Количество теплоты выделяемое проводником формула. Закон джоуля - ленца

Физический закон, оценивающий тепловое действие электрического тока. Закон Джоуля-Ленца открыт в 1841 году Джеймсом Джоулем и в 1842 году, совершенно независимо Эмилием Ленцем.


как мы уже знаем, при движении свободных электронов по проводнику, должен преодолеть сопротивление материала. Во время этого движения зарядов происходят постоянные столкновения атомов и молекул вещества. При этом энергия движения и сопротивления превращается в тепловую. Ее зависимость от тока была впервые описана двумя независимыми учеными Джеймсом Джоулем и Эмилем Ленцем. Поэтому закон и получил двойное название.

Определение , количество теплоты, выделившееся за единицу времени на конкретном участке электрической цепи прямо пропорционально произведению квадрата силы тока на данном участке и его сопротивлению.

Математически, формулу можно записать так:

Q = а×I 2 ×R×t

где Q – количество вырабатываемой теплоты, а – коэффициент тепла (обычно он берется равным 1 и не учитывается), I – сила тока, R – сопротивление материала, t – время протекания тока по проводнику. Если коэффициент теплоты а = 1 , то Q измеряться в джоулях. Если же а = 0,24 , то Q измеряется в малых калориях.

Любой проводник всегда нагревается, если через него течет ток. Но перегрев проводников очень опасен, т.к может повредите не только электронную аппаратуру, но и стать причиной пожара. Так например, в случае короткого замыкания перегрев материала проводника огромен. Поэтому для защиты от коротких замыканий и больших перегревов в электронные схемы добавляются специальные радиокомпоненты - плавкие предохранители . Для их изготовления используется материала, который быстро плавятся и обесточивают питающую цепь при достижении током максимальных значений. Плавкие предохранители необходимо выбирать в зависимости от площади сечения проводника.

Закон Джоуля-Ленца актуален как для постоянного, так и для переменного тока. Согласно нему работает множество различных нагревательных устройств. Ведь, чем тоньше проводник, тем больший ток по нему проходит за более большой промежуток времени, тем больше количество тепла выделиться в результате этого.

Я надеюсь вы помните помнить, что сила тока зависит от напряжения. Появляется вопрос, почему ноутбук не нагревается так сильно как утюг? Потому, что в основании имеется спиральная проволока изготовленная из стали, которая отличается низкой сопротивляемостью. Плюс стальная подошва, поэтому утюг разогревается до высоких температур, и мы можем им гладить.

А имеет стабилизатор напряжения, который понижает 220 вольт до 19 вольт. Плюс сопротивление всех схем и компонентов достаточно высокое. Дополнительно для охлаждение имеется кулер и медные тепловые радиаторы.

Работа закона Джоуля-Ленца хорошо просматривается на практике. Самый известный пример его применения – обыкновенная лампа накаливания или , в которой свечение нити осуществляется благодаря прохождению по ней тока под высоким напряжением.

На основании закона Джоуля-Ленца работает и , где создание сварного соединения совершается путем нагрева металла, за счет проходящего через него тока и деформации свариваемых частей путем сжатия.

Электродуговая сварка, также работает на физических принципах закон Джоуля-Ленца. Для совершения сварочных работ электроды разогревают до такого состояния, чтобы между ними возникла сварочная дуга. Эффект вольтовой дуги открыл русский ученый В.В. Петров, используя принципы закрна Джоуля-Ленца.

Кроме математической формулы, этот закон имеет и дифференциальную форму. Предположим, что по неподвижному проводнику течет ток и вся его работа тратится только на нагревание. Тогда, согласно закону сохранения энергии, получаем следующее математическое выражение.

Здравствуйте. Закон Джоуля-Ленца вряд ли когда вам потребуется, но он входит в базовый курс электротехники, а потому сейчас я вам об этом законе расскажу.

Закон Джоуля-Ленца открыли два великих ученых независимо друг от друга: в 1841 году Джеймс Прескот Джоуль, английский ученый, который внёс большой вклад в развитие термодинамикии в 1842 году Эмилий Христианович Ленц, русский учёный немецкого происхождения, который внёс большой вклад уже в электротехнику. Поскольку открытие обоих учёных произошло почти одновременно и независимо друг от друга, то закон было решено назвать двойным именем, точнее фамилиями.

Помните, когда , да и не только его, я говорил о том, что электрический ток нагревает проводники, по которым он протекает. Джоуль и Ленц определили формулу, по которой можно вычислить количество выделяемого тепла.

Итак, изначально, формула выглядела следующим образом:

Единицей измерения по этой формуле были калории и за это «отвечал» коэффициент k, который равен 0,24, то есть, формула для получения данных в калориях выглядит так:

Но поскольку в системе измерений СИ в виду большого количества измеряемых величин и избежания путаницы было принято обозначение джоуль, то формула несколько изменилась. k стал равен единице, и поэтому коэффициент больше не стали писать в формуле и она стала выглядеть так:

Здесь: Q – количество выделяемого тепла, измеряемое в Джоулях (обозначение по системе СИ – Дж);

I – ток, измеряемый в Амперах, А;

R – сопротивление, измеряемое в Омах, Ом;

t – время, измеряемое в секундах, с;

и U – напряжение, измеряемое в вольтах, В.

Посмотрите внимательно, не напоминает ли вам чего-нибудь одна часть этой формулы? А конкретно? А ведь это мощность, точнее формула мощности из закона Ома. И если честно, то такого представления закона Джоуля-Ленца я еще не встречал в интернете:

Теперь вспоминаем мнемоническую таблицу и получаем как минимум три формульных выражения закона Джоуля-Ленца, в зависимости от того, какие величины нам известны:

Казалось бы, все очень просто, но так кажется нам, только когда мы уже знаем этот закон, а тогда оба великих учёных открывали его не теоретически, а экспериментальным путём и затем смогли обосновать его теоретически.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Содержание:

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I - , R - сопротивление проводника, t - период времени. Величина "к" представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока - , сопротивление - в Омах, а время - в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина "к", применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах - одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля - Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Закон Джоуля-Ленца. Работа и мощность электрического тока

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q - колическтво выделяемой теплоты (в Джоулях)
a - коэффициент пропорциональности
I - сила тока (в Амперах)
R - Сопротивление проводника (в Омах)
t - Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток - это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Лампы накаливания были придуманы в 1873 году русским инженером Лодыгиным. В лампах накаливания, как и в электронагревательных приборах, применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его . Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для стоит следовать нормативным документам.

Источники:

  • Физическая энциклопедия

Между силой тока и напряжением существует прямо пропорциональная зависимость, описанная законом Ома. Этот закон определяет связь силы тока, напряжения и сопротивления на участке электрической цепи.

Инструкция

Вспомните, ток и напряжение.
- Электрический ток - это упорядоченное течение заряженных частиц (электронов). Для количественного определения используется величина I, называемая силой тока.
- Напряжение U - это разность потенциалов на концах участка электрической цепи. Именно это различие заставляет двигаться электроны, подобно потоку жидкости.

Сила тока измеряется в амперах. В электрических цепях силу тока определяют прибором амперметр. Единицей напряжения является , измерить напряжение в цепи можно с помощью вольтметра. Соберите простейшую электрическую цепь из источника тока, резистора, амперметра и вольтметра.

При замыкании цепи и прохождении по ней тока запишите показания приборов. Измените напряжение на концах сопротивления. Вы увидите, что показания амперметра будут расти с увеличением напряжения и наоборот. Такой опыт демонстрирует прямо пропорциональную зависимость между силой тока и напряжением.