°C и одновременно разлагается. Избежать этого можно только создав в реакторе большое (порядка десятков атмосфер) давление паров фосфора.

«Сердцем» большинства полупроводниковых приборов считают так называемый p–n -переход. Это граница полупроводников p -типа – с дырочной проводимостью и n -типа – с электронной проводимостью. Примесь индия придает германию дырочную проводимость. Это обстоятельство лежит в основе технологии изготовления многих типов германиевых диодов. К пластинке германия n -типа прижимается контактная игла, покрытая слоем индия, который во время формовки вплавляют в германий, создавая в нем область p -проводимости. А если два шарика индия вплавить с двух сторон германиевой пластинки, то тем самым создается p–n–p -структура – основа транзисторов.

О прочих применениях элемента №49 и его соединений обычно говорят, добавляя эпитет «возможные» или «потенциальные». Их немало.

К примеру, легкоплавкий индий мог бы служить отличной смазкой для трущихся деталей, работающих при температурах выше 160, но ниже 2000°C – такие температуры часто развиваются в современных машинах и механизмах.

Разнообразие существующих и возможных применений однозначно утверждает: «хилому» металлу индию уже никогда не быть безработным.

Менделеев об индии

Отрывок из статьи «Периодическая законность химических элементов», 1871 г.

«Положим, что дан элемент, образующий одну, выше не окисляющуюся, не очень энергическую основную окись, в которой эквивалент элемента = 38 (надо не забыть, что в этом числе заключается некоторая, неизбежная погрешность). Спрашивается, какой его атомный вес или какова формула его окиси? Придав окиси состав R 2 0, будем иметь R = 38, и элемент должно поместить в I группу. Но там на этом месте уже стоит K = 39, да судя по атоманалогии основание такого рода должно быть и растворимое, и энергическое. Придав окиси состав RO, атомный вес R будет = 76, но во II группе нет места для элемента с таким атомным весом, потому что Zn = 65, Sr = 87, да и все места элементов с малыми атомными весами в ней полны... Придав окиси состав R 2 O 3 , будем иметь для R атомный вес = 114 и его должно отнести к III группе. В ней действительно есть свободное место между Cd = 112 и Sn = 118 для элемента с атомным весом около 114. Судя по атоманалогии с Al 2 O 3 и Тl 2 O 3 , с CdO и SnO 2 , окись его должна быть слабым основанием. Следовательно, можно сюда поставить наш элемент. Придав (же) ей состав RO 2 , получим атомный вес R = 152, но в IV группе нет места для такого элемента. Свободное место, соответствующее элементу с атомным весом 162, должно принадлежать такому, окись которого будет очень слабою кислотою, слабейшею, чем SnO 2 , но более энергическою, чем PbO 2 . С атомным весом 152 есть свободное место в VIII группе, но элемент этого места, занимая средину между Pd и Pt, должен обладать такою совокупностию свойств, которую нельзя не заметить при изучении тела, и если ее нет в нем, то это место и этот вес атома ему и не подходят. Придав окиси состав R 2 O 5 , получим атомный вес R = 190, но в V группе нет места для такого элемента, потому, что Ta = 182 и Bi = 208, да и элементы этих мест кислотны в виде R 2 O 5 .

Точно так же не подходят нашему элементу и составы окислов RO 3 и R 2 O 7 , а потому единственный приличный для нашего элемента атомный вес есть R = 114, а окиси его формула R 2 O 3 .

Но такой элемент и есть индий . Его эквивалент по наблюдению Винклера = 37,8, следовательно, его атомный вес должен быть изменен (до сих пор признавали его = 75, а окись за InO) в In = 113, состав его окиси In 2 O 3 , его атоманалоги из группы III суть Al и Tl, а из 7-го ряда – Cd и Sn...

Чтобы убедиться в справедливости приведенного выше изменения в формуле окиси индия и в атомном весе индия, я определил его теплоемкость и нашел ее (0,055) согласною с тем выводом, который был сделан на основании закона периодичности, по в то же время Бунзен, испытывая свой изящный калориметрический прием, также определил теплоемкость индия, и наши результаты оказались согласными (Бунзен дает число 0,057), а потому нет никакого сомнения в том, что путем применения закона периодичности ость возможность исправлять атомные веса мало исследованных элементов».

Индий-защитник

Износостойкость материала обычно увеличивают, нанося на его поверхность какой-нибудь твердый сплав. Это понятно: при трении твердый покров мало истирается и защищает от износа основной материал. Однако можно повышать износостойкость и другим способом – нанесением мягкого индия. Дело в том, что индий значительно уменьшает коэффициент трения. Например, стальные фильеры для волочения алюминия после покрытия индием изнашиваются почти в полтора раза медленнее, чем обычные. Индий применяют также для защиты острий контактов и графитовых щеток в электроприборах.

На железо и сталь нельзя непосредственно наносить индий. Поэтому железные и стальные изделия сначала покрывают тонким слоем (до 0,025 мм) цинка или кадмия, затем наносят индий и нагревают до температуры чуть большей, чем температура плавления индия. За несколько часов выдержки при такой температуре индий и материал подслоя взаимно диффундируют. Образуется прочное, устойчивое к коррозии и истиранию покрытие.

Гори, гори ясно...

Издавна считается, что лучше всего прожекторные зеркала делать из серебра. Однако, обладая высокой отражательной способностью, серебро довольно быстро тускнеет на воздухе. На помощь светотехникам пришел индий. Серебряные зеркала с индиевым покрытием не теряют отражательной способности намного дольше серебряных.

Соли индия применяют в качестве добавок к некоторым люминесцентным составам. Они уничтожают фосфоресценцию состава, после того как возбуждение снято. Если обычная люминесцентная лампа после выключения еще некоторое время продолжает светить, то лампа с составом, содержащим соли индия, гаснет сразу после выключения.

Металлический «мыльный пузырь»

Тонкостенный полый шар или оболочку иной формы проще всего сделать так. Из легкоплавкого индиевого сплава отливают изделие нужной формы и электролитически покрывают его нужным металлом. После этого изделие нагревают, индиевый сплав плавится и выливается, а в руках мастера остается тонкая оболочка.

Индий и стекло

Соединить металл со стеклом можно при помощи простой пайки, если припоем служит известный сплав Вуда с добавкой 18% индия. Такой припой плавится при 46,5°C. А чтобы сделать стекло проводящим электричество, его покрывают окисью индия. При этом прозрачность стекла практически не уменьшается. Индиевые нити применяют также для нанесения сеток на объективы телескопов.

Элемент индий обладает многими полезными свойствами, благодаря которым его можно использовать в космонавтике, технике, электронике, атомной промышленности и других отраслях. Однако найти его в природе и отделить от других веществ чрезвычайно сложно. Из-за этого он числится в списке редких элементов. Какими свойствами обладает индий? Металл это или неметалл? Давайте узнаем обо всех его особенностях.

История открытия элемента

Индий был впервые обнаружен всего 154 года назад. Отчасти это произошло случайно, ведь его первооткрыватели искали совсем другой элемент. В 1863 году химики Теодор Рихтер и Фердинанд Райх пытались обнаружить в минерале сфалерите (цинковой обманке) таллий – новый на то время металл, который только предстояло изучить.

Для своих поисков они использовали спектральный анализ Кирхгофа и Бунзена. Суть метода состоит в том, что при нагревании до высоких температур атомы элементов начинают излучать свет, соответствующий конкретному диапазону частот. По спектру этого свечения можно выяснить, что за элемент перед вами. У таллия цвет должен быть ярко-зеленым, но вместо него ученые обнаружили голубое свечение. Ни один известный элемент не обладал таким спектром, и химики поняли, что им улыбнулась удача. Из-за особенностей оттенка свою находку они назвали в честь цвета индиго. Так и был обнаружен новый металл – индий. А теперь более подробно об особенностях.

Что это за металл?

Индий – светло-серебристый и очень блестящий металл, напоминающий цинк. В Периодической системе он относится к третьей группе, стоит под номером 49 и обозначается символом In. В природе он существует в виде двух изотопов: In113 и In115. Последний более распространен, но является радиоактивным. Какой период у металла индий 115? Он распадается за 6·1014 лет, превращаясь в олово. Существует также около 20 искусственных изотопов, которые распадаются гораздо быстрее. У наибольшего «долгожителя» среди них период полураспада составляет 49 дней.

Индий плавится при температуре +156,5 °C и кипит при +2072 °C. Он легко поддается ковке и другому механическому воздействию и вполне мог бы использоваться в ювелирных изделиях. Однако из-за высокой мягкости он быстро деформируется. Металл без труда можно согнуть, разрезать ножом и даже поцарапать ногтем.

Химические свойства

По своим химическим свойствам он похож на галлий или алюминий. Непрерывных твердых соединений он не может образовать ни с каким металлом. Он совершенно не реагирует с растворами щелочей. При определенных температурах вступает в реакцию с йодом, селеном, серой и ее диоксидом, реагирует с хлором и бромом. В индии запросто растворяются металлы, которые окружают его в Периодической системе, а именно: таллий, олово, галлий, свинец, висмут, ртуть, кадмий.

Несколько интересных фактов о металле индии: Даже при длительном пребывании не воздухе он не тускнеет. Не происходит это и при расплавлении металла. Если начать сгибать индий, то он издаст характерный звук, похожий на скрип или хруст. Он появляется от деформации кристаллической решетки вещества. Индий горит при +800 °С, пламя при этом окрашено в сине-фиолетовый цвет, или же цвет индиго. Это самый мягкий металл, который можно держать в руках. Превосходит его только литий, но он слишком активен и сразу же окисляется на воздухе, образуя ядовитую щелочь. Сплав индия с галлием является очень легкоплавким и становится жидким уже при +16 °C.

Металл индий не образует самостоятельных месторождений. Он очень рассеян и в виде самородков встречается крайне редко. Среди собственных минералов индия: сакуранит, рокезит, патрукит, джалиндит. Однако их редкость не позволяет применять их в промышленности. Небольшое количество индия встречается в морской и дождевой воде, в нефти, а также в золах каменного угля. Из-за схожести ионных радиусов индий способен встраиваться в кристаллические решетки железа, магния, цинка, свинца, маганца, олова и т. д. Благодаря этому его незначительное количество иногда обнаруживают вместе с ними. Как правило, содержание индия в минералах не превышает 0,05-1%. Больше всего металла содержится в сфалеритах и мармаритах. Обычно его концентрация тем выше, чем больше в них цинка, железа и других, уже названных металлов.

Цена металла

Индий уже через несколько лет после открытия удалось выделить в чистом виде. Из-за сложности этого процесса, один грамм индия тогда оценивался примерно в 700 долларов. И хотя за полтора столетия методы его получения значительно улучшились, он до сих пор считается редким и дорогим. Сегодня его средняя цена составляет 600-800 долларов за килограмм и, что удивительно, не сильно падает с увеличением объемов его добычи. Чистота металла обычно указывается в его маркировке: ИН-2, ИН-1, ИН-0, ИН-00, ИН-000, ИН-00000. Чем больше нулей, тем он качественнее и дороже. Например, индий марки ИН-000 может оцениваться в сумму около 2000 долларов за килограмм. Высокая стоимость металла индия объясняется и его низким содержанием в природе, и большим спросом. В год добывается 600-800 тонн, что абсолютно не покрывает всех потребностей в нем. Благодаря своим уникальным свойствам он оказывается гораздо лучше и долговечнее других, более дешевых металлов. Чтобы не терять столь ценный материал, во многих странах его используют вторично.

Где применяют

Металл индий повышает смачиваемость и стойкость сплава к коррозии. Им покрывают свинцово-серебряные подшипники, которые используют в авиационной и автомобильной технике. Он также способен понижать температуру плавления других металлов. Так, его смесь с оловом, свинцом, кадмием и висмутом плавится при 46,5 °С, благодаря чему используется для пожарной сигнализации. Окись индия и олова применяется для полупроводников и различных припоев. Кроме того, ее используют для изготовления компьютерных мониторов, экранов телевизоров и планшетов. В сплаве с серебром или самостоятельно он применяется для астрономических зеркал и зеркал автомобильных фар.

Он отлично подходит для создания фотоэлементов, люминофоров, термоэлектрических материалов, уплотнителей в космической технике. Индий хорошо поглощает нейтроны и может использоваться в атомных реакторах. О биологической роли этого элемента в нашем организме ничего не известно, однако его научились использовать и в медицине. Его применяют как радиоактивный препарат при диагностировании печени, мозга и легких для обнаружения опухолей и других заболеваний.

Способы получения

Основное количество металла индия добывают из цинковых и оловянных месторождений. Его получают из отходов от переработки полиметаллических, оловянных, свинцово-цинковых руд. Отделение и очищение индия проводится в несколько стадий.

Сначала его осаждают при помощи регулирования уровня кислотности раствора. Полученный «черновой металл» затем нужно очистить. Делают это путем рафинирования зонной плавкой или другими способами. На сегодняшний день одним из главных производителей индия является Канада. Кроме нее, большие объемы металла добывают США, Китай, Япония, Южная Корея. Однако запасы этого элемента очень ограничены, предполагается, что они иссякнут в течение нескольких десятков лет.

Содержание статьи

ИНДИЙ (Indium) In – химический элемент 13-й (IIIa) группы периодической системы, атомный номер 49, атомная масса 114,82. Строение внешней электронной оболочки 5s 2 5p 1 . Известно 37 изотопов индия с 98 In по 134 In. Среди них лишь один стабильный 113 In. В природе два изотопа: 113 In (4,29%) и 115 In (95,71%) с периодом полураспада 4,41·10 14 лет. Наиболее устойчивая степень окисления в соединениях: +3.

Открытие индия произошло в эпоху бурного развития спектрального анализа – принципиально нового (в те времена) метода исследования, открытого Кирхгоффом и Бунзеном. Французский философ О.Конт писал, что у человечества нет никакой надежды узнать, из чего состоят Солнце и звезды. Прошло несколько лет, и в 1860 спектроскоп Кирхгоффа опроверг это пессимистичное предсказание. Последующие пятьдесят лет были временем наиболее крупных успехов нового метода. После того как было установлено, что у каждого химического элемента есть свой спектр, являющийся столь же характерным для него свойством, как дактилоскопический отпечаток – признаком человека, началась «погоня» за спектрами. Помимо выдающихся исследований Кирхгоффа (едва не приведших его к полной слепоте) элементного состава Солнца, не менее триумфальными были наблюдения спектров земных объектов: в 1861 были открыты цезий, рубидий и таллий.

В 1863 профессор Фрейбергской минералогической школы (Германия) Фердинанд Рейх (1799–1882) и его ассистент Теодор Рихтер (1824–1898) спектроскопически исследовали образцы цинковой обманки (минерала сфалерита, ZnS), чтобы обнаружить в них таллий . Из образца сфалерита действием соляной кислоты Рейх и Рихтер выделили хлорид цинка и поместили его в спектрограф с надеждой зарегистрировать появление ярко-зеленой линии, характерной для таллия. Профессор Ф.Рейх страдал дальтонизмом и не мог различать цвета спектральных линий, поэтому все наблюдения регистрировал его ассистент Рихтер. Обнаружить присутствие таллия в образцах сфалерита не удалось, но каково же было удивление Рейха, когда Рихтер сообщил ему о появлении в спектре ярко-синей линии (4511Å). Было установлено, что линия не принадлежала ни одному из известных до этого элементов и отличалась даже от ярко-синей линии спектра цезия. В силу сходства цвета характеристической полосы в эмиссионном спектре с цветом красителя индиго (латинское «indicum» – индийская краска) открытый элемент был назван индием.

Так как новый элемент был обнаружен в сфалерите, первооткрыватели сочли его аналогом цинка и приписали ему неверную валентность, равную двум. Они определили и атомный вес эквивалента индия, который оказался 37,8. Исходя из валентности 2, был неверно установлен атомный вес элемента (37,8 × 2 = 75,6). Только в 1870 Д.И.Менделеев на основании периодического закона установил, что индий имеет валентность, равную трем, и является, таким образом, аналогом алюминия, а не цинка.

Таким образом, в 1871 индий стал 49-ым элементом периодической системы.

Индий в природе.

По содержанию в земной коре индий относится к типичным редким элементам, а по характеру распространения – к типичным рассеянным элементам. Кларк индия в земной коре равен 1,4·10 –5 %. Сейчас известно около десяти собственных минералов индия: самородный индий (редчайшие экземпляры), сложные сульфиды индит FeIn 2 S 4 , рокезит CuInS 2 , сакуранит (CuZnFe) 3 InS 4 и патрукит (Cu,Fe,Zn) 2 (Sn,In)S 4 , интерметаллид йиксуит PtIn, джалиндит In(OH) 3 . Эти минералы не имеют практического значения вследствие своей исключительной редкости. Близость ионного радиуса индия с размерами ионов более распространенных металлов (Fe, Zn, Mn, Sn, Mg, Pb и др.) приводит к тому, что в природе индий встраивается в кристаллические решетки минералов этих элементов. Однако, несмотря на такое сходство, содержание индия в подавляющем большинстве минералов-носителей невелико и редко когда выходит за пределы нескольких тысячных долей процента. Количество минералов, в которых содержание индия достигает нескольких десятых долей процента (0,05–1%) чрезвычайно мало. Среди них можно отметить цилиндрит Pb 3 Sn 4 Sb 2 S 14 (0,1–1% In) и франкеит Pb 5 Sn 3 Sb 2 S 14 (до 0,1% In), минералы класса сульфостаннанов, цинковую обманку ZnS (0,1–1% In), халькопирит CuFeS 2 (0,05–0,1% In) и борнит Cu 3 FeS 3 (0,01–0,05% In). Из-за незначительного распространения в природе сульфостаннанов они не имеют значения для промышленных процессов извлечения индия. Концентрация индия в цинковых обманках тем выше, чем больше содержание в них железа и марганца, а из разнообразных по условиям своего образования обманках (марматит, сфалерит, клейофан) богаты индием ранние высокотемпературные, темноокрашенные представители – марматиты. Так, в сфалерите с высоким содержанием железа (темном сфалерите) содержание индия достигает 1%. Однако среднее содержание индия в сфалеритовых месторождениях не превышает и сотой доли процента.

В небольших концентрациях индий обнаружен в золе каменных углей, нефтях некоторых месторождений (до 2,2·10 –6 % In), а также в морской ((0,02–7)·10 –10 % In) и дождевой ((0,002–2)·10 –7 %) воде. Содержание индия во Вселенной оценивается в 3·10 –10 %(масс.) или 3·10 –12 %(ат.).

На сегодняшний день нет достоверных сведений о мировых ресурсах индия, так как его извлечение всегда привязано к переработке цинковых руд. По приблизительным оценкам United States Geological Surveys (по состоянию на июнь 2004) суммарный мировой запас разведанных месторождений индия составляет 2,5·10 3 тонн в пересчете на металл, а объемы резервной базы (с учетом неразведанных ресурсов) – 6·10 3 тонн металла. Мировыми лидерами по запасам индия являются Канада (30% мировых запасов), Китай и США (10% мировых запасов):

Таблица 1. ПРИБЛИЗИТЕЛЬНОЕ РАСПРЕДЕЛЕНИЕ МИРОВЫХ РЕСУРСОВ ИНДИЯ
Страна Ресурсы, тонн Резервная база, тонн
Канада 700 2000
Китай 280 1300
США 300 600
Россия 200 300
Перу 100 150
Япония 100 150
Другие страны 800 1500

Промышленное получение и рынок индия.

Основная доля природного индия приходится на свинцово-цинковые месторождения (70–75%) и лишь небольшая его часть на оловянные месторождения (10–15%), поэтому в настоящее время основным источником первичного индия являются цинковые обманки полиметаллических месторождений. Индий получается как побочный продукт переработки свинцово-цинковых, полиметаллических или оловянных руд, а далее цинковых медных или оловянных концентратов. Схемы извлечения индия сложны и многостадийны, так как для индия, в отличие от большинства других редких металлов, нет специфических химических реакций, позволяющих отделять его от нежелательных примесей, а многочисленные методы цементации, экстракции и ионообменного выделения также не вполне селективны.

Основным индиевым сырьем являются возгоны свинцово-цинковых производств пыль. При обогащении свинцово-цинковых руд индий в основном переходит в цинковые и, в небольшой степени, в свинцовые концентраты, часть индия остается с пустой породой. Полученные цинковые концентраты обжигаются, и практически весь индий, вследствие низкой летучести In 2 O 3 , остается в огарке. При последующем пирометаллургическом получении цинка индий почти полностью переходит в летучие возгоны. Несмотря на различное происхождение, для всех возгонов характерно обогащение цинком, свинцом, кадмием и многими другими элементами, вследствие чего извлечение индия из них затруднено. Кроме того, содержание индия в таких возгонах редко превышает 0,01%. Основным способом разложения возгонов является сернокислотное выщелачивание. Наиболее полное извлечение индия в раствор достигается обработкой большим избытком серной кислоты или с помощью сульфатизации (действием концентрированной серной кислоты на возгоны при нагревании). В процессе сульфатизации в значительной степени удаляются примеси мышьяка, хлора и фтора, но остаются цинк, медь, кадмий, алюминий и другие элементы. Обработанные кислотой возгоны далее обрабатываются водой, в результате которой получаются разбавленные сернокислотные растворы с концентрацией индия около 0,1 г/л. Самой сложной стадией процесса является извлечение индия из таких растворов, для которого предложено множество методов избирательного осаждения и растворения, экстракции и ионного обмена; все они не являются вполне селективными. На практике применяется последовательное сочетание этих методов для наиболее полного и селективного извлечения элемента.

На первом этапе выделения индия из растворов после выщелачивания могут применяться обработка избытком не очень концентрированного раствора гидроксида натрия (отделение Al, Zn, As, Sb, Sn, Ga, Gе), избытком водного аммиака (отделение Cd, Co, Cu, Ni, Zn) или сероводородом в сильнокислой среде.

На втором этапе используются процессы цементации, амальгамного восстановления, экстракционного и ионообменного извлечений. Цементация – вытеснение индия из раствора цинковой пылью, черновым индием или алюминиевыми листами, которое в значительной степени позволяют избавиться от примесей железа и алюминия. В результате цементации получается пирофорный (самовоспламеняющийся на воздухе) губчатый индий, который выдерживают сутки под слоем воды для пассивации. Амальгамный способ заключается в переведении индия из водного раствора в фазу ртути действием амальгамы цинка или электролизом на ртутном катоде. Разложением амальгамы получают металлический индий. Электролизом на ртутном катоде можно выделить практически весь индий даже из сильно разбавленных растворов. В экстракционных методах в качестве органической фазы часто применяется раствор алкилфосфорных кислот в керосине. Таким способом можно экстрагировать почти нацело весь индий из сернокислотных растворов. Совместно с индием в специально подобранных условиях экстрагируются лишь Sb(III), Sn(IV), Fe(III). После повторной экстракции индий из раствора выделяется цементацией. Ионообменное выделение (наряду с экстракцией и цементацией) применяется для очистки индиевых концентратов.

Металлический индий, полученный из побочных продуктов свинцово-цинковых производств, содержит свинец, мышьяк, олово, ртуть, никель, кадмий, железо и другие элементы в качестве значительных примесей Для более глубокой очистки применяются специальные методы – плавка под слоем щелочи (удаление Zn, Al и некоторых других примесей), плавка под слоем глицеринового раствора иодида калия с добавкой иода (удаление Cd, Tl, Fe). Окончательно индия очищается при помощи кристаллофизических методов – зонной плавки и вытягивания из расплава по Чохральскому. При этом происходит глубокая очистка от примесей серебра, меди, никеля и, если вытягивание воздухе, железа.

В последние годы рынок металлического индия отличается крайней нестабильностью. Данные разных авторов по производству и потреблению индия часто отличаются в несколько раз. В 1987 производство первичного рафинированного индия составляло 53 тонны, в 1988 – 106 тонн, в 1994 – 145 тонн, а в 1995 – 240 тонн, в 2000 было произведено 335 тонн металла, в 2001 – 345 тонн, в 2002 – 335 тонн, а в 2003 выплавлено 305 тонн металла. Крупнейшими производителями первичного индия являются Китай, Япония и Канада. США не производят своего индия (все месторождения индия, как стратегического металла, законсервированы), а лишь занимаются рафинированием (заводы в Нью-Йорке и Род-Айленде) ввозимого из-за рубежа низкосортного (99,97 и 99,99%) индия до 99,9999% содержания металла (ITO-качества).

Таблица 2. РАСПРЕДЕЛЕНИЕ МОЩНОСТЕЙ ЕЖЕГОДНОГО МИРОВОГО ПРОИЗВОДСТВА (2003) ПЕРВИЧНОГО ИНДИЯ.
Страна Производство, тонн/год Основные производители
Канада Falconbridge Ltd.’s Kidd Creek, Ontario; Teck Cominco’s Trail, British Colombia.
Бельгия Umicore s.a.; Metallurgie Hoboken-Overpelt.
Китай Zhuzhou Smelter Non-ferrous Co., Ltd; Liuzhou Zinc Product Co., Ltd; Huludao Zinc Smelter Co; China Tin Group Co. Ltd.
Франция Metaleurop S.A.
Япония Dowa Mining Co., Ltd; Nippon Mining & Metals Co., Ltd.
Перу La Oroya Refinery
Россия Новосибирский оловянный комбинат и др.
Германия Preussag
Англия Mining a. Chemical Products; Capper Pass
Голландия Billito
США Indium Corporation of America; Utica; NY; Umicore Indium Products, Providence, RI (a division of n.v. Umicore, s.a.)

В силу ограниченности природных ресурсов индия возникла проблема переработки вторичного сырья (лом от производства ЖК-дисплеев и пр.), с которой сейчас успешно справляется Япония, выплавившая в 2003 160 тонн вторичного индия. Крупнейший потребитель индия – Япония, по некоторым оценкам в 2003 потребление индия в этой стране составило 420 тонн. Внутренние ежегодные потребности США в индии оцениваются в 90–95 тонн, но в 2003 США импортировали 125 тонн металла, экспортировали меньше 10 тонн. Мировое потребление индия в 2003 составило более 500 тонн, и по прогнозам специалистов Roskill к 2008 потребление индия может достигнуть значения 850–870 тонн. В начале 1987 цена на индий составляла 114, а в середине равнялась 250 долларов/кг. В 1995 цена на металл достигла 575 долларов/кг, но в 1999 она снова упала до отметки 200 долларов/кг. К середине 2002 цены на индий достигли рекордно низкого значения 55–60 долларов/кг, но к началу зимы ситуация стала меняться, и стоимость индия перевалила за отметку 100 долларов/кг. К концу 2003 индий стоил 300 долларов/кг, а в 2004 – 400–430 долларов/кг. За последние 14 лет среднемесячная цена на металл составила 250 долларов/кг.

Свойства простого вещества.

Индий – металл серебристо-белого цвета, не тускнеющий на воздухе при длительном хранении и даже в расплавленном состоянии. Плотность кристаллического индия 7310 кг/м 3 , а расплавленного – 7030 кг/м 3 . Кристаллическая решетка тетрагональная. Металл плавится при 156,7° С, кипит при 2072° С. Индий очень мягок и пластичен. Его твердость по шкале Мооса чуть больше 1 (мягче только тальк), поэтому индиевый стержень, если им водить по листу бумаги, оставляет на нем серый след. Индий в 20 раз мягче чистого золота и легко царапается ногтем, а его сопротивление растяжению в 6 раз меньше, чем у свинца. Палочки из индия легко сгибаются и при этом заметно хрустят (громче, чем оловянные). Индий, так же как и галлий, не образует ни с одним из металлов непрерывных твердых растворов. В индии хорошо растворяются металлы-соседи по периодической системе – галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере цинк. Выше 800° С индий горит на воздухе сине-фиолетовым пламенем с образованием оксида индия(III):

2In + 3O 2 = 2In 2 O 3 .

В присутствии кислорода медленно корродирует в воде с образованием гидроксида:

4In + 3O 2 + 6H 2 O = 4In(OH) 3 .

Слабо растворяется на холоде в разбавленных кислотах, значительно лучше при нагревании. Легко растворяется в галогеноводородных кислотах (в HF – в присутствии окислителя):

2In + 6HCl = 2InCl 3 + 3H 2

2In + 6HF + 3H 2 O 2 = 2InF 3 + 6H 2 O.

Реакция индия с концентрированной серной кислотой на холоде протекает с выделением водорода, при нагревании – диоксида серы. В зависимости от добавленного количества кислоты возможно образование нормального сульфата или комплексной кислоты:

2In + 6H 2 SO 4 = In 2 (SO 4) 3 + 3SO 2 + 6H 2 O (при нагревании)

In + 2H 2 SO 4 + 3,5H 2 O = HIn(SO 4) 2 ·3,5H 2 OЇ + 2H 2 (на холоде).

Индий легко растворяется в азотной кислоте различной концентрации с образованием нитрата индия (III):

In + 4HNO 3 = In(NO 3) 3 + NO + 2H 2 O.

Индий не реагирует с уксусной кислотой, но растворяется в растворе щавелевой:

2In + 6H 2 C 2 O 4 = 2H 3 + 3H 2 .

С галогенами при легком нагревании образует тригалогениды:

2In + 3X 2 = 2InX 3 (X = F, Cl, Br, I).

При взаимодействии индия с сероводородом при 1000° С или при сплавлении стехиометрических количеств индия и серы в атмосфере СО 2 можно получить сульфид индия(I):

In + H 2 S = In 2 S + H 2 (1000° С)

2In + S = In 2 S.

Индий не реагирует с бором, углеродом и кремнием, не известны также соответствующие борид, карбид, силицид. Водород с индием также не реагирует и очень плохо в нем растворяется (менее 1 см 3 на 100 г In); известны, однако, гидриды индия – (InH 3) n и InH. При сплавлении индия с его тригалогенидами можно получить галогениды, в которых индий находится в низших степенях окисления +1 и +2 (наряду с нестехиометрическими галогенидами).

Важнейшие соединения индия.

Индий в своих соединениях может находиться во всех степенях окисления от 0 до +3. Химия одновалентного индия сейчас хорошо изучена, однако практическое значение имеют лишь соединения трехвалентного индия, как наиболее устойчивые и распространенные.

Оксид индия (III) In 2 O 3 – светло-желтые или зеленовато-желтые кристаллы, плотность 7180 кг/м 3 . Температура плавления 1910° С. Может быть получен окислением металлического индия кислородом при нагревании, разложением нитрата или гидроксида индия:

In(OH) 3 = In 2 O 3 + H 2 O

4In(NO 3) 3 = 2In 2 O 3 + 12NO 2 + 3O 2 .

Оксид индия не растворим в воде, не реагирует с растворами щелочей, легко взаимодействует с растворами минеральных кислот с образованием соответствующих солей:

In 2 O 3 + 3H 2 SO 4 = In 2 (SO 4) 3 + 3H 2 O

In 2 O 3 + 6HCl = 2InCl 3 + 3H 2 O.

При температурах 700–800° С In 2 O 3 восстанавливается водородом или углеродом до металла:

In 2 O 3 + 3H 2 = 2In + 3H 2 O.

Оксид индия (III) нелетуч, но при сильном нагревании выше 1200° С частично диссоциирует с образованием черного летучего In 2 O:

In 2 O 3 = In 2 O + O 2 .

Сейчас оксид индия (III) – наиболее широко применяемое соединение индия, так как он является основой большинства электропроводящих пленок (легированных диоксидом олова) на стекле, слюде или лавсане, используемых при изготовлении жидкокристаллических дисплеев, мониторов портативных компьютеров, электролюминесцентных ламп, электродов фотопроводящих элементов, топливных элементов (в том числе – высокотемпературных) и т.п. Электропроводящие пленки на основе In 2 O 3 , будучи нанесенными на автомобильные или авиационные стекла, способны нагревать их до 100° С при пропускании тока и, тем самым, предотвращать их обледенение и запотевание. Стекла с такими пленками способны пропускать до 85% падающего на них света. Кроме того, In 2 O 3 находит некоторое применение в стекольной промышленности, так как добавки его придают стеклу желтый или оранжевый цвет. Для монокристалла индий-оловянного оксида получено одно из максимальных значений эффективности преобразования солнечной энергии (12%). Известно еще множество применений оксида индия в качестве электропроводящего элемента.

Полупроводники на основе пниктогенидов индия.

Пниктогениды – соединения индия с элементами главной подгруппы V группы периодической системы (кроме висмута) обладают полупроводниковыми свойствами. Несмотря на снижающийся в последнее десятилетие удельный вес полупроводниковых материалов в общем потреблении индия, они продолжают играть значительную роль в электротехнике.

С фосфором, мышьяком и сурьмой индий образует по одному стехиометрическому соединению (нестехиометрических не образуется вовсе) – InP, InAs и InSb. Все они кристаллизуются в кубической сингонии (типа сфалерита). Известен и нитрид индия InN, но пока он находит весьма ограниченное применение.

Наиболее просто получается антимонид индия по реакции

так как давление насыщенных паров обоих компонент – In и Sb – низкое, можно их синтезировать обычным сплавлением простых веществ в кварцевом реакторе в вакууме (» 0,1 Па) при температуре 800–850° С. Это серые с металлическим блеском кристаллы, температура плавления 525° С, плотность 5775 кг/м 3 . Благодаря тому, что антимонид индия не разлагается при плавлении, его очищают зонной плавкой. Высокочистые кристаллы InSb обычно получают при помощи горизонтальной зонной плавки в атмосфере водорода высокой чистоты.

Помимо зонной плавки, для получения монокристаллов антимонида индия (особенно легированных) применяют метод вытягивания кристаллов из расплава с температурой, близкой к точке кристаллизации (по Чохральскому). Суть (в отличие от аппаратурного оформления) его довольно проста: в расплав вещества с помощью специального магнитного (или другого) держателя опускается затравка (маленький монокристалл InSb), а после начала наращивания вещества на кристалл держатель медленно поднимается из расплава. Следует отметить, что монокристаллы выращиваются в определенных кристаллографических направлениях и, таким образом, можно получить вытянутый монокристалл антимонида индия довольно больших размеров.

Антимонид индия отличается чрезвычайно высокой подвижностью электронов и благодаря этому InSb используется в изготовлении малоинерционных датчиков Холла, находящих разнообразное применение в приборах для измерения напряженности постоянных и переменных магнитных полей и токов. Другой областью применения антимонида индия является изготовление инфракрасных детекторов, поскольку его электропроводность сильно меняется под действием инфракрасного излучения, которое, в большей или меньшей степени, испускают все окружающие тела в зависимости от степени их нагрева. Именно на регистрации ИК-излучения, испускаемого разными телами с различной интенсивностью, основано действие приборов ночного видения. На основе InSb можно создавать фотоприемники, работающие в дальней ИК-области. Такие приемники, однако, работают при сильном охлаждении (до 2–4 К). Антимонид индия с успехом используется и при изготовлении различного рода преобразователей, термоэлектрических генераторов и некоторых других электротехнических устройств.

Арсенид индия – серые кристаллы с металлическим блеском, температура плавления 943° С. Поскольку мышьяк очень летуч, при синтезе соединение разлагается сразу после образования. Чтобы предотвратить разложение, нужно в объеме реактора поддерживать равновесное давление паров мышьяка. Для наиболее удобного регулирования давления паров мышьяка предложена оригинальная конструкция т.н. двухзонной печи. Такая печь обладает двумя температурными зонами, в одной из которых находится расплавленный индий, а в другой мышьяк. Реакция проходит между расплавом индия и парами мышьяка по уравнению

Температура нагревателя в зоне с мышьяком регулируется таким образом, чтобы поддерживалось равновесное давление паров As (32,7 кПа при 800–900° С) при синтезе арсенида индия.

Монокристаллы InAs получают вытягиванием из расплава по Чохральскому из-под слоя флюса (расплав B 2 O 3). Флюс нужен для предотвращения испарения мышьяка из реакционной зоны (своеобразный гидродинамический затвор), а чтобы пузырьки паров мышьяка не пробулькивали через слой флюса, над ним создается давление инертного газа (обычно аргона), втрое превышающее давление паров мышьяка при синтезе. По своим свойствам арсенид индия похож на антимонид, поэтому и области применения у них почти одинаковы.

Фосфид индия – серые кристаллы с металлическим блеском, Т пл = 1070° С, плотность 4787 кг/м 3 . Наиболее трудно получаемый, с точки зрения экспериментального оформления, пниктогенид индия. Высокое давление паров фосфора над расплавом InP значительно затрудняет его синтез и процедуру очистки, поэтому значительное внимание приходится уделять чистоте исходных компонентов – фосфора и индия (их чистота должна быть не ниже, чем 99,9999%). Принципиально (но не с точки зрения аппаратурного оформления – оно сложнее) схемы синтеза фосфида индия не отличаются от таковых для арсенида – синтез проводится в двухзонных печах, а выращивание монокристаллов – по Чохральскому из под слоя флюса. Фосфид индия можно назвать одним из важнейших полупроводниковых материалов. Он сочетает в себе высокую подвижность носителей заряда, относительно большую ширину запрещенной зоны, прямой характер межзонных переходов и благоприятные теплофизические характеристики. Основные сферы использования фосфида индия СВЧ-техника и оптоэлектроника. На основе фосфида индия изготавливают полевые транзисторы, электронные осцилляторы и усилители, его оценивают как один из наиболее перспективных материалов для создания быстродействующих интегральных схем малой энергоемкости. Кроме того, в связи с быстрым развитием волоконно-оптических линий связи, резко возросло использование фосфида индия в качестве подложки для твердых растворов In-Ga-As-P, применяемых для создания эффективных излучателей и приемников электромагнитного излучения для спектральной области, соответствующей прозрачности световодов из кварцевых стекловолокон. Фосфид индия – перспективный материал для превращения солнечной энергии в электрическую.

Сейчас хорошо отработана технология нанесения из жидкой или газовой фазы полупроводящих пленок InP, InAs и InSb на монокристаллическую подложку, так как этот способ изготовления полупроводников имеет ряд важных преимуществ перед методами выращивания объемных монокристалллов (более низкие температуры кристаллизации, снижение содержания примесей и др.). Такие структуры также находят широкое применение в электронике.

Наибольшее применение в полупроводниковой технике находят не чистые пниктогениды индия, а их твердые растворы или растворы с пниктогенидами галлия, например системы GaP-InSb, InAs-InP, InP-GaSb и многие другие. Изменение состава таких растворов позволяет плавно контролировать важнейшие физико-химические свойства получаемых полупроводников, тем самым расширяя функциональные возможности и повышая рабочие параметры электронных устройств на их основе. Принципы синтеза таких растворов сходны с принципами изготовления полупроводников из индивидуальных веществ.

Другие применения индия.

Основная статья потребления (65%) индия в США и Японии – изготовление тонких электропроводящих пленок и ИК-отражающих пленок на основе оксида индия. Доля применения индия для изготовления полупроводников невелика – всего 10%. Помимо этого есть много других областей применения индия. Прежде всего, благодаря пластическим и антикоррозионным свойствам, низкой летучести и маленькой температуре плавления индий используется для получения различных сплавов и припоев (15% от общего потребления индия), находящих самые разнообразные применения от ювелирного дела и зубоврачебной практики до изготовления космических аппаратов. Индий способен легко (даже при натирании) диффундировать в другие металлы и образовывать твердые износостойкие покрытия, поэтому с конца 1940-х индий успешно применяется в изготовлении высококачественных подшипников для двигателей, срок службы которых в пять раз превосходит срок службы обычных. Предложено множество покрытий для нанесения на трущиеся поверхности подшипников – серебряно-индиевые, серебряно-ториево-индиевые, индий-цинковые, свинцово-индиевые, чистый индий и другие. Многие из таких подшипников способны работать без смазки – покрытия на основе индия придают поверхности хорошие смазывающие свойства. Для увеличения сопротивления износу индием покрывают острия контактов различных выключателей, графитовых щеток и т.д. Широко применяется индий как компонент более чем пятидесяти легкоплавких сплавов с температурами плавления от 10,6° С (62,5% Ga, 21,5% In, 16% Sn) до 314° С (95% Pb, 5% In), с успехом применяющихся для лужения и пайки. Кроме того, они используются в качестве высокотемпературной смазки, материалов высоковакуумных и жидкометаллических затворов, жидкометаллических скользящих электроконтактов и среды для термометров и термостатов. Индий – компонент многих припоев, например припои состава Ag 50–65%, Ga 3–12%, In 6–18%, Cu – остальное; In 12–50%, Sn 10–40%, Ag 0,1–10%, Cu 20–60%. Припои на основе индия используются, например, для сварки металла со стеклом. Индий и олово имеют низкое давление пара, поэтому их сплавы используются для пайки высоковакуумной аппаратуры. В ювелирном деле индий применяется в сплавах с золотом, серебром и платиноидами. Добавление индия к золоту значительно увеличивает твердость и прочность изделий, улучшает их декоративный вид. Разработан ряд сплавов индия для замены золота в ювелирных изделиях. Получены сплавы индия с палладием, имеющие золотой и розово-сиреневый цвета. Например известны «зеленое золото» (75%, Au, 20% Ag, 5% In), сплав платины с индием (60% мол. In и 40% Pt) золотисто-желтого цвета, «белое золото» и многие другие сплавы. Добавка индия к серебру предотвращает потускнение серебряных ювелирных изделий на воздухе. Применение индия в стоматологии известно с 1934. При небольших добавках к материалам зубных пломб и протезов индий повышает их коррозионную стойкость и твердость. Добавка индия к материалу зубных протезов позволяет использовать большие количества меди вместо золота при их изготовлении. Соединения индия являются компонентами зубных цементов, порошков и паст для профилактики кариеса зубов. Индиевые покрытия обладают прекрасной отражающей способностью и применяются в изготовлении высококачественных зеркал, необходимых для астрономических приборов (например, телескопов, регистрирующих слабый свет от далеких звезд), прожекторов, рефлекторов и других устройств с высокой измерительной точностью. Обычные бытовые зеркала не одинаково отражают световые лучи различных спектральных областей – другими словами, цветовая гамма несколько искажается, хотя это и не заметно для человеческого глаза. Это недостаток серебряных, оловянных, и ртутно-висмутовыех зеркал, но не индиевых, одинаково точно отражающих лучи с различными длинами волн.

Биологическая роль индия.

О биологической роли индия почти нет сведений, известно лишь, что индий в следовых количествах есть в зубной ткани, и что в больных зубах (кариозных) его концентрация значительно ниже, чем в здоровых. Сведения о токсикологии индия противоречивы, но, скорее всего, при введении в желудок и внутривенно индий малотоксичен. Пыль индия вредна. ПДК индия в воздухе 0,1 мг/м 3 (США) и 4 мг/м 3 (Россия).

Интернет-ресурсы: http://minerals.usgs.gov/minerals/pubs/commodity/indium/

Юрий Крутяков

Литература:

Блешинский С.В., Абрамова В.Ф. Химия индия . Фрунзе, 1958
Фигуровский Н.А. Открытие элементов и происхождение их названий . М., Наука, 1970
Химия и технология редких и рассеянных элементов , т.1. Под. ред. К.А. Большакова. М., 1976
Популярная библиотека химических элементов . Под. ред. Петрянова-Соколова И.В. М., 1983
Федоров П.И., Акчурин Р.Х. Индий . М., 2000