Таблица удельного сопротивления. Сопротивление меди в зависимости от температуры

Уде́льное электри́ческое сопротивле́ние , или просто удельное сопротивление вещества - физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока .

Удельное сопротивление обозначается греческой буквой ρ . Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления , являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества .

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ , длиной l и площадью поперечного сечения S может быть рассчитано по формуле R = ρ ⋅ l S {\displaystyle R={\frac {\rho \cdot l}{S}}} (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется ρ = R ⋅ S l . {\displaystyle \rho ={\frac {R\cdot S}{l}}.}

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Энциклопедичный YouTube

  • 1 / 5

    Единица измерения удельного сопротивления в Международной системе единиц (СИ) - Ом · . Из соотношения ρ = R ⋅ S l {\displaystyle \rho ={\frac {R\cdot S}{l}}} следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м² , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м² .

    В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10 −6 от 1 Ом·м . Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм² , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм² .

    Обобщение понятия удельного сопротивления

    Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат - коэффициентом, связывающим напряжённость электрического поля E → (r →) {\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J → (r →) {\displaystyle {\vec {J}}({\vec {r}})} в данной точке r → {\displaystyle {\vec {r}}} . Указанная связь выражается законом Ома в дифференциальной форме :

    E → (r →) = ρ (r →) J → (r →) . {\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}

    Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент . В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением

    E i (r →) = ∑ j = 1 3 ρ i j (r →) J j (r →) . {\displaystyle E_{i}({\vec {r}})=\sum _{j=1}^{3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}

    В анизотропном, но однородном веществе тензор ρ i j {\displaystyle \rho _{ij}} от координат не зависит.

    Тензор ρ i j {\displaystyle \rho _{ij}} симметричен , то есть для любых i {\displaystyle i} и j {\displaystyle j} выполняется ρ i j = ρ j i {\displaystyle \rho _{ij}=\rho _{ji}} .

    Как и для всякого симметричного тензора, для ρ i j {\displaystyle \rho _{ij}} можно выбрать ортогональную систему декартовых координат, в которых матрица ρ i j {\displaystyle \rho _{ij}} становится диагональной , то есть приобретает вид, при котором из девяти компонент ρ i j {\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ 11 {\displaystyle \rho _{11}} , ρ 22 {\displaystyle \rho _{22}} и ρ 33 {\displaystyle \rho _{33}} . В этом случае, обозначив ρ i i {\displaystyle \rho _{ii}} как , вместо предыдущей формулы получаем более простую

    E i = ρ i J i . {\displaystyle E_{i}=\rho _{i}J_{i}.}

    Величины ρ i {\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.

    Связь с удельной проводимостью

    В изотропных материалах связь между удельным сопротивлением ρ {\displaystyle \rho } и удельной проводимостью σ {\displaystyle \sigma } выражается равенством

    ρ = 1 σ . {\displaystyle \rho ={\frac {1}{\sigma }}.}

    В случае анизотропных материалов связь между компонентами тензора удельного сопротивления ρ i j {\displaystyle \rho _{ij}} и тензора удельной проводимости имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:

    J i (r →) = ∑ j = 1 3 σ i j (r →) E j (r →) . {\displaystyle J_{i}({\vec {r}})=\sum _{j=1}^{3}\sigma _{ij}({\vec {r}})E_{j}({\vec {r}}).}

    Из этого равенства и приведённого ранее соотношения для E i (r →) {\displaystyle E_{i}({\vec {r}})} следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:

    ρ 11 = 1 det (σ) [ σ 22 σ 33 − σ 23 σ 32 ] , {\displaystyle \rho _{11}={\frac {1}{\det(\sigma)}}[\sigma _{22}\sigma _{33}-\sigma _{23}\sigma _{32}],} ρ 12 = 1 det (σ) [ σ 33 σ 12 − σ 13 σ 32 ] , {\displaystyle \rho _{12}={\frac {1}{\det(\sigma)}}[\sigma _{33}\sigma _{12}-\sigma _{13}\sigma _{32}],}

    где det (σ) {\displaystyle \det(\sigma)} - определитель матрицы , составленной из компонент тензора σ i j {\displaystyle \sigma _{ij}} . Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1 , 2 и 3 .

    Удельное электрическое сопротивление некоторых веществ

    Металлические монокристаллы

    В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C .

    Кристалл ρ 1 =ρ 2 , 10 −8 Ом·м ρ 3 , 10 −8 Ом·м
    Олово 9,9 14,3
    Висмут 109 138
    Кадмий 6,8 8,3
    Цинк 5,91 6,13

    Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.

    Понятие удельного сопротивления вещества

    Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах , умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».

    Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины - удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.

    Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.

    Применение меди

    Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.

    Таблица сопротивления металлов

    Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.

    В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.

    Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.

    Медь. Ее характеристики и свойства

    Описание вещества и свойства

    Медь - это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.

    Физические свойства меди:

    • температура плавления - 1084 градусов по Цельсию;
    • температура кипения - 2560 градусов по Цельсию;
    • плотность при 20 градусах - 8890 килограмм деленный на кубический метр;
    • удельная теплоемкость при постоянном давлении и температуре 20 градусов - 385 кДж/Дж*кг
    • удельное электрическое сопротивление - 0,01724;

    Марки меди

    Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:

    1. Марки М00, М0, М1 - отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
    2. Марки М2 и М3 - дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
    3. Марки М1, М1ф, М1р, М2р, М3р - это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.

    Между собой марки отличаются по нескольким параметрам:

    Влияние примесей на свойства меди

    Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.

    В заключение следует подчеркнуть, что медь - это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.


      Удельные сопротивления популярных проводников (металлов и сплавов). Сталь удельное сопротивление

      Удельное сопротивление железа, алюминия и других проводников

      Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

      Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики - то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

      Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление - это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации - при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

      Виды удельного сопротивления

      Так как сопротивление бывает:

      • активное - или омическое, резистивное, - происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
      • реактивное - емкостное или индуктивное, - которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
    1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
    2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

    Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП - активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

    В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.


    Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin - кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.


    Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.


    Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса - играющих роль проводов других фаз, нулевых, заземляющих.

    Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

    Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления - обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

    Таблица

    Железо как проводник в электротехнике

    Железо - самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

    В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

    Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

    В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

    Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

    , где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

    Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

    После этого разрешим формулу относительно S

    , будем подставлять значения из таблицы и получать площади сечений для разных металлов.

    Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

    Как видим, сопротивление железа достаточно большое, проволока получается толстая.


    Но существуют материалы, у которых оно еще больше, например, никелин или константан.

    Похожие статьи:

    domelectrik.ru

    Таблица удельного электрического сопротивления металлов и сплавов в электротехнике

    Главная > у >

    

    Удельное сопротивление металлов.

    Удельное сопротивление сплавов.

    Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава. comments powered by HyperComments

    tab.wikimassa.org

    Удельное электрическое сопротивление | Мир сварки

    Удельное электрическое сопротивление материалов

    Удельное электрическое сопротивление (удельное сопротивление) - способность вещества препятствовать прохождению электрического тока.

    Единица измерения (СИ) - Ом·м; также измеряется в Ом·см и Ом·мм2/м.

    Материал Температура, °С Удельное электрическоесопротивление, Ом·м
    Металлы
    Алюминий 20 0,028·10-6
    Бериллий 20 0,036·10-6
    Бронза фосфористая 20 0,08·10-6
    Ванадий 20 0,196·10-6
    Вольфрам 20 0,055·10-6
    Гафний 20 0,322·10-6
    Дюралюминий 20 0,034·10-6
    Железо 20 0,097·10-6
    Золото 20 0,024·10-6
    Иридий 20 0,063·10-6
    Кадмий 20 0,076·10-6
    Калий 20 0,066·10-6
    Кальций 20 0,046·10-6
    Кобальт 20 0,097·10-6
    Кремний 27 0,58·10-4
    Латунь 20 0,075·10-6
    Магний 20 0,045·10-6
    Марганец 20 0,050·10-6
    Медь 20 0,017·10-6
    Магний 20 0,054·10-6
    Молибден 20 0,057·10-6
    Натрий 20 0,047·10-6
    Никель 20 0,073·10-6
    Ниобий 20 0,152·10-6
    Олово 20 0,113·10-6
    Палладий 20 0,107·10-6
    Платина 20 0,110·10-6
    Родий 20 0,047·10-6
    Ртуть 20 0,958·10-6
    Свинец 20 0,221·10-6
    Серебро 20 0,016·10-6
    Сталь 20 0,12·10-6
    Тантал 20 0,146·10-6
    Титан 20 0,54·10-6
    Хром 20 0,131·10-6
    Цинк 20 0,061·10-6
    Цирконий 20 0,45·10-6
    Чугун 20 0,65·10-6
    Пластмассы
    Гетинакс 20 109–1012
    Капрон 20 1010–1011
    Лавсан 20 1014–1016
    Органическое стекло 20 1011–1013
    Пенопласт 20 1011
    Поливинилхлорид 20 1010–1012
    Полистирол 20 1013–1015
    Полиэтилен 20 1015
    Стеклотекстолит 20 1011–1012
    Текстолит 20 107–1010
    Целлулоид 20 109
    Эбонит 20 1012–1014
    Резины
    Резина 20 1011–1012
    Жидкости
    Масло трансформаторное 20 1010–1013
    Газы
    Воздух 0 1015–1018
    Дерево
    Древесина сухая 20 109–1010
    Минералы
    Кварц 230 109
    Слюда 20 1011–1015
    Различные материалы
    Стекло 20 109–1013

    ЛИТЕРАТУРА

    • Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
    • Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
    • Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

    weldworld.ru

    Удельное сопротивление металлов, электролитов и веществ (Таблица)

    Удельное сопротивление металлов и изоляторов

    В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18-20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

    Таблица удельное сопротивление металлов

    Чистые металлы

    104 ρ (ом·см)

    Чистые металлы

    104 ρ (ом·см)

    Алюминий

    Дюралюминий

    Платинит 2)

    Аргентан

    Марганец

    Манганин

    Вольфрам

    Константан

    Молибден

    Сплав Вуда 3)

    Сплав Розе 4)

    Палладий

    Фехраль 6)

    Таблица удельное сопротивление изоляторов

    Изоляторы

    Изоляторы

    Дерево сухое

    Целлулоид

    Канифоль

    Гетинакс

    Кварц _|_ оси

    Стекло натр

    Полистирол

    Стекло пирекс

    Кварц || оси

    Кварц плавленый

    Удельное сопротивление чистых металлов при низких температурах

    В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

    Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

    В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

    Чистые металлы

    Алюминий

    Вольфрам

    Молибден

    Удельное сопротивление электролитов

    В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

    Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

    infotables.ru

    Удельное электрическое сопротивление - сталь

    Cтраница 1

    Удельное электрическое сопротивление стали возрастает с ростом температуры, причем наибольшие изменения наблюдаются при нагреве до температуры точки Кюри. После точки Кюри величина удельного электросопротивления изменяется незначительно и при температурах выше 1000 С практически остается постоянной.  

    Ввиду большого удельного электрического сопротивления стали эти iuKii создают НсОольшое замедление в спадании потока. В контакторах на 100 а время отпадания составляет 0 07 сек, а в контакторах 600 а-0 23 сек. В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм у этих контакторов допускает регулировку напряжения срабатывания и напряжения отпускания за счет регулировки силы возвратной пружины и специальной отрывной пружины. Контакторы типа КМВ должны работать при глубокой посадке напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может спускаться до 65 % UH. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к повышенному нагреву катушки.  

    Присадка кремния увеличивает удельное электрическое сопротивление стали почти пропорционально содержанию кремния и этим способствует уменьшению потерь на вихревые токи, возникающие в стали при ее работе в переменном магнитном поле.  

    Присадка кремния увеличивает удельное электрическое сопротивление стали, что способствует уменьшению потерь на вихревые токи, но одновременно кремний ухудшает механические свойства стали, делает ее хрупкой.  

    Ом - мм2 / м - удельное электрическое сопротивление стали.  

    Для уменьшения вихревых токов применяются сердечники, выполненные из сортов стали с повышенным удельным электрическим сопротивлением стали, содержащие 0 5 - 4 8 % кремния.  

    Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава, а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами.  

    Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5 % кремния. Присадка кремния увеличивает удельное электрическое сопротивление стали, в результате чего уменьшаются потери на вихревые токи, сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Для уменьшения потерь от вихревых токов сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали.  

    Электротехническая сталь является низкоуглеродистой сталью. Для улучшения магнитных характеристик в нее вводят кремний, который вызывает повышение удельного электрического сопротивления стали. Это приводит к уменьшению потерь на вихревые токи.  

    После механической обработки магнитопровод отжигают. Так как в создании замедления участвуют вихревые токи в стали, следует ориентироваться на величину удельного электрического сопротивления стали порядка Рс (Ю-15) 10 - 6 ом см. В притянутом положении якоря магнитная система достаточно сильно насыщена, поэтому начальная индукция в различных магнитных системах колеблется в очень незначительных пределах и составляет для стали марки Э Вн1 6 - 1 7 гл. Указанное значение индукции поддерживает напряженность поля в стали порядка Ян.  

    Для изготовления магнитных систем (магнитопроводов) трансформаторов применяются специальные тонколистовые электротехнические стали, имеющие повышенное (до 5 %) содержание кремния. Кремний способствует обезуглероживанию стали, что приводит к увеличению магнитной проницаемости, снижает потери на гистерезис и увеличивает ее удельное электрическое сопротивление. Увеличение удельного электрического сопротивления стали позволяет уменьшить потери в ней от вихревых токов. Кроме того, кремний ослабляет старение стали (увеличение потерь в стали с течением времени), уменьшает ее магнитострикцию (изменение формы и размеров тела при намагничивании) и, следовательно, шум трансформаторов. В то же время наличие кремния в стали приводит к повышению ее хрупкости и затрудняет ее механическую обработку.  

    Страницы:      1    2

    www.ngpedia.ru

    Удельное сопротивление | Викитроника вики

    Удельное сопротивление - характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

    Обозначение - ρ

    $ \vec E = \rho \vec j, $

    $ \vec E $ - напряжённость электрического поля, $ \vec j $ - плотность тока.

    Единица измерения СИ - ом-метр (ом·м, Ω·m).

    Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

    $ R = \frac{\rho l}{S}. $

    В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

    Удельное сопротивление некоторых материалов, используемых в электротехнике Править

    Материал ρ при 300 К, Ом·м ТКС, К⁻¹
    серебро 1,59·10⁻⁸ 4,10·10⁻³
    медь 1,67·10⁻⁸ 4,33·10⁻³
    золото 2,35·10⁻⁸ 3,98·10⁻³
    алюминий 2,65·10⁻⁸ 4,29·10⁻³
    вольфрам 5,65·10⁻⁸ 4,83·10⁻³
    латунь 6,5·10⁻⁸ 1,5·10⁻³
    никель 6,84·10⁻⁸ 6,75·10⁻³
    железо (α) 9,7·10⁻⁸ 6,57·10⁻³
    олово серое 1,01·10⁻⁷ 4,63·10⁻³
    платина 1,06·10⁻⁷ 6,75·10⁻³
    олово белое 1,1·10⁻⁷ 4,63·10⁻³
    сталь 1,6·10⁻⁷ 3,3·10⁻³
    свинец 2,06·10⁻⁷ 4,22·10⁻³
    дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
    манганин 4,3·10⁻⁷ ±2·10⁻⁵
    константан 5,0·10⁻⁷ ±3·10⁻⁵
    ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
    нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
    канталь А1 1,45·10⁻⁶ 3·10⁻⁵
    углерод (алмаз, графит) 1,3·10⁻⁵
    германий 4,6·10⁻¹
    кремний 6,4·10²
    этанол 3·10³
    вода, дистиллированная 5·10³
    эбонит 10⁸
    бумага твёрдая 10¹⁰
    трансформаторное масло 10¹¹
    стекло обычное 5·10¹¹
    поливинил 10¹²
    фарфор 10¹²
    древесина 10¹²
    ПТФЭ (тефлон) >10¹³
    резина 5·10¹³
    стекло кварцевое 10¹⁴
    бумага вощёная 10¹⁴
    полистирол >10¹⁴
    слюда 5·10¹⁴
    парафин 10¹⁵
    полиэтилен 3·10¹⁵
    акриловая смола 10¹⁹

    ru.electronics.wikia.com

    Удельное электрическое сопротивление | формула, объемное, таблица

    Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

    Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

    Формула расчета и величина измерения

    Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

    Формула удельного электрического сопротивления выглядит следующим образом:

    R= (ρ·l)/S, где:

    • R – сопротивление проводника;
    • Ρ – удельное сопротивление материал;
    • l – длина проводника;
    • S – сечение проводника.

    Зависимость от температуры

    Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

    В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

    При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

    Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

    Материалы с высоким удельным сопротивлением ρ (Ом·м)
    Бакелит 1016
    Бензол 1015...1016
    Бумага 1015
    Вода дистиллированная 104
    Вода морская 0.3
    Дерево сухое 1012
    Земля влажная 102
    Кварцевое стекло 1016
    Керосин 1011
    Мрамор 108
    Парафин 1015
    Парафиновое масло 1014
    Плексиглас 1013
    Полистирол 1016
    Полихлорвинил 1013
    Полиэтилен 1012
    Силиконовое масло 1013
    Слюда 1014
    Стекло 1011
    Трансформаторное масло 1010
    Фарфор 1014
    Шифер 1014
    Эбонит 1016
    Янтарь 1018

    Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

    Материалы с низким удельным сопротивлением ρ (Ом·м)
    Алюминий 2.7·10-8
    Вольфрам 5.5·10-8
    Графит 8.0·10-6
    Железо 1.0·10-7
    Золото 2.2·10-8
    Иридий 4.74·10-8
    Константан 5.0·10-7
    Литая сталь 1.3·10-7
    Магний 4.4·10-8
    Манганин 4.3·10-7
    Медь 1.72·10-8
    Молибден 5.4·10-8
    Нейзильбер 3.3·10-7
    Никель 8.7·10-8
    Нихром 1.12·10-6
    Олово 1.2·10-7
    Платина 1.07·10-7
    Ртуть 9.6·10-7
    Свинец 2.08·10-7
    Серебро 1.6·10-8
    Серый чугун 1.0·10-6
    Угольные щетки 4.0·10-5
    Цинк 5.9·10-8
    Никелин 0,4·10-6

    Удельное объемное электрическое сопротивление

    Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

    Использование в электротехнике

    Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

    Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

    В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

    На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

    Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

    Общая характеристика меди

    Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

    Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и получила широкое распространение в энергетических установках , в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

    Плюсы использования электролитической меди

    Применение электролитической меди позволяет добиться следующего:

    • Обеспечить высокую электропроводность;
    • Добиться отличной способности к уложению;
    • Обеспечить высокую степень пластичности.

    Сферы применения

    Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях. Чаще всего она применяется в следующих сферах:

    • электроиндустрия;
    • электроприборы;
    • автомобилестроение;
    • производство компьютерной техники.

    Чему равно удельное сопротивление?

    Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла - удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

    Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

    Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

    Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля, ориентируясь только на характеристики электрической сети. Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля - медь, алюминий или какой-то другой сплав.

    Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди - материал, который можно было бы использовать вместо нее, то единственным подходящим можно считать только серебро , у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

    Сименс = 1/ Ом.

    У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

    В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот материал используют для изготовления проводки , без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

    Удельное сопротивление

    Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.

    • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
    • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
    • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

    Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

    Температурный коэффициент сопротивления

    Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

    Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

    ΔR = α*R*ΔT, где α - температурный коэффициент электрического сопротивления.

    Заключение

    Медь - материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки , прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.

    На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А :

    R = ρL/А (26.4)

    где коэффициент ρ называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник. Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади . И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

    Типичные значения ρ для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

    Таблица 26.2.
    Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
    Вещество ρ ,Ом·м ТКС α ,°C -1
    Проводники
    Серебро 1,59·10 -8 0,0061
    Медь 1,68·10 -8 0,0068
    Алюминий 2,65·10 -8 0,00429
    Вольфрам 5,6·10 -8 0,0045
    Железо 9,71·10 -8 0,00651
    Платина 10,6·10 -8 0,003927
    Ртуть 98·10 -8 0,0009
    Нихром (сплав Ni, Fe, Сг) 100·10 -8 0,0004
    Полупроводники 1)
    Углерод (графит) (3-60)·10 -5 -0,0005
    Германий (1-500)·10 -5 -0,05
    Кремний 0,1 - 60 -0,07
    Диэлектрики
    Стекло 10 9 - 10 12
    Резина твердая 10 13 - 10 15
    1) Реальные значения сильно зависят от наличия даже малого количества примесей.

    Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

    Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению:

    σ = 1/ρ (26.5)

    σ называемой удельной проводимостью. Удельная проводимость измеряется в единицах (Ом·м) -1 .

    Удельное сопротивление вещества зависит от температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с повышением температуры атомы движутся быстрее, их расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов. В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с температурой практически линейно:

    где ρ T - удельное сопротивление при температуре Т , ρ 0 - удельное сопротивление при стандартной температуре Т 0 , а α - температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление полупроводника с повышением температуры может уменьшаться (хотя и не всегда).

    Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26.6) надо использовать выражение, содержащее члены, которые зависят от второй и третьей степеней температуры:

    ρ T = ρ 0 (1+αТ + + βТ 2 + γТ 3),

    где коэффициенты β и γ обычно очень малы (мы положили Т 0 = 0°С), но при больших Т вклад этих членов становится существенным.

    При очень низких температурах удельное сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью; впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое сопротивление ртути внезапно падало до нуля.

    Сверхпроводники переходят в сверхпроводящее состояние ниже температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

    Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

    Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

    Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и получила широкое распространение в энергетических установках , в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

    Плюсы использования электролитической меди

    Применение электролитической меди позволяет добиться следующего:

    • Обеспечить высокую электропроводность;
    • Добиться отличной способности к уложению;
    • Обеспечить высокую степень пластичности.

    Сферы применения

    Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях. Чаще всего она применяется в следующих сферах:

    • электроиндустрия;
    • электроприборы;
    • автомобилестроение;
    • производство компьютерной техники.

    Чему равно удельное сопротивление?

    Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла - удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

    Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

    Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

    Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля , ориентируясь только на характеристики электрической сети . Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля - медь, алюминий или какой-то другой сплав.

    Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди - материал, который можно было бы использовать вместо нее, то единственным подходящим можно считать только серебро , у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

    Сименс = 1/ Ом.

    У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

    В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот материал используют для изготовления проводки , без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

    Удельное сопротивление

    Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.

    • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
    • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
    • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

    Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

    Температурный коэффициент сопротивления

    Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

    Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

    ΔR = α*R*ΔT, где α - температурный коэффициент электрического сопротивления.

    Заключение

    Медь - материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки , прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.

    Часто в электротехнической литературе встречается понятие "удельное меди ". И невольно задаешься вопросом, а что же это такое?

    Понятие «сопротивление» для любого проводника непрерывно связано с пониманием процесса протекания по нему электрического тока. Так как речь в статье пойдет о сопротивлении меди, то и рассматривать нам следует ее свойства и свойства металлов.

    Когда речь идет о металлах, то невольно вспоминаешь, что все они имеют определенное строение - кристаллическую решетку. Атомы находятся в узлах такой решетки и совершают относительно них Расстояния и местоположение этих узлов зависит от сил взаимодействия атомов друг с другом (отталкивания и притяжения), и различны для разных металлов. А вокруг атомов по своим орбитам вращаются электроны. Их удерживает на орбите тоже равновесие сил. Только это к атому и центробежная. Представили себе картинку? Можно назвать ее, в некотором плане, статической.

    А теперь добавим динамики. На кусок меди начинает действовать электрическое поле. Что же происходит внутри проводника? Электроны, сорванные силой электрического поля со своих орбит, устремляются к его положительному полюсу. Вот Вам и направленное движение электронов, а вернее, электрический ток. Но на пути своего движения они натыкаются на атомы в узлах кристаллической решетки и электроны, еще продолжающие вращаться вокруг своих атомов. При этом они теряют свою энергию и изменяют направление движения. Теперь становится немного понятнее смысл фразы «сопротивление проводника»? Это атомы решетки и вращающиеся вокруг них электроны оказывают сопротивление направленному движению электронов, сорванных электрическим полем со своих орбит. Но понятие сопротивление проводника можно назвать общей характеристикой. Более индивидуально характеризует каждый проводник удельное сопротивление. Меди в том числе. Эта характеристика индивидуальна для каждого металла, поскольку напрямую зависит только от формы и размеров кристаллической решетки и, в некоторой мере, от температуры. При повышении температуры проводника атомы совершают более интенсивное колебание в узлах решетки. А электроны вращаются вокруг узлов с большей скоростью и на орбитах большего радиуса. И, естественно, что свободные электроны при движении встречают и большее сопротивление . Такова физика процесса.

    Для нужд электротехнической сферы налажено широкое производство таких металлов, как алюминий и медь, удельное сопротивление которых достаточно мало. Из этих металлов изготавливают кабели и различного типа провода, которые широко используются в строительстве, для производства бытовых приборов , изготовления шин, обмоток трансформаторов и других электротехнических изделий.

    Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм2. То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

    Свойства меди

    Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

    Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

    Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

    Медь и ее удельное сопротивление

    Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм2/1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

    Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

    Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника. Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.