Вихревое электрическое поле самоиндукция. Вихревое электрическое поле


Если возникновение индукционного тока или разности потенциалов в движущемся в магнитном поле проводнике можно объяснить действием силы Лоренца, которая приводит к движению зарядов. То как объяснить возникновение электрического тока в неподвижном проводнике, находящемся в изменяющемся магнитном поле? Наличием электрического поля!!! А что это за поле?


Всякое изменение магнитного поля порождает в окружающем пространстве индукционное электрическое поле (независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток).


Электрическое поле электростатическое поле 1. создается неподвижными электрическими зарядами 2. силовые линии поля разомкнуты - - потенциальное поле 3. источниками поля являются электрические заряды 4. работа сил поля по перемещению пробного заряда по замкнутому пути равна 0. индукционное электрическое поле (вихревое электрическое поле) 1. вызывается изменениями магнитного поля 2. силовые линии замкнуты - - вихревое поле 3. источники поля указать нельзя 4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции





Идукти́вность (или коэффициент самоиндукции) коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность: Ф=LI, Ф магнитный поток, I ток в контуре, L индуктивность. Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока: ξ си=-L ΔI/ Δt. Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с. Индуктивность

Магнитный поток Ф= BS cos . Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом электромагнитной индукции, но происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8).

Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле . К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем - это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.

Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.



Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление электромагнитной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла - минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каждой пластине.

При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.

Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.

Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

где R - сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле - создается неподвижными электрическими зарядами, силовые линии поля разомкнуты - -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле (вихревое электр. поле) - вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.


Вихревые токи

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах - магнитных изоляторах вихревые токи практически не возникают.


Использование вихревых токов

Нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

Это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.




Электромагнитное поле - Класс!ная физика


Любознательным

Сальто-мортале жука-щелкуна

Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25, при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается в воздухе и приземляется уже на ноги. 400 g - удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности, которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?

Оказывается...
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться, чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.

В 1831 г. Майкл Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток, называемый индукционным .

Индукционный ток в катушке из металлической проволки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки, а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку.

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией. Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектрической природы или о возникновении ЭДС индукции .

Направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э.Х.Ленцем.

Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис.11.1). Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.

Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. При вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.

Правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем .

Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

Вихревое электрическое поле отличается от электростатического тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.

Электрическое поле, возникающее при изменении магнит­ного поля, имеет совсем другую структуру, чем электростати­ческое. Оно не связано непосредственно с электрическими за­рядами, и его линии напряженности не могут на них начи­наться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Это так называемое вихревое электрическое поле. Может возник­нуть вопрос: а почему, собственно, это поле называется элект­рическим? Ведь оно имеет другое происхождение и другую конфигурацию, чем статическое электрическое поле. Ответ прост: вихревое поле действует на заряд q точно так же, как и электростатическое, а это мы считали и считаем главным свойством поля. Сила, действующая на заряд, по-прежнему равна F = qE, где Е - напряженность вихревого поля.

Если магнитный поток создается од­нородным магнитным полем, сконцент­рированным в длинной узкой цилиндри­ческой трубке радиусом г 0 (рис. 5.8), то из соображений симметрии очевидно, что линии напряженности электрическо­го поля лежат в плоскостях, перпенди­кулярных линиям В, и представляют со­бой окружности. В соответствии с прави­лом Ленца при возрастании магнитной

индукции линии напряженности E образуют левый винт с направлением магнитной индукции B.

В отличие от статического или стационарного электриче­ского поля работа вихревого поля на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Вихревое электрическое поле, так же как и магнитное поле, не потенциальное.

Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого непо­движного проводника численно равна ЭДС индукции в этом проводнике.

Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией.

При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное по­ле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.

В момент нарастания тока напряженность вихревого элект­рического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле пре­пятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Это приводит к тому, что при замыкании цепи, содержа­щей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением време­ни (рис. 5.13). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Воз­никающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.

Явление самоиндукции можно на­блюдать на простых опытах. На рисун­ке 5.14 показана схема параллельного включения двух одинаковых ламп. Од­ну из них подключают к источнику че­рез резистор R, а другую - последова­тельно с катушкой L с железным сер­дечником. При замыкании ключа первая лампа вспыхивает практиче­ски сразу, а вторая - с заметным запозданием. ЭДС самоин­дукции в цепи этой лампы велика, и сила тока не сразу дости­гает своего максимального значения. Появление ЭДС самоиндукции при размыкании можно на­блюдать на опыте с цепью, схематически показанной на рисун­ке 5.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В ре­зультате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС са­моиндукции ξ. больше ЭДС ξ is батареи элементов.

Явление самоиндукции подобно явлению инерции в меха­нике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а по­степенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндук­ции при замыкании цепи сила тока не сразу приобретает опре­деленное значение, а нарастает постепенно. Выключая источ­ник, мы не прекращаем ток сразу. Самоиндукция его поддер­живает некоторое время, несмотря на наличие сопротивления цепи.

Далее, чтобы увеличить скорость тела, согласно законам механики, нужно совершить работу. При торможении тело са­мо совершает положительную работу. Точно так же для созда­ния тока нужно совершить работу против вихревого электри­ческого поля, а при исчезновении тока это поле само соверша­ет положительную работу.

Это не просто внешняя аналогия. Она имеет глубокий внут­ренний смысл. Ведь ток - это совокупность движущихся за­ряженных частиц. При увеличении скорости электронов со­здаваемое ими магнитное поле меняется и порождает вихре­вое электрическое поле, которое действует на сами электро­ны, препятствуя мгновенному увеличению их скорости под действием внешней силы. При торможении, напротив, вих­ревое поле стремится поддержать скорость электронов по­стоянной (правило Ленца). Таким образом, инертность элект­ронов, а значит, и их масса, по крайней мере частично, имеет электромагнитное происхождение. Масса не может быть пол­ностью электромагнитной, так как существуют электрически нейтральные частицы, обладающие массой (нейтроны и др.)

Индуктивность.

Модуль В магнитной индукции, создаваемой током в лю­бом замкнутом контуре, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В ~ I.

Можно, следовательно, утверждать, что

где L - коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индук­тивностью контура или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции и выраже­ние (5.7.1), получим равенство:

(5.7.2)

Из формулы (5.7.2) следует, что индуктивность - это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме

геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Единицу индуктивности в СИ называют генри (Гн). Ин­дуктивность проводника равна 1 Гн, если в нем при измене­нии силы тока на 1 А за возникает ЭДС самоиндукции 1 В:

Еще одним частным случаем электромагнитной индукции является взаимная индукция. Взаимной индукцией называют возникновение индукционного тока в замкнутом контуре (катушке) при изменении силы тока в соседнем контуре (катушке). Контуры при этом неподвижны друг от­носительно друга, как, например, катушки трансформатора.

Количественно взаимная индукция характеризуется коэффициентом взаимной индукции, или взаимной индуктивностью.

На рисунке 5.16 изображены два контура. При изменении силы тока I 1 в контуре 1 в контуре 2 возникает индукционный ток I 2 .

Поток магнитной индукции Ф 1,2 , созданный током в пер­вом контуре и пронизывающий поверхность, ограниченную вторым контуром, пропорционален силе тока I 1:

Коэффициент пропорциональности L 1, 2 называется взаим­ной индуктивностью. Он аналогичен индуктивности L.

ЭДС индукции во втором контуре, согласно закону электро­магнитной индукции, равна:

Коэффициент L 1,2 определяется геометрией обоих конту­ров, расстоянием между ними, их взаимным расположением и магнитными свойствами окружающей среды. Выражается взаимная индуктивность L 1,2 , как и индуктивность L, в генри.

Если сила тока меняется во втором контуре, то в первом контуре возникает ЭДС индукции

При изменении силы тока в проводнике в последнем воз­никает вихревое электрическое поле. Это поле тормо­зит электроны при возрастании силы тока и ускоряет при убывании.

Энергия магнитного поля тока.

При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов про­водника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводни­ка, т. е. на его нагревание. После того как установится посто­янное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.

Для создания тока необходимо затратить энергию, т. е. необходимо совершить работу. Объяс­няется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совер­шить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрица­тельную работу.

При размыкании цепи ток исчезает и вихревое поле совер­шает положительную работу. Запасенная током энергия выде­ляется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Записать выражение для энергии тока I, текущего по цепи с индуктивностью L, можно на основании аналогии между инерцией и самоиндукцией.

Если самоиндукция аналогична инерции, то индуктив­ность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль ско­рости тела в электродинамике играет сила тока I как величи­на, характеризующая движение электрических зарядов. Если это так, то энергию тока W m можно считать величиной, подобной кинетической энергии тела - в механике, и записать в виде.