Как найти коэффициент силы трения. Как найти силу трения скольжения

Измерение коэффициента трения скольжения необходимо провести двумя способами.

1-й способ заключается в измерении с помощью динамометра силы, с которой нужно тянуть брусок с грузами по горизонтальной поверхности, для того чтобы он двигался равномерно. Эта сила равна по абсолютной величине силе трения действующей на брусок. С помощью того же динамометра можно найти вес бруска о грузами Р. Этот вес равен силе нормального давления бруска на поверхность, по которой он скользит. Определив таким образом можно найти коэффициент трения. Он равен:

2-й способ измерения коэффициента трения позволяет определять на опыте не силы, а длины отрезков. Для этого используют равновесие бруска, который находится на наклонной плоскости.

Если брусок находится в равновесии на наклонной плоскости, то сила нормального давления бруска на плоскость равна составляющей силы тяжести, перпендикулярной наклонной плоскости (рис. 213). А сила трения по абсолютной величине равна составляющей силы тяжести, параллельной наклонной плоскости.

Опыт заключается в том, чтобы, увеличивая постепенно угол наклона плоскости, найти такой угол, при котором брусок только «тронется с места». При этом сила трения будет равна максимальной силе трения покоя:

где - сила давления бруска на плоскость Так как при этом т. е.

Нетрудно показать, что

Это следует из подобия треугольников Поэтому коэффициент трения равен:

Из этой формулы видно, что для того чтобы найти коэффициент трения, достаточно измерить высоту и основание наклонной плоскости, которыми определяется наклон плоскости, при котором начинается скольжение бруска.

Приборы и материалы: 1) линейка, 2) измерительная лента,

3) динамометр, 4) деревянный брусок, 5) набор грузов, 6) штатив с муфтами и лапкой.

Порядок выполнения работы

1. Положить брусок на горизонтально расположенную деревянную линейку. На брусок поставить груз.

2. Прикрепив к бруску динамометр, как можно более равномерно тянуть его вдоль линейки. Заметить при этом показание динамометра.

3. Взвесить брусок и груз.

4. По формуле найти коэффициент трения.

5. Повторить опыт, положив на брусок несколько грузов.

6. Найти среднее арифметическое значение коэффициентов трения, найденных в разных опытах.

7. Найти ошибку каждого из опытов - разность между и значениями полученными в разных опытах.

8. Определить среднее арифметическое ошибок опытов

9. Составить таблицу результатов опытов:

10. Записать результат измерений в виде

11. Положив линейку на брусок с грузами, медленно изменять ее наклон, поднимая ее конец, пока брусок не начнет скользить вдоль линейки.

Определение

Силой трения называют силу, которая возникает при относительном перемещении (или попытке перемещения) тел и является результатом сопротивления движению окружающей среды или других тел.

Силы трения возникают тогда, когда соприкасающиеся тела (или их части) перемещаются относительно друг друга. При этом трение, которое появляется при относительном перемещении соприкасающихся тел, называют внешним. Трение, возникающее между частями одного сплошного тела (газ, жидкость) названо внутренним.

Сила трения – это вектор, который имеет направление вдоль касательной к трущимся поверхностям (слоям). При этом эта сила направлена в сторону противодействия относительному смещению этих поверхностей (слоев). Так, если два слоя жидкости перемещаются друг по другу, при этом движутся с различными скоростями, то сила, которая приложена к слою, перемещающемуся с большей скоростью, имеет направление в сторону, которая противоположна движению. Сила же, которая воздействует на слой, который движется с меньшей скоростью, направлена по движению.

Виды трения

Трение, которое возникает между поверхностями твердых тел, называют сухим. Оно возникает не только при скольжении поверхностей, но и при попытке вызвать перемещение поверхностей. При этом возникает сила трения покоя. Внешнее трение, которое появляется между движущимися телами, называют кинематическим.

Законы сухого трения говорят о том, что максимальная сила трения покоя и сила трения скольжения не зависят от площади поверхностей соприкосновения соприкасающихся тел, подверженных трению. Эти силы пропорциональны модулю силы нормального давления (N), которая прижимает трущиеся поверхности:

где – безразмерный коэффициент трения (покоя или скольжения). Данный коэффициент зависит от природы и состояния поверхностей трущихся тел, например от наличия шероховатостей. Если трение возникает как результат скольжения, то коэффициент трения является функцией скорости. Довольно часто вместо коэффициента трения применяют угол трения, который равен:

Угол равен минимальному углу наклона плоскости к горизонту, при котором тело, лежащее на этой плоскости, начинает скользить, под воздействие силы тяжести.

Более точным считают закон трения, который принимает во внимание силы притяжения между молекулами тел, которые подвергаются трению:

где S – общая площадь контакта тел, p 0 – добавочное давление, которое вызывается силами молекулярного притяжения, – истинный коэффициент трения.

Трение между твердым телом и жидкостью (или газом) называют вязким (жидким). Сила вязкого трения становится равной нулю, если скорость относительного движения тел обращается в нуль.

При движении тела в жидкости или газе появляются силы сопротивления среды, которые могут стать существенно больше, чем силы трения. Величина силы трения скольжения зависит от формы, размеров и состояния поверхности тела, скорости движения тела относительно среды, вязкости среды. При не очень больших скоростях сила трения вычисляется при помощи формулы:

где знак минус означает, что сила трения имеет направление в сторону противоположную направлению вектора скорости. При увеличении скоростей движения тел в вязкой среде линейный закон (4) переходит в квадратичный:

Коэффициенты и существенно зависимы от формы, размеров, состояния поверхностей тел, вязкости среды.

Помимо этого выделяют трение качения.В первом приближении трение качения рассчитывают, применяя формулу:

где k – коэффициент трения качения, который имеет размерность длины и зависит от материала тел, подверженных контакту и качеств поверхностей и т.д. N – сила нормального давления, r – радиус катящегося тела.

Единицы измерения силы трения

Основной единицей измерения силы трения (как и любой другой силы) в системе СИ является: [P]=H

В СГС: [P]=дин.

Примеры решения задач

Пример

Задание. На горизонтальном диске лежит маленькое тело. Диск вращается вокруг оси, которая проходит через его центр, перпендикулярно плоскости с угловой скоростью . На каком расстоянии от центра диска может находиться в состоянии равновесия тело, если коэффициент трения между диском и телом равен ?

Решение. Изобразим на рис.1 силы, которые будут действовать на тело, положенное на вращающийся диск.

В соответствии со вторым законом Ньютона имеем:

В проекции на ось Yиз уравнения (1.1) получим:

В проекции на ось X имеем:

где ускорение движения маленького тела равно по модуль нормальной составляющей полного ускорения. Силутрения покоя найдем как:

примем во внимание выражение (1.2), тогда имеем:

приравняем правые части выражений (1.3) и (1.5):

где маленькое тело (так как оно находится в состоянии покоя на диске) движется со скоростью, равной.

Сила трения – величина, с которой взаимодействуют две поверхности при движении. Она зависит от характеристики тел, направления движения. Благодаря трению скорость тела уменьшается, и вскоре оно останавливается.

Сила трения – направленная величина, независящая от площади опоры и предмета, так как при движении и увеличении площади повышается сила реакции опоры. Эта величина участвует в расчете силы трения. В итоге Fтр=N*m. Здесь N – реакция опоры, а m – коэффициент, который является постоянной величиной, если нет необходимости в очень точных расчетах. При помощи этой формулы можно вычислить силу трения скольжения, которую обязательно стоит учитывать при решении задач, связанных с движением. Если тело вращается на поверхности, то в формулу необходимо включить силу качения. Тогда трение можно найти по формуле Fтркач = f*N/r. Согласно формуле, при вращении тела имеет значение его радиус. Величина f – коэффициент, который можно найти, зная, из какого материала изготовлено тело и поверхность. Это коэффициент, который находится по таблице.

Существуют три силы трения:

  • покоя;
  • скольжения;
  • качения.
Трение покоя не позволяет двигаться предмету, к движению которого не прикладывается усилие. Соответственно гвозди, забитые в деревянную поверхность, не выпадают. Самое интересное, что человек ходит благодаря трению покоя, которое направлено в сторону движения, это является исключением из правил. В идеале при взаимодействии двух абсолютно гладких поверхностей не должно возникать силы трения. На самом деле невозможно, чтобы предмет находился в состоянии покоя или движения без сопротивления поверхностей. Во время движения в жидкости возникает вязкое сопротивление. В отличие от воздушной среды, тело в жидкости не может находиться в состоянии покоя. Оно под воздействием воды начинает движение, соответственно в жидкости не существует трения покоя. Во время перемещения в воде сопротивление движению возникает благодаря разной скорости потоков, окружающих тело. Чтобы снизить сопротивление при перемещении в жидкостях, телу придают обтекаемую форму. В природе для преодоления сопротивления в воде на теле рыб имеется смазка, снижающая трение при движении. Помните, при движении одного тела в жидкостях возникает разное значение сопротивления.


Чтобы снизить сопротивление перемещению предметов в воздухе, телам придают обтекаемую форму. Именно поэтому самолеты изготавливают из гладкой стали с округлым корпусом, зауженным спереди. На трение в жидкости влияет ее температура. Для того чтобы автомобиль во время мороза нормально ездил, его необходимо предварительно разогреть. В результате этого вязкость масла уменьшается, что снижает сопротивление и уменьшает износ деталей. Во время перемещения в жидкости сопротивление может увеличиваться из-за возникновения турбулентных потоков. В таком случае направление движения становится хаотичным. Тогда формула приобретает вид: F=v2*k. Здесь v – скорость, а k – коэффициент, зависящий от свойств тела и жидкости.


Зная физические свойства тел и сопутствующие силы, воздействующие на предмет, вам легко удастся рассчитать силу трения.

Трение является тем физическим процессом, без которого не могло бы существовать само движение в нашем мире. В физике для вычисления абсолютного значения силы трения необходимо знать специальный коэффициент для рассматриваемых трущихся поверхностей. На этот вопрос ответит данная статья.

Трение в физике

Прежде чем отвечать на вопрос, как коэффициент трения находить, необходимо рассмотреть, что такое трение и какой силой оно характеризуется.

В физике выделяют три вида этого процесса, что протекает между твердыми объектами. Это скольжения и качения. Трение покоя возникает всегда, когда внешняя сила пытается сдвинуть с места объект. Скольжения трение, судя по названию, возникает при скольжении одной поверхности по другой. Наконец, качения трения появляется, когда круглый объект (колесо, шарик) катится по некоторой поверхности.

Объединяет все виды тот факт, что они препятствуют любому движению и точка приложения их сил находится в области контакта поверхностей двух объектов. Также все эти виды переводят механическую энергию в тепло.

Причинами сил трения скольжения и покоя являются шероховатости микроскопического масштаба на поверхностях, которые трутся. Кроме того, эти виды обусловлены диполь-дипольным и другими видами взаимодействий между атомами и молекулами, которые образуют трущиеся тела.

Причина качения трения связана с гистерезисом упругой деформации, которая появляется в точке контакта катящегося объекта и поверхности.

Сила трения и коэффициент трения

Все три вида сил твердого трения описываются выражениями, имеющими одну и ту же форму. Приведем ее:

Здесь N - сила, действующая перпендикулярно поверхности на тело. Она называется реакцией опоры. Величина µ t - называется коэффициентом соответствующего вида трения.

Коэффициенты для трения скольжения и покоя являются величинами безразмерными. Это можно понять, если посмотреть на равенство силы трения и трения коэффициента. Левая часть равенства выражается в ньютонах, правая часть также выражается в ньютонах, поскольку величина N - это сила.

Что касается качения трения, то коэффициент для него тоже будет величиной безразмерной, однако он определяется в виде отношения линейной характеристики упругой деформации к радиусу катящегося объекта.

Следует сказать, что типичными значениями коэффициентов трения скольжения и покоя являются десятые доли единицы. Для этот коэффициент соответствует сотым и тысячным долям единицы.

Как находить коэффициент трения?

Коэффициент µ t зависит от ряда факторов, которые сложно учесть математически. Перечислим некоторые из них:

  • материал трущихся поверхностей;
  • качество обработки поверхности;
  • наличие на ней грязи, воды и так далее;
  • температуры поверхностей.

Поэтому формулы для µ t не существует, и его приходится измерять экспериментально. Чтобы понять, как коэффициент трения находить, следует его выразить из формулы для F t . Имеем:

Получается, что для знания µ t необходимо найти трения силу и реакцию опоры.

Соответствующий эксперимент выполняют следующим образом:

  1. Берут тело и плоскость, например, изготовленные из дерева.
  2. Цепляют динамометр к телу и равномерно перемещают его по поверхности.

При этом динамометр показывает некоторую силу, которая равна F t . равна весу тела на горизонтальной поверхности.

Описанный способ позволяет понять, чему равен коэффициент трения покоя и скольжения. Аналогичным образом можно экспериментально определить µ t качения.

Другой экспериментальный метод определения µ t приводится в форме задачи в следующем пункте.

Задача на вычисление µt

Деревянный брус находится на стеклянной поверхности. Наклоняя плавно поверхность, установили, что скольжение бруса начинается при угле наклона 15 o . Чему равен коэффициент трения покоя для пары дерево-стекло?

Когда брус находился на наклонной плоскости при 15 o , то покоя сила трения для него имела максимальное значение. Она равна:

Сила N определяется по формуле:

Применяя формулу для µ t , получаем:

µ t = F t /N = m*g*sin(α)/(m*g*cos(α)) = tg(α).

Подставляя угол α, приходим к ответу: µ t = 0,27.

(Занятие каникулярной школы для учащихся 8–9 кл.)

  • Активизация мыслительной деятельности учащихся.
  • Формирование обобщенного умения проводить физические измерения.
  • Формирование обобщенного умения проводить экспериментальную проверку физических закономерностей.
  • Формирование умения систематизировать полученные результаты в виде таблицы, умение делать вывод на основе эксперимента.

Организация проведения практикума: Все учащиеся принимающие участие в работе практикума делятся на группы. Каждая группа учащихся получает задание с кратким описанием работы.

По окончании выполнения работы учащимся необходимо составить отчет. Отчет состоит из таблицы, вычисления искомой величины и ее погрешности, вывода по работе.

Ход работы

I. Вступительное слово учителя:

Если положить на горизонтальную поверхность брусок и подействовать на него с достаточной силой в горизонтальном направлении, то брусок станет двигаться. Нетрудно убедиться, что в этом случае на брусок действуют четыре силы: в вертикальном направлении – сила тяжести P и сила реакции опоры Q, равные по модулю противоположные по направлению; в горизонтальном направлении – сила тяги F и противоположная по направлению сила трения F mp .

Чтобы брусок двигался равномерно и прямолинейно, нужно, чтобы модуль силы тяги был равен модулю силы трения.

На этом основан метод измерения силы трения. Следует приложить к бруску силу тяги, которая будет поддерживать равномерное прямолинейное движение этого тела. По этой силе тяги определяют модуль силы трения.

II. Практикум.

Задание группе I.

Определите коэффициент трения скольжения при движении бруска по горизонтальной поверхности стола.

Оборудование: трибометр, деревянная линейка, деревянный бруска с тремя отверстиями; динамометр; набор грузов по механике.

Порядок выполнения работы.

  1. Вычислите цену деления шкалы динамометра.
  2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
  3. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра.
  4. Результат измерения запишите в таблицу.
  5. Нагружая брусок одним, двумя и тремя грузами, измерьте в каждом случае силу трения. Данные занесите в таблицу.
  6. Вычислите коэффициент трения скольжения
  7. Определите инструментальную погрешность коэффициента трения.
  8. Сделайте вывод.

Легко убедиться, что в случае движения тела по горизонтальной поверхности сила нормального давления равна силе тяжести, действующей на это тело: N = P . Это позволяет вычислить коэффициент трения:

Цена деления шкалы динамометра, ц.д = 0,1 Н.

1. Определили вес бруска и груза с помощью динамометра, записали в таблицу.

2. Двигая брусок равномерно по деревянной линейке, определили силу тяги, которая равна силе трения. Записали ее значение в таблицу.

3. Определили коэффициент трения для каждого измерения силы трения, занесли их в таблицу.

4. Определили погрешность измерения для каждого значения коэффициента силы трения.

1. Коэффициент трения равен 0,2.
2. Инструментальная погрешность измерения равна 0,06.
3. Коэффициент трения скольжения при взаимном движении тела по поверхности стола является величиной постоянной не зависящей от силы нормального давления.

2. Сравните коэффициент трения покоя, скольжения и качения. Сделайте вывод.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., карандаши круглые – 2 шт.

Порядок выполнения работы.

2. Измерьте вес бруска с двумя грузами при помощи динамометра. Результат измерения веса запишите в тетрадь.

3. Измерьте максимальную силу трения покоя бруска по столу. Для этого положите брусок на стол, а на брусок два груза; к бруску прицепите динамометр и приведите брусок с грузами в движение. Запишите показания динамометра, соответствующее началу движения бруска.

4. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

5. Измерьте силу трения качения бруска по столу. Для этого положите брусок с двумя грузами на два круглых карандаша и перемещайте равномерно брусок по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

6. Сделайте вывод о том, какая сила больше:
а) вес тела или максимальная сила трения покоя?
б) максимальная сила трения покоя или сила трения скольжения?
в) сила трения скольжения или сила трения качения?

7. Сравните коэффициент трения покоя, трения скольжения и трения качения.

а) Вес тела больше чем максимальная сила трения покоя.

б) Максимальная сила трения покоя больше чем сила трения скольжения.

в) Сила трения скольжения больше чем сила трения качения.

г) При неизменном весе тела, наименьшее значение коэффициент трения имеет при качении тела, а наибольшее в случае покоя.

3. Определите коэффициент трения скольжения при движении бруска вдоль поверхности резины, нешлифованной деревянной рейки, наждачной бумаги.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., отрез линолеума, деревянная нешлифованная рейка, наждачная бумага.

Порядок выполнения работы.

1. Вычислите цену деления шкалы динамометра.
2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
3. Измерьте силу трения скольжения бруска с грузами по поверхности резины, деревянной нешлифованной линейки и по поверхности наждачной бумаги. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения запишите в таблицу.
4. Вычислите коэффициент трения скольжения.
5. Сделайте вывод.

Цена деления шкалы динамометра, ц.д = 0,1 Н.

1. Сила трения:

а) зависит от рода трущихся поверхностей.
б) зависит от шероховатости трущихся поверхностей.
в) чем больше шероховатости поверхности, тем коэффициент трения больше.

2. Способы увеличения или уменьшения силы трения скольжения:

Увеличить: увеличить шероховатость трущихся поверхностей, насыпать между трущихся поверхностей частицы (стружку, опилки, песок).

Уменьшить: шлифовка, полировка трущихся поверхностей, нанесение смазки.

Задание группе II.

Измерение коэффициент трения скольжения, используя наклонную плоскость

Оборудование : линейка деревянная от трибометра, брусок деревянный, линейка измерительная, штатив.

Порядок выполнения работы .

1. Используя штатив, закрепите линейку под углом к столу.
2. Положите брусок на закрепленную под углом деревянную линейку.
3. Меняя угол наклона линейки, найдите такой максимальный угол, при котором брусок еще покоится.
4. Измерьте длину основания линейки и высоту подъема линейки.
5. Рассчитайте значение коэффициента трения скольжения дерева о дерево по формуле:

6. Рассчитайте погрешность измерения.
7. Вывод.

Экспериментальные данные.

Измерили высоту подъема и длину основания линейки.

1. Коэффициент трения равен 0,3.
2. Погрешность измерения равна 0,0016.

2. Измерение коэффициента трения скольжения, через опрокидывание бруска

Оборудование: брусок деревянный, линейка деревянная от трибометра, нить, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Брусок с привязанной к длинной грани нитью поставьте торцом на горизонтальную поверхность стола и тяните за нить. Если нить закреплена невысоко над поверхностью стола, то брусок будет скользить. При определенной высоте h точки А крепления нити сила натяжения нити F опрокидывает брусок.

Условия равновесия для этого случая относительно точки – угла опрокидывания:

Fh – mga/2 = 0;

Согласно II закону Ньютона: F – Fтр = 0;

Обработка результатов.




4. Сделайте вывод.

Экспериментальный расчет.

a = 45 ± 1 мм, h = 80 ± 1 мм.

1. Коэффициент трения равен 0,28.
2. Инструментальная погрешность измерения равна 0,0098.

3. Измерение коэффициента трения скольжения с помощью карандаша.

Оборудование: карандаш, линейка деревянная от трибометра, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Поставьте карандаш на стол вертикально, нажмите на него, наклоните и наблюдайте характер его падения. При небольших углах наклона к вертикали карандаш не проскальзывает относительно поверхности стола при любой величине силы, прижимающей его к столу. Проскальзывание начинается с некоторого критического угла, зависящего от силы трения.

Записываем второй закон Ньютона в проекциях на координатные оси при угле наклона, равном критическому. (Силой тяжести mg, действующей на карандаш, по сравнению с большой силой F пренебрегаем).

Обработка результатов:

1. Рассчитайте по формуле значение коэффициента трения скольжения дерева о дерево.
2. Определите погрешность измерений.
3. Запишите полученный ответ с учетом допущенных погрешностей измерений.
4. Сделайте вывод.

Экспериментальный расчет.

1. Обработка результатов

α = 30 0 ,

µ= tgα = sina /cosa

1. Коэффициент трения равен 0,58.

III. Подведение итогов практикума:

Сила трения скольжения зависит:

а) От рода трущихся поверхностей.
б) От шероховатости трущихся поверхностей.
в) Прямо пропорционально от силы давления.
г) Коэффициент трения скольжения при взаимном движении тела по поверхности является величиной постоянной не зависящей от силы нормального давления.
д) Чем больше шероховатости поверхности, тем коэффициент трения больше.