Равновесие тел, имеющих ось вращения. Условия равновесия тел

Начните вводить часть условия (например, могут ли , чему равен или найти ):

17. Равновесие тел при отсутствии вращения

  • №325. Найдите равнодействующую трех сил по 100 Н каждая, если угол между первой и второй силами равен 60°, а между второй и третьей - 90°.
  • №326. При каком способе подвешивания качелей (рис. 60) веревки будут испытывать меньшее натяжение?
  • β, следовательно, cosβ > cosα и Т1 > Т2. "> №327. Почему туго натянутая бельевая веревка часто обрывается под тяжестью повешенного на нее платья, в то время как слабо натянутая выдерживает тот же груз?
  • №328. Одинаковы ли показания обоих динамометров (рис. 61), одинаковую ли силу давления испытывает ось блока в обоих случаях?
  • №329. Система подвижного и неподвижного блоков находится в равновесии (рис. 62). Что произойдет, если точку А крепления нити передвинуть вправо?
  • №330. Тело массой 2 кг подвешено на нити. К телу привязали другую нить и оттянули ее в горизонтальном направлении. Найдите силу натяжения нити в новом положении равновесия, если сила натяжения горизонтальной нити равна 12 Н.
  • №331. Можно равномерно прямолинейно перемещать тело по горизонтальной поверхности, прикладывая к нему силы, как показано на рисунке 63. Одинаковы ли эти силы, если коэффициент трения одинаков в обоих случаях?
  • №332. На бельевой веревке длиной 10 м висит только один костюм, весящий 20 Н. Вешалка расположена посередине веревки, и эта точка провисает на 10 см ниже горизонтали, проведенной через точки закрепления веревки. Чему равна сила натяжения веревки?
  • №333. Найдите силы, действующие на стержни АВ и ВС (рис. 64), если α = 60°, а масса лампы 3 кг.
  • №334. К концу стержня АС (рис. 65) длиной 2 м, укрепленного шарнирно одним концом к стене, а с другого конца поддерживаемого тросом ВС длиной 2,5 м, подвешен груз массой 120 кг. Найдите силы, действующие па трос и стержень.
  • №335. Электрическая лампа (рис. 66) подвешена на шнуре и оттянута горизонтальной оттяжкой. Найдите силу натяжения шнура и оттяжки, если масса лампы равна 1 кг, а угол α = 60°.
  • №336. Тяжелый однородный шар подвешен на нити, конец которой закреплен на вертикальной стене. Точка прикрепления шара к нити находится на одной вертикали с центром шара. Каков должен быть коэффициент трения между шаром и стенкой, чтобы шар находился в рав
  • №337. Шарик радиусом г и массой m удерживается на неподвижном шаре радиусом R невесомой нерастяжимой нитью длиной l, закрепленной в верхней точке С шара (рис. 67). Других точек соприкосновения между шаром и нитью нет. Найдите силу натяжения нити. Трением

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

здесь скриншот игры про равновесие

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Пусть тело закреплено на неподвижной оси (п.1.4) и к нему приложена сила одним из двух способов:

1) линия действия проходит через ось вращения. будет уравновешена реакцией и тело находится в равновесии;

2) линия действия не проходит через ось вращения, что приводит к вращению тела.

Приложим к телу силу , вызывающую его вращение в противоположную сторону. При определённых условиях вращение может стать равномерным либо прекратится совсем. Из опытов известно, что это произойдет, если , где d 1 и d 2 – плечи сил и .

Плечо силы (d )относительно оси – кратчайшее расстояние от линии действия силы до этой оси.

Момент силы (М ) – произведение модуля силы на её плечо.

[М ] = 1 Нм

· В данном параграфе момент рассматривается как скалярная величина, а силы и их плечи лежат в плоскости, перпендикулярной оси вращения.

· Момент силы, вращающий тело по часовой стрелке, считают отрицательным, против – положительным.

Условие равновесия известно как правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к нему сил равна нулю.

Полное условие равновесия (для любых тел)

Тело находится в равновесии, если равнодействующая всех приложенных к нему сил равна нулю и сумма моментов этих сил относительно оси вращения также равна нулю.

Виды равновесия

1. Устойчивое равновесие – равновесие, при выходе из которого возникает сила , возвращающая тело в исходное положение.

2. Неустойчивое равновесие – равновесие, при выходе из которого возникает сила , ещё больше отклоняющая тело от исходного положения.



3. Безразличное равновесие – равновесие, при выходе из которого не возникает ни возвращающая, ни отклоняющая сила.

МОЛЕКУЛЯРНАЯ ФИЗИКА

Молекулярная физика – раздел физики, в котором явления изменения состояния тел и веществ объясняют с точки зрения внутреннего строения вещества.

Истоки молекулярной физики

Представления древних

Древние философские школы по-разному объясняли строение тел и веществ. Например, в Китае учёные полагали, что тела состоят из воды, огня, эфира, воздуха и др. Левкипп (V в. до н.э., Греция) и Демокрит (V в. до н.э., Греция) высказали идею о том, что:

1) все тела состоят из мельчайших частиц – атомов;

2) различия между телами определяются либо различием их атомов, либо различием в расположении атомов.

Развитие молекулярной физики

Большой вклад в науку внёс Михаил Васильевич Ломоносов (1711–1765, Россия). Он развил идею молекулярного (атомного) строения вещества и предположил, что:

1) частицы (молекулы) хаотически движутся;

2) скорость движения молекул связана с температурой вещества (чем выше температура, тем выше скорость);

3) должна существовать температура, при которой движение молекул прекращается.

Опыты, проведённые в XIX в., подтвердили правильность его идей.

Опыт Броуна

В 1827 г. ботаник Роберт Броун (1773–1858, Англия) поместил под микроскоп жидкость с мелкими твёрдыми частицами в ней и обнаружил, что:

1) частицы хаотически движутся;

2) чем меньше частица, тем сильнее заметно её движение;

Он пришёл к выводу, что толчки твёрдым частицам дают частицы жидкости при столкновениях. Работами многих учёных складывалось учение о строении и свойствах вещества – молекулярно-кинетическая теория (МКТ), основанное на представлениях о существовании молекул (атомов).

Основные положения МКТ

1) Вещества состоят из частиц: атомов и молекул;

2) частицы хаотически движутся;

3) частицы взаимодействуют друг с другом.

На основе этих положений были объяснены явления: упругость газов, жидкостей и твёрдых тел; переход вещества из одного агрегатного состояния в другое; расширение газов; диффузия и др.

Агрегатное состояние (термодинамическая фаза) – одно из трёх состояний вещества (твёрдое, жидкое, газообразное).

Диффузия – самопроизвольное смешивание веществ.