Смещение луча в плоскопараллельной пластине. Ход лучей в плоском зеркале, плоскопараллельной пластинке и призме

Защитные стекла, сетки, светофильтры, покровные и выравниваемые стекла и другие оптические детали, ограниченные параллельными плоскостями, являются плоскопараллельными пластинами. Любая нормаль к поверхности этой пластины может быть оптической осью, поэтому за таковую принимают оптическую ось всей системы, одной из деталей которой является пластина.

Прохождение луча через плоскопараллельную пластину показано на рис. 48, а. Луч в пространстве предметов образует с оптической осью угол Точка пересечения луча с оптической осью являемся в данном случае мнимой предметной точкой А.

Из рис. 48, а следует, что поэтому

Если плоскопараллельная пластина находится в однородной среде, например в воздухе, а следовательно, и углы равны.

Осевое смещение преломленного луча, находящегося в однородной среде, определяется согласно рис. 48, а следующим равенством:

Для случая, когда углы малы,

Следовательно, для пластины, находящейся в воздухе,

где показатель преломления материала пластины.

Рис. 48. Преломление луча плоскопараллельиой пластиной

Поперечное смещение луча плоскопараллельной пластиной, находящейся в однородной среде (см. рис. 48, а), будет следующим:

Заменяя согласно закону преломления, при (воздух) и получим:

Формула (113) устанавливает связь между углом поворота пластины поперечным смещением луча.

Из рассмотрения хода преломленного луча плоскопараллельной пластиной следует, что ее расположение в пучке параллельных лучей вносит одинаковое осевое и одинаковое поперечное смещение всех лучей.

Сместим выходную грань пластины, находящейся в воздухе, справа налево так, чтобы луч совпал с направлением луча (рис. 48, б). Тогда, очевидно, точка А должна совместиться с точкой А. При этом пластины уменьшится на величину Примем, что Так как в полученной новой пластине луч не преломляется, то показатель преломленкя такой пластины должен быть равен единице.

Описанный прием, заключающийся в приведении оптической среды пластины к воздуху, называют редуцированием.

Толщина редуцированной пластины (см. рис. 48, б)

Подставив в формулу найденное по формуле (112), получим где показатель преломления материала пластины до редуцирования.

Замена, плоскопараллельной пластины пластиной, приведенной к воздуху, упрощает габаритные расчеты. При переходе от редуцированных пластин к реальным следует учитывать внесенное при редуцировании смещение луча

Толщину пластины устанавливают в зависимости от допустимой деформации (прогиба), а также возможности изготовления оптически точных поверхностей, необходимости внесения изменения в оптическую длину луча и т. п.

Пластины высокой точности, например, помещаемые перед длиннофокусными объективами, должны иметь толщину, равную диаметра или диагонали. Пластины средней точности (выравнивающие стекла, лимбы, сетки и светофильтры, устанавливаемые в плоскости изображения) имеют толщину диаметра или диагонали.

Материалом для изготовления защитных, предметных и покровных пластин служит стекло Пластины повышенной точности делают из стекла ситалла или кварца (термостойкие).

При определении светового диаметра пластины необходимо учитывать преломление лучей, однако при редуцировании это требование отпадает.

Лабораторная работа 2 лок

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПРЕЛОМЛЕНИЯ ПЛОСКОПАРАЛЛЕЛЬНОЙ СТЕКЛЯННОЙ ПЛАСТИНЫ

Краткая теория

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света. Допус­тим, луч света идет из оптически менее плотной среды в оптиче­ски более плотную, например: из воздуха в стекло (рисунок 2.1).

Рисунок 2.1 - Ход лучей при переходе из одной среды в другую

a - угол падения - это угол между падающим лучом и нормалью;

b - угол преломления - это угол между преломленным лучом и нормалью;

n 1 и n 2 -абсолютные показатели преломления сред

Абсолютный показатель преломления данной среды показы­вает, во сколько раз скорость света в вакууме больше, чем ско­рость распространения света в данной среде, т.е.

Согласно закону преломления Снеллиуса, преломленный луч лежит в одной плоскости с падающим и нормалью, проведенной к границе раздела двух сред, причем отношение синуса угла па­дения a (рисунок 2.1) к синусу угла преломления b для рассмат­риваемых сред зависит только от длины световой волны, но не зависит от угла падения, т.е.

Постоянная величина n 21 называется относительным показа­телем преломления второй среды относительно первой, который выражается через абсолютные коэффициенты n 1 и n 2 соотноше­нием:

. (2.2)

Относительный показатель преломления показывает, во сколько раз скорость света в первой среде больше или меньше, чем во второй среде.

С учетом (2.2) закон преломления можно записать в симмет­ричной форме:

. (2.3)

Чем больше коэффициент преломления, тем меньше угол преломления.

Рассмотрим ход лучей в плоскопараллельной стеклянной пластине (рисунок 2.2).

Рисунок 2.2 - Ход лучей в плоскопараллельной пластине

d o - толщина пластины;

h o - смещение луча или параллельный снос луча.

На выходе из плоскопараллельной пластины луч света опять идет параллельно начальному направлению, но со смещением на величину h o . Из рисунка видно, что чем больше толщина пла­стины d o , тем больше параллельный снос луча h o . Величина смещения луча зависит от угла преломления и толщины пласти­ны.

Зная величину смещения луча можно найти коэффициент преломления пластины. Для этого вернемся к рисунку 2.2.

Рассмотрим треугольники АСЕ, ADE и BCD, соответственно, из которых получаем:

ЕС = d o tga, ED = d o tgb; BD = DCsin(90°-a)

Из рисунка следует DC = ЕС - ED = d o (tga-tgb).

Тогда BD = d 0 (tga-tgb)sin(90°-a).

Следовательно, параллельное смещение луча можно найти как:

h o = d o sin(90°- a). (2.4)

Из уравнения (2.4) находим угол преломления:

. (2.5)

Учитывая соотношения (2.3) и (2.5) получаем формулу для коэффициента преломления пластины:

. (2.6)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Постановка задачи

Целью работы является изучение прохождения лазерного лу­ча через плоскопараллельную пластину и определение величины показателя преломления стекла.

Описание установки

Установка состоит из направляющей, набора рейтеров, полу­проводникового лазера, кассеты со стеклянными пластинами, магнитных шайб.

На направляющей (4) с помощью рейтеров устанавливают лазер (1), экран (3), кассету со стеклянными пластинами (2). На экран закрепляют чистый лист бумаги с помощью магнитных шайб (рисунок 2.3).

Рисунок 2.3 - Схема установки

Порядок проведения работы

1. Отметить карандашом положение луча лазера на экране.

2. Поместить в кассету стеклянную пластину и новое поло­жение лазерного луча на экране отметить карандашом.

3. Опыт повторить с двумя пластинами и отмечать каранда­шом на экране новое положение лазерного луча.

4. С помощью транспортира определить угол, под которым стоят пластины.

5. Измерить толщину пластин с помощью линейки.

6. Снять с кассеты пластины, сдвинуть бумагу на экране.

7. Затем вновь делается отметка положения лазерного луча без пластин.

8. Снова выносятся одна, а затем вторая пластины и положе­ние лазерного луча отмечается карандашом. Опыт повторяется 5 раз.

9. После проведения опыта бумагу снимают и линейкой из­меряют расстояния между отметками и определяют смещение луча.

10. Результаты опыта заносятся в таблицу 2.1. По формуле (2.6) рассчитывают показатель преломления пластины, учитывая

показатель преломления воздуха n в = 1.

11. Определить абсолютную и относительную погрешности

и

Таблица 2.1 Результаты измерений

Техника безопасности

1. Необходимо соблюдать все правила безопасности при ра­боте с лазером.

2. Следует бережно и аккуратно обращаться со стеклянными пластинами и не портить отполированную стеклянную поверх­ность.

Вопросы для допуска к работе

1. Какова цель работы?

2. Какие параметры будете измерять?

3. Что будете рассчитывать по формуле?

4. Из чего состоит установка?

Вопросы для защиты работы

1. Каков физический смысл абсолютного показателя прелом­ления?

2. Что называется относительным показателем преломления и каков его физический смысл?

3. Объяснить ход луча в пластинке.

4. Каковы законы преломления?

5. От чего зависит параллельный снос?

6. Как получена рабочая формула?

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.

Геометрическая оптика охватывает все вопросы, связанные с построением оптических изображений изменениями направлений световых лучей.

Рассмотрим основные законы геометрического построения оптического изображения линзой, или фотообъективом.

Прежде всего, нужно исходить из того, что свет в однородной оптической среде, например в воздухе, распространяется прямолинейно. При переходе из менее плотной оптической среды в среду более плотную, например, из воздуха в стекло, луч изменяет свое направление и образует с перпендикуляром к границе двух оптических сред, восставленным в точке падения, угол, меньший, чем луч падающий (рис. 5, а). Это явление называется преломлением света на границе двух оптических сред. И наоборот, при переходе из среды более плотной в среду менее плотную угол преломления луча света больше, чем угол падения. Законы преломления света на границе двух оптических сред выражаются в следующем:

1) падающий и преломленный лучи находятся в одной плоскости с перпендикуляром в точке падения;

2) отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной оптической среды, которая не зависит от угла падения и называется коэффициентом преломления, или показателем преломления данной среды;

3) луч падающий и луч преломленный взаимно переместимы.

Прохождение света через плоскопараллельную пластинку. При прохождении света сквозь плоскопараллельную пластинку луч дважды пересекает границу двух оптических сред воздух - стекло и стекло - воздух (рис. 5, б). Пройдя первую границу, луч отклонится вниз, а при выходе из стекла в воздух вновь отклонится вверх. Так как стекло однородно и обе его поверхности параллельны, углы отклонения равны по величине и противоположны по направлению. Нетрудно убедиться, что вышедший из стекла луч сохраняет прежнее направление и лишь смещается на некоторую величину. Величина смещения зависит от коэффициента преломления стекла, его толщины и угла падения луча.

Прохождение света через призму. Луч света S, падающий на грань призмы трехгранного сечения ABC (рис. 6), на границе воздух-стекло преломляется и отклоняется от прежнего направления к основанию призмы AC. Пройдя толщу стекла призмы, луч снова встречает на своем пути границу сред стекло - воздух и отклоняется в сторону основания призмы. Таким образом, дважды отклонившись, луч изменит свое первоначальное направление на угол, равный удвоенной разности угла падения и угла преломления.