Спиртовое брожение. Энергетический обмен

При спиртовом брожении помимо основных продуктов - спир­та и СО 2 , из сахаров возникает множество других, так называе­мых вторичных продуктов брожения. Из 100 г С 6 Н 12 О 6 образует­ся 48,4 г этилового спирта, 46,6 г диоксида углерода, 3,3 г глице­рина, 0,5 г янтарной кислоты и 1,2 г смеси молочной кислоты, ацетальдегида, ацетоина и других органических соединений.

Наряду с этим дрожжевые клетки в период размножения и логарифмического роста потребляют из виноградного сусла ами­нокислоты, необходимые для построения собственных белков. При этом образуются побочные продукты брожения, главным об­разом высшие спирты.

В современной схеме спиртового брожения насчитывается 10-12 фаз биохимических превращений гексоз под действием комплекса ферментов дрожжей. В упрощенном виде можно вы­делить три этапа спиртового брожения.

I этап - фосфорилирование и распад гексоз. На этом этапе протекает несколько реакций, в результате которых гексоза пре­вращается в триозофосфат:

АТФ → АДФ

Главную роль в передаче энергии в биохимических реакциях играют АТФ (аденозинтрифосфат) и АДФ (аденозиндифосфат). Они входят в состав ферментов, аккумулируют большое коли­чество энергии, необходимой для осуществления жизненных про­цессов, и представляют собой аденозин - составную часть ну­клеиновых кислот - с остатками фосфорной кислоты. Вначале образуется адениловая кислота (монофосфат аденозина, или аденозинмонофосфат - АМФ):

Если обозначить аденозин буквой А, то строение АТФ может быть представлено в следующем виде:

А-О-Р-О ~ Р - О ~ Р- ОН

Значком с ~ обозначены так называемые макроэргические фосфатные связи, чрезвычайно богатые энергией, которая выде­ляется при отщеплении остатков фосфорной кислоты. Передача энергии с АТФ на АДФ может быть представлена следующей схе­мой:

Выделяющаяся энергия используется дрожжевыми клетками для обеспечения жизненных функций, в частности их размноже­ния. Первым актом выделения энергии и является образование фосфорных эфиров гексоз - фосфорилирование их. Присоедине­ние к гексозам остатка фосфорной кислоты от АТФ происходит под действием фермента фосфогексокиназы, поставляемого дрожжами (молекулу фосфата обозначим буквой Р):

Глюкоза Глюкозо-6-фосфат фруктозо-1,6-фосфат

Как видно из приведенной схемы, фосфорилирование проис­ходит дважды, причем фосфорный эфир глюкозы под действием фермента изомеразы обратимо превращается в фосфорный эфир фруктозы, имеющий симметричное фурановое кольцо. Симмет­ричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает ее последующий разрыв как раз в середине. Распад гексозы на две триозы катализирует фермент альдолаза; в результате распада образуется неравновесная смесь 3-фосфоглицеринового альдегида и фосфодиоксиацетона:

Фосфоглицери-новый альдегид (3,5 %) Фосфодиокси-ацетон (96,5 %)

В дальнейших реакциях участвует только 3-фосфоглицерино­вый альдегид, содержание которого постоянно пополняется под действием фермента изомеразы на молекулы фосфодиоксиацетона.

ІІ этап спиртового брожения - образование пировиноградной кислоты. На втором этапе триозофосфат в виде 3-фосфоглицеринового альдегида под действием окислительного фермента дегидрогеназы окисляется в фосфоглицериновую кислоту, а она при участии соответствую­щих ферментов (фосфоглицеромутазы и энолазы) и системы ЛДФ - АТФ превращается в пировиноградную кислоту:

Вначале каждая молекула 3-фосфоглицеринового альдегида присоединяет к себе еще один остаток фосфорной кислоты (за счет молекулы неорганического фосфора) и образуется 1,3-дифосфоглицериновый альдегид. Затем в анаэробных условиях про­исходит его окисление в 1,3-дифосфоглицериновую кислоту:

Активной группой дегидрогеназы является кофермент сложного органического строения НАД (никотинамидадениндинуклеотид), фиксирующий своим никотинамидным ядром два атома водорода:

НАД+ + 2Н+ + НАД Н2

НАД окисленный НАД восстановленный

Окисляя субстрат, кофермент НАД становится обладателем свободных ионов водорода, что придает ему высокий восстано­вительный потенциал. Поэтому бродящее сусло всегда характеризуется высокой восстанавливающей способностью, что имеет большое практическое значение в виноделии: понижается рН среды, восстанавливаются временно окисленные вещества, погибают патогенные микроорганизмы.

В заключительной фазе II этапа спиртового брожения фермент фосфотрансфераза дважды катализирует перенос остатка фосфорной кислоты, а фосфоглицеромутаза перемещает его от 3-го угле­родного атома ко 2-му, открывая возможность ферменту энолазе образовать пировиноградную кислоту:

1,3-Дифосоглицериновая кислота 2-Фосфогглицериновая кислота Пировиноградная кислота

В связи с тем что из одной молекулы дважды фосфорилированной гексозы (израсходовано 2 АТФ) получаются две молеку­лы дважды фосфорилированных триоз (образовано 4 АТФ), чи­стым энергетическим балансом ферментативного распада саха­ров является образование 2 АТФ. Эта энергия обеспечивает жиз­ненные функции дрожжей и вызывает повышение температуры бродящей среды.

Все реакции, предшествующие образованию пировиноградной кислоты, присущи как анаэробному сбраживанию сахаров, так и дыханию простейших организмов и растений. III этап име­ет отношение только к спиртовому брожению.

III этап спиртового брожения - образование этилового спирта. На заключитель­ном этапе спиртового брожения пировиноградная кислота под действием фермента декарбоксилазы декарбоксилируется с об­разованием ацетальдегида и диоксида углерода, а с участием фермента алкогольдегидрогеназы и кофермента НАД-Н2 проис­ходит восстановление ацетальдегида в этиловый спирт:

Пировиноградная кислота Ацетилальдегид Этиловый спирт

Если в бродящем сусле есть избыток свободной сернистой кислоты, то часть ацетальдегида связывается в альдегидсернистое соединение: в каждом литре сусла 100 мг Н2SO3 связывают 66 мг СН3СОН.

Впоследствии при наличии кислорода это нестойкое соедине­ние распадается, и в виноматериале обнаруживают свободный ацетальдегид, что особенно нежелательно для шампанских и сто­ловых виноматериалов.

В сжатом виде анаэробное превращение гексозы в этиловый спирт может быть представлено следующей схемой:

Как видно из схемы спиртового брожения, сперва образуются фосфорные эфиры гексоз. При этом молекулы глюкозы и фруктозы под действием фермента гексокеназы присоединяют остаток фосфорной кислоты от аденозиттрифосфата (АТФ), при этом образуется глюкоза-6-фосфат и аденозитдифосфат (АДФ).

Глюкоза-6-фосфат под действием фермента изомеразы превращается в фруктозу-6-фосфат, присоединяющий еще один остаток фосфорной кислоты из АТФ и образующий фруктозу-1,6-дифосфат. Эта реакция катализируется фосфофруктокиназой. Образованием этого химического соединения заканчивается первая подготовительная стадия анаэробного распада сахаров.

В результате этих реакций молекула сахара переходит в оксиформу, приобретает большую лабильность и становится более способной к ферментативным преобразованиям.

Под влиянием фермента альдолазы фруктоза-1, 6-дифосфат расщепляется на глицеринальдегидофосфорную и диоксиацетонофосфорную кислоты, способные превращаться одна в одну под действием фермента триозофосфатизомеразы. Дальнейшему преобразованию подвергается фосфоглицериновый альдегид, которого образуется приблизительно 3 % по сравнению с 97 % фосфодиоксиацетона. Фосфодиоксиацетон, по мере использования фосфоглицеринового альдегида, превращается под действием изомеразы фосфотриоз в 3-фосфоглицериновый альдегид.

На второй стадии 3-фосфоглицериновый альдегид присоединяет еще один остаток фосфорной кислоты (за счет неорганического фосфора) с образованием 1, 3-дифосфоглицеринового альдегида, который дегидруется под действием триозофосфатдегидрогеназы и дает 1, 3-дифосфоглицериновую кислоту. Водород, в этом случае, переносится на окисленную форму кофермента НАД. 1, 3-дифосфоглицериновая кислота, отдавая АДФ (под действием фермента фосфоглицераткеназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту. Последняя, под действием фосфопируватгидротазы, превращается в фосфоэнолпировиноградную кислоту. Дальше, при участии фермента пируваткеназы, фосфоэнолпировиноградная кислота передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула энолпировиноградной кислоты переходит в пировиноградную кислоту.

Третья стадия спиртового брожения характеризуется расщеплением пировиноградной кислоты под действием фермента пируватдекарбоксилазы на диоксид углерода и уксусный альдегид, который под действием фермента алкогольдегидрогеназы (коферментом ее является НАД) восстанавливается в этиловый спирт.

Суммарное уравнение спиртового брожения может быть представлено так :

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

Таким образом, при брожении происходит преобразование одной молекулы глюкозы в две молекулы этанола и две молекулы диоксида углерода.

Но указанный ход брожения не единственный. Если, например, в субстрате нет фермента пируватдекарбоксилазы, то не происходит расщепление пировиноградной кислоты до уксусного альдегида и восстановлению подвергается непосредственно пировиноградная кислота, превращаясь в молочную кислоту в присутствии лактатдегидрогеназы.

В виноделии брожение глюкозы и фруктозы происходит в присутствии бисульфита натрия. Уксусный альдегид, образующийся при декарбоксилировании пировиноградной кислоты, удаляется в результате связывания бисульфитом. Место уксусного альдегида занимают диоксиацетонфосфат и 3-фосфоглицериновый альдегид, они получают водород от восстановленных химических соединений, образуя глицерофосфат, который превращается в результате дефосфорилирования в глицерин. Это вторая форма брожения по Нейбергу. По этой схеме спиртового брожения происходит накопление глицерина и уксусного альдегида в виде бисульфитной производной.

Вещества, образующиеся при брожении.

В настоящее время в продуктах брожения найдено около 50 высших спиртов, которые обладают разнообразными запаха­ми и существенно влияют на аромат и букет вина. В наиболь­ших количествах при брожении образуются изоамиловый, изобутиловый и N-пропиловый спирты. В мускатных игристых и столовых полусладких винах, получаемых путем так называемого биологического азотопонижения, в большом количестве (до 100 мг/дм3) найдены ароматические высшие спирты β-фенилэтанол (ФЭС), тирозол, терпеновый спирт фарнезол, обладающие ароматом розы, ландыша, цветов липы. Их присутствие в неболь­шом количестве желательно. Кроме того, при выдержке вина высшие спирты вступают в этерификацию с летучими кислотами и образуют сложные эфиры, придающие вину благоприятные эфирные тона зрелости букета.

В дальнейшем было доказано, что основная масса алифатических высших спиртов образуется из пировиноградной кислоты путем переаминирования и непосредственного биосинтеза с участием аминокислот и ацетальдегида. Но наиболее ценные ароматические высшие спирты образуются только из соответствующих аминокислот ароматического ряда, например:

Образование высших спиртов в вине зависит от многих факторов. В нормальных условиях их накапливается в среднем 250 мг/дм3. При медленном длительном брожении количество высших спиртов возрастает, при повышении температуры брожения до 30 °С - уменьшается. В условиях поточного непрерывно брожения размножение дрожжей очень ограничено и высших спиртов образуется меньше, чем при периодическом способе брожения.

При уменьшении количества дрожжевых клеток в результате охлаждения, отстаивания и грубой фильтрации забродившего сусла происходит медленное накопление биомассы дрожжей и одновременно растет количество высших спиртов, прежде всего ароматического ряда.

Повышенное количество высших спиртов нежелательно для столовых белых сухих, шампанских и коньячных виноматериалов, однако придает многообразие оттенков в аромате и вкусе красным столовым, игристым и крепким винам.

Спиртовое брожение виноградного сусла связано также с образованием высокомолекулярных альдегидов и кетонов, летучих и жирных кислот и их эфиров, имеющих значение в формировании букета и вкуса вина.

1. Могут ли фото- и хемосинтезирующие организмы получать энергию благодаря окислению органики ? Конечно, могут. Для растений и хемосинтетиков характерно окисление, им ведь нужна энергия! Однако автотрофы будут окислять те вещества, которые они сами синтезировали.

2. Зачем аэробным организмам кислород ? Какова роль биологического окисления? Кислород явялется конечным акцептором электронов , которые приходят с более высоких энергетических уровней окисляемых веществ. В ходе этого процесса электроны высвобождают значительное количество энергии , и роль окисления именно в этом! Окисление - это потеря электронов или атома водорода, восстановление - их присоединение.

3. В чем разница горения и биологического окисления? В результате горения вся энергия полностью выделяется в виде тепла . Но при окислении всё сложнее: только 45 процентов энергии тоже выделяется в виде тепла и расходуется для поддержания нормальной температуры тела. Но 55 процентов - в виде энергии АТФ и прочих биологических аккумуляторов. Следовательно, большая часть энергии все же идет на создание высокоэнергетических связей .

Этапы энергетического обмена

1. Подготовительный этап характеризуется расщеплением полимеров до мономеров (полисахариды превращаются в глюкозу, белки в аминокислоты), жиров до глицерина и жирных кислот. На данном этапе выделяется некоторое количество энергии в виде тепла. Процесс протекает в клетке в лизосомах , на уровне организма - в пищеварительной системе . Вот почему после начала процесса пищеварения температура тела повышается.

2. Гликолиз , или бескислородный этап - происходит неполное окисление глюкозы.

3. Кислородный этап - окончательное расщепление глюкозы.

Гликолиз

1. Гликолиз идет в цитоплазме. Глюкоза С 6 H 12 О 6 расщепляется до ПВК (пировиноградной кислоты) С 3 H 4 О 3 - на две трехуглеродные молекулы ПВК. Здесь участвуют 9 разных ферментов.

1) При этом у двух молекул ПВК на 4 атома водорода меньше, чем у глюкозы С 6 H 12 О 6 , С 3 H 4 О 3 - ПВК (2 молекулы - С 6 H 8 O 6).

2) Куда расходуются 4 атома водорода? За счет 2 атомов восстанавливаются 2 атома НАД+ в два НАД H . За счет других 2 атомов водорода ПВК сможет превратиться в молочную кислоту С 3 H 6 О 3 .

3) А за счет энергии электронов, перенесенных с высоких энергетических уровней глюкозы на более низкий уровень НАД+, синтезируются 2 молекулы АТФ из АДФ и фосфорной кислоты.

4) Часть энергии растрачивается в виде тепла .

2. Если кислород в клетке отсутствует, или его мало, то 2 молекулы ПВК восстанавливаются за счет двух НАДH до молочной кислоты : 2С 3 H 4 О 3 + 2НАДH + 2H+ = 2С 3 H 6 О 3 (молочная кислота) + 2HАД+. Присутствие молочной кислоты является причиной боли в мышцах при нагрузках и недостатке кислорода. После активной нагрузки кислота отправляется в печень, где от нее отщепляется водород, то есть она снова превращается в ПВК. Эта ПВК может уйти в митохондрии для полного расщепления и образования АТФ. Часть АТФ расходуется и на то, чтобы превратить большую часть ПВК снова в глюкозу путем обращения гликолиза. Глюкоза с кровью пойдет в мышцы и будет храниться в виде гликогена .

3. В результате бескислородного окисления глюкозы создается всего 2 молекулы АТФ .

4. Если в клетке уже есть, или начинает в нее поступать кислород , ПВК уже не может восстановиться до молочной кислоты, а отправляется в митохондрии, где идет ее полное окисление до С O 2 и H 2 О .

Брожение

1. Брожение - это анаэробный (бескислородный) метаболический распад молекул различных питательных веществ, например, глюкозы.

2. Спиртовое, молочнокислое, маслянокислое, ускуснокислое брожение идет в анаэробных условиях в цитоплазме. По сути, как процесс брожение соответствует гликолизу.

3. Спиртовое брожение специфично для дрожжей, некоторых грибов, растений, бактерий, которые в бескислородных условиях переходят на брожение.

4. Для решения задач важно знать, что в каждом случае при брожении из глюкозы выделяется 2 АТФ, спирт, либо кислоты - масляная, уксусная, молочная. При спиртовом (и маслянокислом) брожении из глюкозы выделяются не только спирт, АТФ, но и углекислый газ.

Кислородный этап энергетического обмена включает в себя две стадии.

1. Цикл трикарбоновых кислот (цикл Кребса).

2. Окислительное фосфорилирование.

Первичным источником энергии организмов является Солнце. Кванты света поглощаются хлорофиллом, содержащимся в хлоро- пластах зеленых клеток растений, и накапливаются в виде энергии химических связей органических веществ - продуктов фотосинтеза. Гетеротрофные клетки растений и животных получают энергию из различных органических веществ (углеводов, жиров и белков), синтезируемых автотрофными клетками. Живые существа, способные использовать световую энергию, называют фототрофами, а энергию химических связей - хемотрофами .

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный - посредством захвата частиц пищи внутрь тела и голофитный - без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма. Дыханием можно назвать процесс, в котором окисление органических веществ ведет к выделению энергии. Внутреннее, тканевое или внутриклеточное дыхание протекает в клетках. Большинство организмов характеризуется аэробным дыханием, для которого необходим кислород (рис. 8.4). У анаэробов, обитающих в среде, лишенной кислорода (бактерии), или у аэробов при его недостатке диссимиляция протекает по типу брожения (анаэробного дыхания). Основными веществами, расщепляющимися в процессе дыхания, являются углеводы - резерв первого порядка. Липиды представляют резерв второго порядка, и лишь в том случае, когда запасы углеводов и липидов исчерпаны, для дыхания используются белки - резерв третьего порядка. В процессе дыхания происходит передача электронов по системе взаимосвязанных молекул-переносчиков: потеря электронов молекулой называется окислением, присоединение электронов к молекуле (акцептору) - восстановлением, освобождающаяся при этом энергия запасается в макроэргических связях молекулы АТФ. Один из наиболее распространенных акцепторов в биосистемах - кислород. Энергия освобождается небольшими порциями, главным образом в электронно-транспортной цепи.

Энергетический обмен, или диссимиляция, представляет собой совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания единый процесс энергетического обмена можно условно разделить на несколько последовательных этапов. У большинства живых организмов - аэробов, живущих в кислородной среде, в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный и кислородный, в процессе которых органические вещества распадаются до неорганических соединений.

Рис. 8.4.

Первый этап. В пищеварительной системе многоклеточных органические вещества пищи под действием соответствующих ферментов расщепляются на простые молекулы: белки - на аминокислоты, полисахариды (крахмал, гликоген) - на моносахариды (глюкозу), жиры - на глицерин и жирные кислоты, нуклеиновые кислоты - на нуклеотиды и т.д. У одноклеточных внутриклеточное расщепление происходит под действием гидролитических ферментов лизосом. В ходе пищеварения выделяется небольшое количество энергии, которая рассеивается в виде тепла, а образовавшиеся небольшие органические молекулы могут подвергнуться дальнейшему расщеплению (диссимиляции) или использоваться клеткой как «строительный материал» для синтеза собственных органических соединений (ассимиляции).

Второй этап - бескислородный, или брожение, осуществляется в цитоплазме клетки. Образовавшиеся на подготовительном этапе вещества - глюкоза, аминокислоты и др. - подвергаются дальнейшему ферментативному распаду без использования кислорода. Основным источником энергии в клетке является глюкоза. Бескислородное, неполное расщепление глюкозы (гликолиз) - многоступенчатый процесс расщепления глюкозы до пировиноградной кислоты (П В К), а затем до молочной, уксусной, масляной кислот или этилового спирта, происходящий в цитоплазме клетки. В ходе реакций гликолиза выделяется большое количество энергии - 200 кДж/моль. Часть этой энергии (60%) рассеивается в виде теплоты, остальное (40%) используется на синтез АТФ. Продуктами гликолиза являются пировиноградная кислота, водород в форме НАД Н (никотинамидадениндинуклеотид) и энергия в форме АТФ.

Суммарная реакция гликолиза имеет следующий вид:

При разных видах брожения дальнейшая судьба продуктов гликолиза различна. В клетках животных, испытывающих временный недостаток кислорода, например в мышечных клетках человека при чрезмерной физической нагрузке, а также у некоторых бактерий происходит молочнокислое брожение, при котором ПВК восстанавливается до молочной кислоты:

Известное всем молочнокислое брожение (при скисании молока, образовании сметаны, кефира и т.д.) вызывается молочнокислыми грибками и бактериями. При спиртовом брожении (растения, некоторые грибы, пивные дрожжи) продуктами гликолиза являются этиловый спирт и СО2. У других организмов продуктами брожения могут быть бутиловый спирт, ацетон, уксусная кислота и т.д.

Третий этап энергетического обмена - полное окисление, или аэробное дыхание, происходит в митохондриях. В ходе цикла три- карбоновых кислот (цикла Кребса) от ПВК отщепляется С0 2 , а двухуглеродный остаток присоединяется к молекуле коэнзима А с образованием ацетилкоэнзима А, в молекуле которого запасается энергия

(ацетил-КоА образуется также при окислении жирных кислот и некоторых аминокислот). В последующем циклическом процессе (рис. 8.4) происходят взаимопревращения органических кислот, в результате из одной молекулы ацетилкоэнзима А образуются две молекулы СО2, четыре пары атомов водорода, переносимые НАДН 2 и ФАДН 2 (фла- винадениндинуклеотидом), и две молекулы АТФ. В дальнейших процессах окисления важную роль играют белки - переносчики электронов. Они транспортируют атомы водорода к внутренней мембране митохондрий, где передают их по цепи встроенных в мембрану белков. Транспорт частиц по цепи переноса осуществляется таким образом, что протоны остаются на внешней стороне мембраны и накапливаются в межмембранном пространстве, превращая его в Н+-резервуар, а электроны передаются на внутреннюю поверхность внутренней митохондриальной мембраны, где соединяются в конечном итоге с кислородом:

В результате внутренняя мембрана митохондрий изнутри заряжается отрицательно, а снаружи - положительно. Когда разность потенциалов на мембране достигает критического уровня (200 мВ), положительно заряженные частицы Н+ силой электрического поля начинают проталкиваться через канал АТФазы (фермента, встроенного во внутреннюю мембрану митохондрий) и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду. Процесс на этом этапе сопряжен с окислительным фосфорилированием - присоединением к АДФ неорганического фосфата и образованием АТФ. Приблизительно 55% энергии запасается в химических связях АТФ, а 45% - рассеивается в виде теплоты.

Суммарные реакции клеточного дыхания:

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, соединяющихся между собой макроэр- гическими связями (30,6 кДж).

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения химической, осмотической, механической и других видов работ. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе.

Опорные точки

  • Метаболизм складывается из двух тесно взаимосвязанных и противоположно направленных процессов: ассимиляции и диссимиляции.
  • Подавляющее большинство процессов жизнедеятельности, протекающих в клетке, требуют затрат энергии в виде АТФ.
  • Расщепление глюкозы у аэробных организмов, при котором за бескислородным этапом следует расщепление молочной кислоты с участием кислорода, в 18 раз более эффективно с энергетической точки зрения, чем анаэробный гликолиз.

Вопросы и задания для повторения

  • 1. Что такое диссимиляция? Охарактеризуйте этапы этого процесса. В чем заключается роль АТФ в обмене веществ в клетке?
  • 2. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
  • 3. Какие организмы называют гетеротрофными? Приведите примеры.
  • 4. Где, в результате каких преобразований молекул и в каком количестве образуется АТФ у живых организмов?
  • 5. Какие организмы называют автотрофными? На какие группы подразделяют автотрофов?

1. Какова химическая природа АТФ?

Ответ. Аденозинтрифосфат (АТФ) - это нуклеотид, состоящий из пуринового основания аденина, моносахарида рибозы и 3-х остатков фосфорной кислоты. Во всех живых организмах выполняет роль универсального аккумулятора и переносчика энергии. Под действием специальных ферментов концевые фосфатные группы отщепляются с освобождением энергии, которая идет на мышечное сокращение, синтетические и др. процессы жизнедеятельности.

2. Какие химические связи называются макроэргическими?

Ответ. Макроэргическими называются связи между остатками фосфорной кислоты, так как при их разрыве выделяется большое количество энергии (в четыре раза больше, чем при расщеплении других химических связей).

3. В каких клетках АТФ больше всего?

Ответ. Наибольшее содержание АТФ в клетках, в которых велики затраты энергии. Это клетки печени и поперечнополосатой мускулатуры.

Вопросы после §22

1. В клетках каких организмов происходит спиртовое брожение?

Ответ. В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение:молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2:

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.

2. Откуда берётся энергия для синтеза АТФ из АДФ?

Ответ. Синтез АТФ осуществляется на следующих этапах. На этапе гликолиза происходит расщепления молекулы глюкозы, содержащей шесть атомов углерода (С6Н12О6), до двух молекул трёхуглеродной пировиноградной кислоты, или ПВК (C3H4O3). Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток. В ходе гликолиза при расщеплении 1 М глюкозы выделяется 200 кДж энергии, но 60 % её рассеивается в виде тепла. Оставшихся 40 % энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ.

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О

В аэробных организмах после гликолиза (или спиртового брожения) следует завершающий этап энергетического обмена – полное кислородное расщепление, или клеточное дыхание. В процессе этого третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс, так же как и гликолиз, является многостадийным, но происходит не в цитоплазме, а в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ:

2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 → 6СО2 + 42Н2О + 36АТФ.

Таким образом, суммарно энергетический обмен клетки в случае распада глюкозы можно представить следующим образом:

С6Н12О6 + 6О2 + 38АДФ + 38Н3РО4 → 6СО2 + 44Н2О + 38АТФ.

3. Какие этапы выделяют в энергетическом обмене?

Ответ. I этап, подготовительный

Сложные органические соединения распадаются на простые под действием пищеварительных ферментов, при этом выделяется только тепловая энергия.

Белки → аминокислоты

Жиры → глицерин и жирные кислоты

Крахмал → глюкоза

II этап, гликолиз (бескислородный)

Осуществляется в цитоплазме, с мембранами не связан. В нём участвуют ферменты; расщеплению подвергается глюкоза. 60 % энергии рассеивается в виде тепла, а 40 % - используется для синтеза АТФ. Кислород не участвует.

III этап, клеточное дыхание (кислородный)

Осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной. В нём участвуют ферменты, кислород. Расщеплению подвергается молочная кислота. СО2 выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ.

Ответ. Все проявления жизни аэробов нуждаются в затрате энергии, пополнение которой происходит клеточном дыхании – сложном процессе, в который вовлечены многие ферментные системы.

Между тем, его можно представить как ряд последовательных реакций окисления – восстановления, при которых электроны отсоединяются от молекулы какого-либо питательного вещества и переносятся сначала на первичный акцептор, затем на вторичный и далее – до конечного. При этом энергия потока электронов накапливается в макроэргических химических связях (главным образом, фосфатных связях универсального источника энергии – АТФ). Для большинства организмов конечным акцептором электронов служит кислород, который, реагируя с электронами и ионами водорода, образует молекулу воды. Без кислорода обходятся лишь анаэробы, покрывающие свои энергетические потребности за счет брожения. К анаэробам относятся многие бактерии, ресничные инфузории, некоторые черви и несколько видов моллюсков. Эти организмы в качестве конечного акцептора электронов используют этиловый или бутиловый спирт, глицерин и др.

Преимущество кислородного, то есть аэробного типа энергетического обмена над анаэробным очевидно: количество энергии, выделяющееся при окислении питательного вещества кислородом, в несколько раз выше, чем при его окислении, например, пировиноградной кислотой (происходит при таком распространенном типе брожения, как гликолиз). Таким образом, благодаря высокой окислительной способности кислорода, аэробы эффективнее используют потребляемые питательные вещества, чем анаэробы. Вместе с тем, аэробные организмы могут существовать лишь в среде, содержащей свободный молекулярный кислород. В противном случае они погибают.

Пар.22 В клетках каких организмов происходит спиртовое брожение? В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение-, молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2. Откуда берется энергия для синтеза АТФ из АДФ? Выделяется в процессе диссимиляции, т. е. в реакциях расщепления органических веществ в клетке. В зависимости от специфики организма и условий его обитания диссимиляция может проходить в два или три этапа. Какие этапы выделяют в энергетическом обмене? 1 –подготовительный;заключ.в распаде крупных органических молекул до более простых: полисах.-моносах., липиды-глиц.и жир. кислоты, белки-а.к. Расщепление происходит в ПС. Энергии выделяется мало, при этом она рассеивается в виде тепла. Образующиеся соединения (моносах.,жир.кислоты, а.к. и др.) могут использоваться клеткой в реакциях пласт.обмена, а также для дальнейшего расщ-я с целью получения энергии. 2- бескислородный=гликолиз (ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты); С6Н12О6 + 2Н3Р04 + 2АДФ --- 2С3Н6О3 + 2АТФ + 2Н2О. заключается в ферментативном расщ-ии орг.вещ-в, которые были получены в ходе подгот.этапа. О2 в реакциях этого этапа не участвует. Реакции гликолиза катализируются многими ферментами и протекают в цитоплазме клеток. 40% энергии сохраняется в молекулах АТФ, 60% рассеивается в виде тепла. Глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до соединений, которые еще богаты энергией и, окисляясь далее, могут дать ее в больших количествах (молочная кислота, этиловый спирт и др.). 3- кислородный (клет.дыхание); органические вещества, образ.в ходе 2 этапа и содержащие большие запасы хим.энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс происходит в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ: 2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 - 6СО2 + 42Н2О + З6АТФ. Выделяется большое кол-во энергии, 55% запас.в виде АТФ, 45% рассеивается в виде тепла. В чем отличия энергетич.обмена у аэробов и анаэробов? Больш-во жив.существ, обитающих на Земле, относятся к аэробам, т.е. используют в процессах ОВ О2 из окружающей среды. У аэробов энерг.обмен происходит в 3 этапа: подготов., бескислор.и кислород. В результате этого орган.вещ-ва распадаются до простейших неорган.соединений. У организмов, обитающих в бескислор.среде и не нуждающихся в кислороде, - анаэробов, а также у аэробов при недостатке кислорода ассимиляция происходит в два этапа: подготовительный и бескислородный. В двухэтапном варианте энергетического обмена энергии запасается гораздо меньше, чем в трехэтапном. ТЕРМИНЫ: Фосфорилирование – присоединение 1 остатка фосф.кислоты к молекуле АДФ. Гликолиз - ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ; при аэробных условиях ведёт к образ.пировиноградной кислоты, в анаэроб. условиях ведёт к образованию молочной кислоты. Спиртовое брожение – хим.реакция брожения в результате которой молекула глюкозы в анаэроб.условиях превращ.в этиловый спирт и СО2 Пар.23 Какие организмы являются гетеротрофами? Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу) Какие организмы на Земле практически не зависят от энергии солнечного света? Хемотрофы - используют для синтеза органических веществ энергию, высвобождающуюся в ходе химических превращений неорганических соединений. ТЕРМИНЫ: Питание - совокупность процессов, включающих поступление в организм, переваривание, всасывание и усвоение им пищевых веществ. В процессе питания организмы получают химические соединения, используемые ими для всех процессов жизнедеятельности. Автотрофы - организмы, синтезирующие органические соединения из неорганических, получая из окружающей среды углерод в виде СО2, воду и мин.соли. Гетеротрофы - организмы, которые не способны синтезировать органические вещества из неорганических (жив-е, грибы, мн.бактерии, клетки раст-й, не способ.к фотосинтезу)