Гетероциклические соединения. Строение и номенклатура

Гетероциклическими называют такие соединения циклического строения, в циклах которых наряду с атомами углерода находятся атомы других элементов. Эти другие атомы называются гетероатомами. Чаще всего такими гетероатомами являются атомы кислорода, серы и азота. В гетероциклах может находиться один, два, три и более гетероатомов. Однако, согласно теории напряжения циклов, трех- и четырехчленные циклы малоустойчивы. Наиболее прочные и поэтому чаще встречаются пяти- и шестичленные гетероциклы.

Классификацию гетероциклов осуществляют в зависимости от величины цикла. В соответствии с этим различают трех-, четырех-, пяти-, шестичленные гетероциклы и гетероциклы с большим количеством атомов.

Гетероциклические соединения многочисленны, очень распространенны в природе и имеют важное практическое значение. К ним относятся такие вещества, как хлорофилл - зеленое вещество растений, гемоглобин - окрашивающее вещество крови и много других природных красящих веществ, витамины, антибиотики (пенициллин), лекарственные вещества, пестициды.

Номенклатура гетероциклов

Гетероциклические соединения называют по тривиальной, рациональной и систематической номенклатуре. Для давно известных гетероциклических соединений часто используют тривиальные названия. Например, пиррол, пиридин, фуран, индол, пурин и др. В рациональной номенклатуре за основу берут название определенного гетероцикла - фуранов, тиофена, пиррола, пиридина или другого, а положение заместителей в них обозначают цифрами или буквами греческого алфавита. В гетероциклах с одним гетероатомом нумерацию начинают с этого гетероатома.

Рисунок 1.

Современная научная номенклатура гетероциклических систем включает величину цикла, его ненасыщенность, количество гетероатомов, их вид и положение. Название гетероцикла по этой номенклатуре состоит из трех частей:

  • корня - указывает размер цикла,
  • суффикса - указывает степень ненасыщенности гетероциклического системы
  • и приставки - указывает вид гетеро атомов и их количество.

Трехчленное кольцо имеет корень -ир, четырехчленное - -ет, пятичленное - -ол, шестичленное - ин. Насыщенные гетероциклы с атомом азота имеют суффикс -идин, насыщенные гетероциклы без атома азота имеют суффикс -ан, насыщенные гетероциклические системы имеют суффикс -ин.

Природа гетероатома указывается приставками окса-, тиа- и аза- соответственно для кислорода, серы и азота префиксы диокса-, дитиа-, диаза- означают соответственно два атома кислорода, серы и азота. Если в гетероцикле два и более разных гетероатомов, то они перечисляются по старшинству кислород раньше серы, а сера раньше азота, и их нумеруют в следующем порядке: $O$, $S$, $N$.

При наличии в гетероцикле одного атома кислорода и одного атома азота используют префикс - оксаза-, а при наличии одного атома серы и одного атома азота - тиаза-. При одновременном пребывании в цикле третичного атома азота и группы $NH$ цифрой 1 обозначают атом азота группы $NH$. В этом случае нумерацию проводят в следующем порядке: $O$, $S$, $NH$, $N$.

Гетероциклы, которые не содержат крайних связей, как правило, по химическим и физическим свойствам похожи на соответствующие циклические соединения.

Ароматиченость гетероциклов

Существует огромная группа гетероциклов, которые имеют сопряженную систему кратных связей. Такого рода гетероциклы напоминают по своей стойкостью и типами реакций бензол и его производные и называются ароматическими гетероциклическими соединениями.

Согласно правилу Хюккеля, циклическая система имеет ароматические свойства, если она:

  • содержит $4n + 2$ обобщающих электронов;
  • имеет непрерывную цепь сопряжения;
  • является планарный.

Сравним два соединения - бензол и пиридин:

Рисунок 2.

Рисунок 3.

В молекуле бензола атомы углерода находятся в состоянии $sp2$ - гибридизации. Четвертый электрон каждого атома С является не гибридизующимся. При этом образуется секстет электронов, обобщенных всеми атомами цикла (ароматический секстет).

Облака негибридизованих $\pi$-электронов, имеющих форму объемных восьмерок, перекрываясь друг с другом, образуют единое $\pi$-электронное облако:

Рисунок 4.

Аналогично можно объяснить ароматический характер пиридина. Только в образовании электронного секстета в природе участвуют 5$\pi$-электронов от атомов углерода и один электрон от азота:

Рисунок 5.

В атоме азота сохраняется неразделенная пара электронов. Эта пара электронов не входит в ароматический секстет; система планарная; соответствует правилу Хюккеля: $4n + 2$.

Электронное строение пятичленных гетероциклов

Рассмотрим электронное строение пятичленного гетероцикла - пиррола, образованного четырьмя атомами углерода и атомом азота, и содержит два двойных связи:

Рисунок 6.

В молекуле пиррола также образуется ароматический секстет за счет четырех $\pi$-электронов атомов углерода и двух неразделенных р-электронов атома азота. Таким образом в ядре образуется общая система секстета электронов и ядро имеет ароматические свойства. Выполняется первое правило ароматичности: содержится $4n + 2 = 4\cdot1 + 2 = 6$ обобщенных электронов. Выполняется и второе условие ароматичности - сохраняется непрерывная цепь сопряжения, в которую входит неразделенная пара электронов атома азота. Все атомы лежат в одной плоскости, система планарная. Таким образом, в пятичленных гетероциклах 6 электронов делокализованных между 5-ю атомами, образующими данный цикл.

Рисунок 7.

Из пятичленных гетероциклических соединений с одним гетероатомом важнейшее значение имеют: фуран, тиофен и пиррол. Для фурана, тиофена, пиррола и их производных типичны реакции электрофильного замещения : нитрование, сульфирование, галогенирование, ацилирование и др. Такая особенность свойств этих гетероциклических соединений связана с их электронным строением. В циклах этих веществ содержатся как атомы углерода, так и гетероатомы. Углеродные атомы и гетероатомы соединены с соседними атомами углерода $\sigma$-связями.

Другие ароматические гетероциклические соединения

Поскольку в полициклических соединениях на гетероатомы могут быть заменены атомы углерода разных циклов и в самых различных комбинациях, число возможных ароматических гетероциклических соединений исключительно велико:

Рисунок 8.

Помимо гетероциклических систем, которые содержат в каждом кольце по шесть $\pi$-электронов, известны многочисленные примеры ароматических ($4n+2$) p-элеткронных гетероциклических соединений, в которых $n >1$. Известны гетероциклические аналоги ароматических аннуленов. В качестве примеров можно привести окса--аннулен, аза--аннулен, аза--аннулен, изоэлектронные ароматическому -аннулену:

Рисунок 9.

Рисунок 10.

Другим наглядным примером ароматического гетероаннулена является мостиковый гомохинолин, изоэлектронный 1,6-метано -аннулену, содержащий 10 p-электронов:

Рисунок 11.

Гетероциклические соединения

Гетероциклическими называются соединения, имеющие в своем составе кольца (циклы), в образовании которых, кроме атомов углерода, принимают участие и атомы других элементов.

Атомы других элементов, помимо атомов углерода, входящие в состав гетероциклов, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота (N), кислорода (O) и серы (S).

Классификация гетероциклов

1. по общему числу атомов в цикле: трех-, четырех-, пяти-, шестичленные циклы и др.

2. по природе гетероатома: кислородо-, азото-, серо-, фосфорсодержащие

3. По числу гетероатомов:1,2 и более в цикле

4. По степени насыщенности циклов

5. По количеству циклов

Наибольшее значение имеют пяти и шестичленные гетероциклы, содержащие азот, кислород и серу. Эти циклы образуются наиболее легко и отличаются большой прочностью. Это обусловлено тем, что валентные углы приведенных гетероатомов незначительно отличаются от валентного угла углерода. По степени насыщенности гетероциклические соединения могут быть насыщенными, ненасыщенными и ароматическими. Особо следует выделить гетероциклические соединения, которые по своим свойствам отличаются от всех остальных циклических и ациклических соединений, напоминая своей устойчивостью и реакциями скорее бензол и его производные. Это гетероциклические соединения ароматического характера.

Гетероциклические соединения имеют огромное значение. Многие из них являются основой важных лекарственных препаратов, участвуют в построении некоторых аминокислот, входящих в состав белков. Гетероциклы являются структурными компонентами нуклеиновых кислот, лежат в основе природных окрашенных веществ таких, как хлорофилл, гемоглобин.

Гетероциклические соединения ароматического характера

В гетероциклических соединениях ароматического характера встречаются только следующие гетероатомы: азот, кислород и сера. Они являются единственными элементами, кроме углерода, которые могут образовывать π-связи и, следовательно, участвовать в построении ароматических ядер.

Пятичленные гетероциклы с одним гетероатомом

Важнейшими пятичленными гетероциклами с одним гетероатомом являются:

Индол (бензпиррол) является примером конденсированного гетероциклического соединения, в состав которого входят бензольное и пиррольное ядра, имеющие общее сочленение.

Производные пиррола широко распространены в природе. Сам же пиррол встречается редко. Он входит в состав каменноугольной смолы и костяного масла. Целый ряд производных пиррола и индола был получен искусственно и занял важное место в промышленном органическом синтезе: красители, лекарственные препараты, пластики. Индол является структурным компонентом незаменимой аминокислоты триптофан.

Шестичленные гетероциклы с одним гетероатомами

Важнейшим шестичленным гетероциклом с одним гетероатомом азота является пиридин. Наряду с пиридином большое значение имеют конденсированные системы, в которых ядро пиридина сочетается с одним и двумя ядрами бензола. Например, хинолин.


Пятичленные и шестичленные гетероциклы с двумя гетероатомами


В азотосодержащих гетероциклах два атома азота могут быть расположены в непосредственном соседстве и могут быть разделены одной или двумя группами CH (1,2-, 1,3- и 1,4- расположение).

Пурин – сложная гетероциклическая система, состоящая из двух конденсированных гетероциклов: пиримидина и имидазола.

Критерии ароматичности

1. Плоская циклическая система

2. Замкнутая, сопряженная система, охватывающая все атомы цикла

3. Число электронов, участвующих в сопряжении равно 4n+2, где n=0,1,2,3,… (n- количество циклов)

В гетероциклических соединениях с одним циклом, в сопряжении участвуют 6 электронов

Строение бензола по схеме

Пиридин. Как и в случае бензола, ароматический характер пиридина обусловлен сопряжением шести p-электронов (ароматический секстет) по одному от каждого атома цикла. Атом азота (пиридиновый) связан с двумя соседними атомами углерода sp 2 -гибридизованными орбиталями аналогично атомам углерода в бензоле. Межатомные расстояния C-C в пиридине равны между собой и практически равны расстояниям C-C в бензольном ядре; расстояния C-N значительно меньше тех же расстояний в несопряженных молекулах. Неподеленная электронная пара на sp 2 -АО азота не участвует в сопряжении. Именно она и обуславливает основные свойства пиридина.

Пиррол. Ароматический секстет пиррола образуется сочетанием четырех p-элетронов углерода и двух неподеленных электронов азота на p z -АО с образованием единой π-электронной системы. Атом азота в этом случае называется пиррольным.

Наличие гетероатома приводит к неравномерному распределению электронной плотности. Влияние гетероатома меняется в зависимости от того, один или два p-электрона вносит он в ароматический секстет. Распределение электронной плотности, длины связей и валентные углы в молекулах пиридина и пиррола приведены на рисунке. Так как электроотрицательность азота больше, чем углерода, то в пиридине электронная плотность увеличена у атома азота и понижена у остальных атомов цикла, главным образом у атомов в положениях 2,4 и 6.

Вследствие участия пары неподеленных электронов атома азота пиррола в ароматическом сопряжении гетероатом становится более бедным электронами. CH- группы, находящиеся по соседству с гетероатомом (α-положения), будут значительно богаче электронами и, следовательно, более реакционноспособными в реакциях электрофильного замещения, чем более удаленные CH-группы (β-положения)

Пиримидин содержит два пиридиновых атома азота, а имидазол и пурин – пиррольный и пиридиновый атомы азота. Это определяет кислотно-основные свойства данных соединений.


Пиррол. Бесцветная жидкость, слабо растворима в воде, на воздухе быстро окисляется и темнеет. Получение:

1. Фуран, тиофен и пиррол могут превращаться в друг друга при нагревании до 400-450 в присутствии катализатора Al 2 O 3 (цикл Юрьева)

2. Пиррол образуется при пропускании смеси C 2 H 2 и NH 3 через нагретый katFe 2 O 3


Химические свойства

1. Пиррол проявляет слабокислотные свойства, реагируя со щелочными Me или с очень сильными основаниями при t.

2. Легче чем бензол вступает в реакции замещения. Распределение электронной плотности, обусловленное наличием гетероатома таково, что наиболее реакционноспособными являются альфа-положения по отношению к атому азота.

3. При восстановлении в мягких условиях (Zn+HCl) пиррол превращается в пирролин. Энергичное восстановление (например, гидрирование в присутствии никеля при 200) приводит к образованию тетрагидропиррола (пирролидина).


Основные свойства пиррола практически не проявляются из-за участия неподеленной электронной пары в системе кольцевого сопряжения (пиррольный азот). В ряду пиррол – пирролин – пирролидин, основность растет.

Ядро пиррола и некотрые его производные входят в состав важнейших биологических и биохимических структур. Например. пиррольные циклы входят в состав порфина и гемма. При их разрушении в организме образуются «линейные» тетрапирролы, называемые желчными пигментами (биливердин, билирубин, стеркобилин и т.д.). По соотношению пигментов определяются вид желтухи и причины, вызывающие заболевание (механическая желтуха, вирусный гепатит и т.д.)

Пиридин. Бесцветная жидкость с характерным неприятным запахом, с водой смешивается в любых соотношениях. Получение:

1. Выделение из каменноугольной смолы

2. Синтез из синильной кислоты и ацетилена

Химические свойства

1. Пиридин обладает основными свойствами, т.к. содержит ПИРИДИНОВЫЙ атом азота, в известной степени аналогичный атому азота аминов (электронная пара не участвует в образовании ароматического секстета):

2. Водные раствора пиридина окрашивают лакмус в синий цвет, при действии минеральных кислот образуются кристаллические пиридиниевые соли

3. Пиридин и его гомологи присоединяют галоген алкилы, давая соли пиридиния

4. Пиридин труднее бензола вступает в реакции замещения из-за большей чем у углерода, электроотрицательности атома азота. При этом замещение идет приемущественно по β-положения

5. При каталитическом восстановлении пиридин переходит в пиперидин

6. Пиридин устойчив к действию окислителей. Его гомологи окисляются с образованием гетероциклических карбоновых кислот

7. Горение пиридина

Пиридин и его производные основа многих лекарственных средств. Например – никотиновая кислота и ее амид являются витаминами группы PP.

Нуклеиновые основания


Из ранее изложенного следует, что соединения, содержащие пиридиновый атом азота, обладают основными свойствами (азотистые основания). Производные пиримидина и пурина, входящие в состав нуклеиновых кислот. получили название «нуклеиновые основания».

Ароматические гетероциклы представляют собой плоские циклические системы, содержащие вместо одного или нескольких атомов углерода, атомы кислорода, серы, азота. Ароматическими их называют вследствие того, что они удовлетворяют всем критериям, присущим любой ароматической системе, а именно:

· Система является циклической

· Цикл является плоским

· Имеется сопряжение по всему циклу, то есть возможность беспрепятственной делокализации любого из p-электронов по всей системе, благодаря наличию негибридизованных р-орбиталей

· Число делокализованных p- электронов, участвующих в сопряжении, отвечает, согласно правилу Хюккеля, проявлению ароматических свойств, а именно, равно 4n+2, где n- любое натуральное число, включая 0.

Среди ароматических гетероциклических соединений наиболее широко распространены и, соответственно, представляют наибольший интерес, пяти- и шести-членные гетероциклы, включающие в своем составе азот, серу и кислород, а также эти же системы, конденсированные с бензольным кольцом.

К пятичленным циклическим системам с одним гетероатомом относятся: пиррол, фуран и тиофен:

Из пятичленных гетероциклов с двумя гетероатомами наибольший практический интерес представляет имидазол.

К конденсированным с бензольным кольцом пятичленным гетероциклам относятся: 2,3- бензопиррол (индол, I), 3,4-бензопиррол (изоиндол, II), бензимидазол(III), бензофуран(IV) и 2,3-бензотиофен(V):

Наиболее важными из шестичленных гетероциклов являются: пиридин, пиримидин, хинолин (бензопиридин) и пурин.

Характерной особенностью пятичленных гетероциклических соединений является одновременное сочетание у них свойств как ароматического соединения, так и диена. Склонность к реакциям того и другого типов, однако, у них различна и связана с природой гетероатома. Так, “ароматические” свойства убывают в ряду: тиофен > пиррол > фуран. При этом их ароматические системы менее устойчивы, чем у бензола.

При нахождении гетероатома в кольце он взаимодействует с его электронной системой по двум направлениям. Как более электроотрицательные элементы, азот, сера и кислород, оттягивают электронную плотность с кольца по индуктивному эффекту, распространяющемуся по системе s - связей. Однако решающий вклад вносит мезомерный эффект, имеющий в каждом из этих случаев противоположное индуктивному эффекту направление. Таким образом, молекула пятичленного гетероциклического соединения становится поляризована, где “положительным” центром поляризации служит гетероатом. Электрические моменты диполей убывают в том же порядке, что и ароматические свойства. Наиболее электроотрицательный кислород имеет меньшую склонность к обобществлению своей пары электронов в ароматической системе, поэтому фуран обладает наименьшими ароматическими свойствами в ряду тиофен-пиррол-фуран.

Меньшая устойчивость ароматических систем у пятичленных гетероциклов объясняется двойственной природой np -электронной пары гетероатома, несоответствием валентных углов внутри цикла значению 120 градусов, характерному для sp2 -гибридизованного атома углерода, а также сильной поляризацией связи углерод-гетероатом. В результате наибольшая электронная плотность сосредоточена на ближайших к гетероатому атомах углерода (a - положения). На удаленных от него b - атомах углерода электронная плотность ниже. Все это предопределяет химические свойства соединений этого класса. Пятичленные гетероциклы в целом легче вступают в реакции электрофильного замещения, по сравнению с незамещенным бензолом. Замещение проходит по положению 2, если оно занято, замещаются атомы у третьего атома углерода

Совершенно иначе сказывается наличие гетероатома (азота) в шестичленном цикле пиридина. Неподеленная пара электронов азота не участвует в образовании ароматической системы, поэтому, в отличие от пиррола, пиридин проявляет выраженные основные свойства, а в отличие от бензола, его ароматическая система обеднена электронной плотностью вследствие проявления отрицательного индуктивного эффекта азота. Поэтому пиридин вступает в реакции электрофильного замещения в значительно более жестких условиях, чем незамещенный бензол, и в положения 3 относительно азота. Одновременно для пиридина характерны реакции нуклеофильного замещения, идущие с большей легкостью, нежели у незамещенного бензола, по тем же причинам.

Гетероциклические соединения чрезвычайно широко распространены в живой природе. Так, гетероциклы семейств пурина и пиримидина являются неотъемлемой частью нуклеиновых кислот, ответственных за хранение и передачу наследственной информации. Взаимодействие пуриновых и пиримидиновых производных по системе водородных связей лежит в основе процессов репликации, транскрипции и трансляции, основ функционирования любой живой клетки.

В технике и в промышленности гетероциклические соединения находят применение в качестве растворителей (тетрагидрофуран, пиридин), компонентов красителей, являются важными компонентами очень многих синтетических лекарственных средств, исходными соединениями при синтезах целого ряда важных химических соединений.

Химические свойства

Пятичленные ароматические гетероциклы и их производные

Как уже было отмечено, устойчивость ароматической системы убывает в ряду: Тиофен > Пиррол > Фуран .

Наименее ароматичный фуран, присоединяя в кислой среде протон по атому кислорода, образует диеновую систему, склонную к полимеризции и осмолению. Поэтому реакции электрофильного замещения в фуране (проходящие настолько же легко, как и в фенолах) проводят в нейтральных и щелочных средах. Так, фуран ацилируется ангидридами кислот в присутствии SnCl 4 , сульфируется пиридинсульфотриоксидом (бескислотный сульфирующий агент, пиридин связывает образующиеся при сульфировании протоны), нитруется ацетилнитратом:

Галогенирование фурана галогенами приводит к замещению всех четырех атомов водорода:

Моногалоидные производные получают косвенным путем:

Фуран легко вступает в реакцию Дильса-Альдера с диенофилами (малеиновый ангидрид):

При нагревании с разбавленной соляной кислотой цикл легко раскрывается:

Фурановый цикл приобретает устойчивость при наличии в нем электроноакцепторных заместителей: -NO 2 , -CHO, -COOH, -SO 2 OH, галогены.

Из производных фурана большое значение имеет применяемый в качестве растворителя тетрагидрофуран, получаемый при гидрировании фурана на никелевом катализаторе.

Тиофен по ароматичности наиболее близок к бензолу и для него характерны все реакции электрофильного замещения, протекающие с большей легкостью, чем у незамещенного бензола. Так, одним из способов очистки технического бензола от тиофена является обработка бензола серной кислотой на холоду:

Образующаяся при этом сульфокислота тиофена растворяется в серной кислоте. Тиофен устойчив в сильнокислых средах, но атом серы чувствителен к окислению, поэтому при нитровании тиофена не применяют азотную кислоту, а используют ацетилнитрат (см. фуран).

При галогенировании в тиофене замещаются только 2 атома водорода:

Бромтиофен легко образует магнийорганические соединения, из которых можно получить многие производные тиофена. При восстановлении тиофена получают тетрагидротиофен (тиофан) (I) , последний может быть окислен в сульфоксид (II) или сульфолан (III):

Интерес представляет конденсированное соединение тиофена- бензтиофен, производным которого является кубовый краситель красного цвета- тиоиндиго:

Вследствие наличия значительной доли положительного заряда у атома азота пиррол в большей степени проявляет кислотные свойства, нежели основные. Тем не менее, это все же очень слабая кислота, способная отдавать протон лишь при взаимодействии с очень сильными основаниями:

Отрицательный заряд аниона (I) значительно делокализован:

поэтому в реакциях с галоидными алкилами можно получить как N-замещенные алкилпирролы (при низких температурах):

так и a - алкилпирролы (при повышенной температуре):

Свободный пиррол в отличие от тиофена мало устойчив в кислых средах, также проявляя склонность к полимеризации и окислению. Однако, повышенная электронная плотность в кольце приводит и к большей легкости протекания реакций электрофильного замещения, которые проходят в мягких условиях, подобно фурану.

Пиррол имеет сравнительно высокую температуру кипения (130 о С), которая объясняется структурированием при образовании межмолекулярных водородных связей:

Имидазол, подобно пирролу, также значительно структурирован и имеет еще большую температуру кипения (250 о С):

Электрофильное замещение в кольце имидазола протекает по положениям 4 или 5, в которых электронная плотность намного больше, чем в положении 2. Атомы азота в молекуле имидазола равноценны, благодаря равновесию:

Наличие второго атома азота в кольце значительно понижает в нем электронную плотность, что стабилизирует молекулу в целом. Имидазол не боится кислой среды, а электрофильное замещение протекает значительно труднее, чем в случае с пирролом. Как слабая кислота, имидазол образует металлопроизводные с натрием или реактивами Гриньяра, подобно пирролу. Получают имидазол конденсацией глиоксаля и формальдегида в присутствии аммиака:

Методы получения

Фуран получают в промышленных масштабах из фурфурола, каталитическим декарбоксилированием:

Сам фурфурол получают кипячением с разбавленными кислотами пятиатомных углеводов (пентоз), которые в больших количествах содержатся подсолнечной шелухе, кукурузных початках, отрубях и др.

Тиофен получают циклизацией бутана или бутилена в парах серы при 700 оС:

Пиррол (в переводе означает “красное масло) получают пиролизом аммонийной соли слизевой кислоты:

Или восстановлением сукцинимида цинковой пылью:

Ю. К. Юрьев открыл реакции взаимопревращений пятичленных гетероциклов, которые также применяют с целью их получения. Реакция идет в токе сероводорода, аммиака и воды, при высоких температурах, над окисью алюминия:

Шестичленные ароматические гетероциклы и их производные

Распределение электронной плотности по атомам пиридинового кольца показано на схеме:

Молекула пиридина поляризована и отрицательный центр поляризации сосредоточен на атоме азота. Вследствие этого, как уже было отмечено ранее, электрофильное замещение в пиридине протекает значительно труднее, чем в незамещенном бензоле, а нуклеофильное- легче, особенно при взаимодействии с сильными основаниями:

Так, сульфирование пиридина пиросерной кислотой протекает при 250 о С в бета-положение, нитрование нитратом калия в азотной кислоте также проходит с трудом, только при 350 о С и с выходом 15%, в то время как реакция с амидом натрия идет при сравнительно небольшом нагревании.

Атом азота в пиридине устойчив по отношению к окислителям, поэтому алкилпиридины легко окисляются до пиридинкарбоновых кислот:

Однако, под действием перекисей, пиридин легко превращается в окись пиридина:

Последняя легко подвергается реакциям электрофильного замещения, с образованием замещенных, подобно активированным электронодонорными заместителями производным бензола:

На схеме отчетливо видно, каким образом в окиси пиридина кольцо активировано к электрофильному замещению, притом, во 2-м и 4-м положениях.

Это важный способ получения производных пиридина, которые не могут быть получены путем прямого замещения. После реакции замещения окись восстанавливают в пиридин диметилсульфоксидом.

Из бензозамещенных имеет практическое значение 2,3-бензопиридин или хинолин. Хинолин получают из каменноугольной смолы (как и сам пиридин), либо синтезируют из анилина и глицерина, в присутствии серной кислоты и окислителя- нитробензола (синтез Скраупа ). Из глицерина получается участвующий далее в реакции акролеин :

НО-СН 2 -СН(ОН)-СН 2 -ОН + H 2 SO 4 --> CH 2 =CH-CHO + 2 H 2 O

Для пиридинового кольца хинолина характерны все реакции самого пиридина, однако реакции электрофильного замещения идут в бензольном кольце, в положениях 5 или 8:

При взаимодействии с окислителями (Cr 2 O 4 2- , в кислой среде, при нагревании) разрушается бензольное кольцо хинолина:

Хинолин применяется как высококипящий растворитель, а также для синтеза лекарственных препаратов и красителей.

Пиримидин, отличающийся от пиридина наличием двух атомов азота в кольце, по положениям 1 и 3, имеет больший частичный положительный заряд в положениях 2, 4 и 6, и меньший- в положении 5, поэтому он инертен к электрофильным атакам:

По этой же причине пиримидин устойчив к действию окислителей. Хорошая растворимость в воде объясняется образованием водородных связей при участии атомов азота.

Производные пиримидина: цитозин (I), тимин (II) и урацил (III) являются важнейшими компонентами нуклеиновых кислот, неотъемлемыми частями любой живой материи:

Конденсированное производное имидазола и пиримидина (пурин, I)- так же основоположник азотистых оснований, важнейших компонентов нуклеиновых кислот: аденина (II) и гуанина (III):

Алкалоиды

Алкалоиды- группа веществ, основу которых составляют азотистые основания, извлекаемые из растений и оказывающие сильное физиологическое действие на организм млекопитающих, обычно на нервную систему. Благодаря сильному физиологическому действию эта группа веществ приобрела важное значение в виде лекарств и многие алкалоиды применялись для этих целей еще до их индивидуального выделения и установления структуры- просто в виде настоек растений. Еще раньше соки алкалоидоносных растений использовались в качестве сильных ядов. Алакалоидоносными растениями являются в основном растения нескольких семейств: пасленовых, лютиковых, маковых, мореновых, сложноцветных и некоторых других. Часто один вид растений содержит несколько алкалоидов. В растениях алкалоиды связаны в соли, образованные кислотами –яблочной, винной, лимонной и т.д.

Алкалоид пилокарпин был выделен (Арди, 1895) из листьев Pilicarpus Jaborandi , произрастающего в Африке, и нашел применение в борьбе с глаукомой, заболеванием глаз, связанным с повышением внутриглазного давления:

Кониин (главный алкалоид болиголова, сильный яд) представляет собой альфа-пропилпиперидин:

В высохшем соке, выделенном из надрезов на головках мака (опий), имеется алкалоид папаверин , строение которого установил Гольдшмидт. Папаверин находит широкое применение в медицине, как сосудорасширяющее средство:

В соке недозрелых головок мака находятся близкородственные по строению алкалоиды- морфин и кодеин :

Иохимбин - алкалоид коры африканского растения корианте иохимбе - находится в этой коре вместе с рядом его изомеров. Компонент пищевых добавок «Гингко-Форте» и «Гингко-Билоба». Родственный ему резерпин -алкалоид индийского растения Раувольфия змеиная

К числу гетероциклических относят органические соединения, циклы которых включают, кроме атомов углерода, один или несколько других элементов. В образовании циклов могут принимать участие различные гетероатомы, но чаще всего - кислород, азот и сера.

Гетероциклические соединения широко распространены в природе. На их долю приходится около 50% природных веществ, в том числе отличающихся высокой биологической активностью (алкалоиды, витамины, ферменты, антибиотики). Многие из этих биологически активных веществ применяют в качестве лекарственных средств или исходных продуктов для их синтеза. Источниками биологически активных природных веществ, имеющих гетероциклическую структуру, служат продукты растительного и животного происхождения.

За счет гетероциклических соединений непрерывно пополняется число синтетических лекарственных веществ. Предпосылкой для этого является «родство» их строения с природными биологически активными веществами организма человека. Поэтому в настоящее время на долю гетероциклических соединений приходится более половины применяемых в медицине лекарственных веществ.

По химическому строению гетероциклические соединения очень разнообразны. Они различаются общим числом атомов в цикле, природой гетероатомов и их количеством в цикле.

По числу всех атомов в циклах гетероциклические соединения делят на трех-, четырех-, пяти-, шести- и семичленные, а по характеру гетероатомов - на азот-, кислород-, серосодержащие. Число этих гетероатомов может быть от одного до четырёх.

Классифицируют гетероциклические соединения на следующие группы.

Трехчленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с одним гетероатомом:

Пятичленные гетероциклы с несколькими гетероатомами:

Шестичленные гетероциклы с одним гетероатомом:

Шестичленные гетероциклы с несколькими гетероатомами:

Семичленные гетероциклы с одним и двумя гетероатомами:

Молекулы гетероциклов могут содержать различные заместители. Известно также большое число систем, в которых гетероциклы конденсированы между собой и с другими ароматическими или гидроароматическими циклами. Конденсированные гетероциклические системы составляют структурную основу многих природных и синтетических лекарственных веществ.

Наличие гетероатомов в молекулах гетероциклических соединений обусловливает значительную лабильность их молекул по сравнению с другими органическими соединениями. Это особенно проявляется у гетероциклов с несколькими гетероатомами и при наличии различных заместителей в молекуле. Такие производные имеют наибольшую тенденцию к раскрытию цикла и рециклизации, а также к различного рода таутомерным превращениям.

Перечисленные особенности химической структуры имеют важное значение для синтеза и анализа гетероциклических соединений. Кроме того, есть все основания предполагать, что одной из основных причин высокой биологической активности многих гетероциклических соединений является особенность их химической структуры, обеспечивающая в широких пределах возможность перемещения электронов.

Лекарственные средства, имеющие гетероциклическую структуру, можно получить из природного сырья или синтетическим путем. Некоторые гетероциклические соединения выделяют из продуктов переработки каменноугольной смолы, содержащей пиридин и его гомологи, хинолин, изохинолин, акридин, индол и др. Древесная смола содержит метилфуран, фурфурол. Более сложные по химической структуре гетероциклические соединения представляют собой многие алкалоиды, витамины, ферменты, содержащиеся в растениях.

Способы синтеза гетероциклических соединений разнообразны. Их синтезируют из ряда алифатических производных путем замыкания цикла, превращения гетероциклов друг в друга (рециклизация), гидрирования ненасыщенных гетероциклических соединений до насыщенных, введения различных радикалов в простые по структуре гетероциклы или получения из них конденсированных систем.

Большинство методов синтеза основано на так называемой гетероциклизации, т.е. на образовании гетероцикла в результате замыкания в цикл одного или двух алифатических соединений. Такие реакции основаны главным образом на конденсации дикарбонильных соединений (альдегидов, карбоновых кислот) с аммиаком или алифатическими и ароматическими соединениями, содержащими в молекуле первичную ароматическую аминогруппу. Этот общий принцип использован для получения различных азотсодержащих гетероциклов, составляющих структурную основу многих синтетических и природных лекарственных веществ. Гетероциклические системы получают также из ароматических и гетероциклических соединений, содержащих в молекулах аминогруппы, путем конденсации их с карбонильными соединениями (альдегидами, кетонами).

ГЛАВА 51.

ПРОИЗВОДНЫЕ ФУРАНА

Производные 5-нитрофурана

Используемые в качестве лекарственных веществ, производные 5-нитрофурана имеют различные заместители в положении 2:

Из многочисленных синтезированных в 50-е годы XX века в Институте органического синтеза АН Латвии (С.А. Гиллер, К.К. Вентер, Р.Ю. Калнберг) производных нитрофурана в качестве химиотерапевтических средств наиболее широко применяют: нитрофурал (фурацилин), нитрофурантоин (фурадонин), фуразолидон, фуразидин (фурагин).

Исходный продукт синтеза производных 5-нитрофурана - фурфурол (a-фурилальдегид). Его получают из отходов деревообрабатывающей промышленности, а также из соломы, шелухи подсолнечника, коробочек хлопчатника путем обработки разведенной серной кислотой и отгонки с водяным паром. При этом происходит образование фурфурола из пентоз (моносахаридов) и пентозанов (полисахаридов), содержащихся в этом сырье.

Из фурфурола нитрованием получают 5-нитрофурфурол. Процесс этот наиболее экономичен при последовательном получении вначале диацетата 5-нитрофурфурола, который затем гидролизуется разведенной серной кислотой до 5-нитрофурфурола:

Дальнейший синтез основан на конденсации 5-нитрофурфурола с различными веществами, содержащими аминогруппу, по общей схеме:

Для синтеза нитрофурала на 5-нитрофурфурол действуют семикарбазида гидрохлоридом:

Фуразолидон синтезируют аналогично конденсацией 5-нитрофурфурола с 3-аминооксазолидоном-2:

При синтезе фуразидина, у которого иминная группа отделена от нитрофуранового фрагмента этиленовым радикалом, 5-нитрофурфурол вначале конденсируют с ацетальдегидом, а затем сочетают с 1-аминогидантоином:

Производные нитрофурана сходны по физическим свойствам (табл.51.1). Это желтые с зеленоватым оттенком кристаллические вещества, без запаха. Они очень мало растворимы или практически нерастворимы в воде и в этаноле (нитрофурал очень мало и медленно растворим), мало или умеренно растворимы в диметилформамиде, мало или очень мало - в ацетоне. Ввиду наличия не только нитро-, но и имидной группы, нитрофурал проявляет в растворах кислотные свойства и лучше других растворяется в щелочах. В кипящей воде нитрофурал растворим в соотношении 1:5000. Фуразидин выпускают также в виде растворимой в воде калиевой соли.

51.1. Свойства производных 5-нитрофурана

Лекарственное вещество Химическая структура Описание
Nitrofural- нитрофурал (Фурацилин) 5-нитрофурфурола семикарбазон Желтый или зеленовато-желтый мелкокристаллический порошок без запаха. Т.пл. 230–236 °C
Nitrofurantoin- нитрофурантоин (Фурадонин) N -(5-нитро-2-фурфурилиден)-1-аминогидантоин Порошок желтого или желтого с зеленым оттенком цвета. Т.пл. 258–263°C (с разложением)
Furazolidone- фуразолидон N -(5-нитро-2-фурфурилиден)-3-аминооксазолидон-2 Желтый или желтый с зеленоватым оттенком мелкокристаллический порошок без запаха. Т.пл. 253–258 °C (с разложением)
Furazidin- фуразидин (Фурагин) 1--гидантоин Порошок от желтого до оранжевого цвета без запаха

Для испытания подлинности используют ИК-спектры производных нитрофурана. Их спрессовывают в виде таблеток с бромидом калия и снимают спектры в области 1900-700 см –1 . ИК-спектры должны полностью совпадать с ИК-спектрами ГСО. ИК-спектр нитрофурала имеет полосы поглощения при 971, 1020, 1205, 1250, 1587, 1724 см –1 .

Используемые для испытаний производных 5-нитрофурана химические реакции основаны на их гидролитическом расщеплении, окислительно-восстановительных, кислотно-основных свойствах, образовании ацисолей (нитрогруппа).

Подлинность производных 5-нитрофурана устанавливают по цветной реакции с водным раствором гидроксида натрия. Структура образующихся продуктов находится в зависимости от условий проведения реакции, особенностей химического строения производных 5-нитрофурана, температуры, растворителя и концентрации реактива. Нитрофурал при использовании разбавленных растворов щелочей образует ацисоль, окрашенную в оранжево-красный цвет:

При нагревании нитрофурала в растворах гидроксидов щелочных металлов происходит разрыв фуранового цикла и образуется карбонат натрия, гидразин и аммиак. Последний обнаруживают по изменению окраски влажной красной лакмусовой бумаги:

Фуразидин после нагревания (2 мин) с 30%-ным раствором гидроксида натрия приобретает коричневое окрашивание.

Нитрофурантоин в разбавленных растворах щелочей при комнатной температуре образует в результате таутомерных превращений гидантоина ацисоль, окрашенную в темно-коричневый цвет:

Раствор фуразолидона в тех же условиях, но при нагревании, приобретает бурое окрашивание за счет разрыва лактонного цикла и образования ацисоли:

Эта реакция может быть использована для отличия нитрофурала от нитрофурантоина и фуразолидона.

Фуразолидон и нитрофурантоин можно отличить друг от друга по различной окраске продуктов взаимодействия с едкими щелочами в среде неводных растворителей основного характера, например диметилформамида. В качестве реактива используют водно-спиртовый раствор гидроксида калия. Нитрофурантоин при этом последовательно окрашивается в желтый, а затем в коричневато-жёлтый и светло-коричневый цвет. Фуразолидон приобретает красно-фиолетовое окрашивание, переходящее в темно-синее, а затем в фиолетовое или красно-фиолетовое.

Характерные цветные реакции, позволяющие отличать друг от друга производные 5-нитрофурана, дает спиртовый раствор гидроксида калия в сочетании с ацетоном: нитрофурал приобретает темно-красное окрашивание, нитрофурантоин - зеленовато-желтое, переходящее в бурое с выпадением бурого осадка, фуразолидон - постепенно появляющееся красное окрашивание, переходящее в бурое, фуразидин приобретает красное окрашивание с выпадением объемного красного осадка.

Нитрофурал, нитрофурантоин и фуразолидон идентифицируют с помощью общей реакции образования 2,4-динитрофенилгидразона (температура плавления 273 °C). Он выпадает в осадок при кипячении раствора лекарственного вещества в диметилформамиде с насыщенным раствором 2,4-динитрофенилгидразина и 2М раствора хлороводородной кислоты.

Раствор нитрофурала в диметилформамиде после добавления свежеприготовленного 1%-ного раствора нитропруссида натрия и 1М раствора гидроксида натрия дает красное окрашивание. Нитрофурантоин в этих условиях приобретает желтое, а фуразолидон (через 5 мин) - оливково-зеленое окрашивание.

Производные нитрофурана образуют в слабощелочной среде окрашенные нерастворимые комплексные соединения с солями серебра, меди, кобальта и других тяжелых металлов. При добавлении к раствору нитрофурантоина (в смеси диметилформамида и воды) 1%-ного раствора сульфата меди (II), нескольких капель пиридина и 3 мл хлороформа, после встряхивания хлороформный слой приобретает зеленое окрашивание. Комплексные соединения нитрофурала и фуразолидона в этих условиях не извлекаются хлороформом.

Окислительно-восстановительные реакции (образования «серебряного зеркала», с реактивом Фелинга) могут быть выполнены после щелочного гидролиза, сопровождающегося образованием альдегидов.

При испытаниях на чистоту устанавливают в производных 5-нитрофурана допустимое содержание посторонних примесей (от 0,4 до 1%). Испытания выполняют методом ТСХ, используя готовые хроматографические пластинки типа Силуфол УФ-254 или Силикагель Г, различные системы растворителей для восходящей хроматографии. Проявителем служит фенилгидразина гидрохлорид или УФ-свет при длине волны 254 нм. Сравнивают со свидетелями количество, величину и окраску пятен на хроматограммах. В фуразидине определяют отсутствие легко обугливающихся (при 250 °C) примесей.

Количественное определение проявляющего восстановительные свойства нитрофурала выполняют иодометрическим методом, основанным на окислении иодом в щелочной среде (для улучшения растворимости к навеске прибавляют хлорид натрия и смесь подогревают). Титрованный раствор иода в щелочной среде образует гипоиодит:

I 2 + 2NaOH ® NaI + NaIO + H 2 O

Гипоиодит окисляет нитрофурал до 5-нитрофурфурола:

После окончания процесса окисления нитрофурала раствор подкисляют и титруют выделившийся избыток иода тиосульфатом натрия:

NaI + NaIO + H 2 SO 4 ¾® I 2 + Na 2 SO 4 + H 2 O

I 2 + 2Na 2 S 2 O 3 ¾® 2NaI + Na 2 S 4 O 6

Нитрофурантоин (по ФС) и фуразолидон, проявляющие слабые основные свойства, количественно определяют методом неводного титрования в диметилформамиде. Титруют 0,1 М раствором метилата натрия (индикатор тимоловый синий).

Известен способ определения нитрофурала броматометрическим методом, основанным на окислении гидразиновой группы в присутствии концентрированных кислот при температуре 80–90 °C:

H 2 N–NH 2 ¾¾® N 2 ­ + 2H 2 O

Фуразидин-калий количественно определяют ацидиметрически, титруя 0,01 М раствором хлороводородной кислоты (индикатор бромтимоловый синий).

Для установления подлинности и количественного определения нитрофурала используют УФ-спектры его 0,0006%-ных растворов в смеси диметилформамида с водой (1:50). Максимумы поглощения такого раствора в области 245-450 нм находятся при 260 и 375 нм, а минимум - при 306 нм. Максимумы второй полосы поглощения (365-375 нм) более специфичны для производных 5-нитрофурана, т.к. обусловлены наличием различных электронодонорных групп в положении 2 фуранового цикла. Количественное спектрофотометрическое определение выполняют при 375 нм и рассчитывают содержание с использованием стандартного образца нитрофурала.

Для испытания подлинности нитрофурантоина, фуразолидона и фуразидина используют УФ-спектры растворов в области 240-450 нм. Растворителем служит диметилформамид с водой или ацетатным буферным раствором. В этих условиях нитрофурантоин имеет максимумы поглощения при 266 и 367 нм; фуразолидон - максимумы при 260 и 367 нм и минимум - при 302 нм; фуразидин - максимумы при 292 и 396 нм. Количественное спектрофотометрическое определение фуразолидона выполняют при 367 нм (растворитель 0,5%-ный раствор диметилформамида в воде). Содержание рассчитывают по ГСО фуразолидона или по величине удельного показателя поглощения (750). Фуразидин количественно определяют при длине волны 396 нм (растворитель 0,6%-ный раствор диметилформамида в ацетатном буферном растворе). Расчёты выполняют по ГСО стандартного образца фуразидина.

Растворителем для УФ-спектрофотометрического определения может служить 50%-ный раствор серной кислоты, в котором нитрофурал, нитрофурантоин и фуразолидон имеют максимумы поглощения при 227 нм.

Количественное определение нитрофурала, нитрофурантоина и фуразолидона можно проводить фотоколориметрическим методом, основанным на использовании цветных реакций с едкой щелочью в различных растворителях.

Производные 5-нитрофурана хранят по списку Б в прохладном месте в хорошо укупоренной таре, предохраняющей от действия света и влаги.

Нитрофурал назначают наружно для лечения и предупреждения гнойно-воспалительных процессов (в виде 0,02%-ных водных, 0,066%-ных спиртовых растворов и 0,2%-ной мази) и внутрь (по 0,1 г) для лечения бактериальной дизентерии. Нитрофурантоин назначают внутрь для лечения инфекционных заболеваний мочевых путей (по 0,1–0,15 г). Фуразолидон в тех же дозах менее токсичен и более активен. Назначают при смешанных инфекциях. Фуразидин применяют внутрь по 0,1-0,2 г и местно в виде глазных капель 1:13000, для промывания ран, ожогов и др. Фуразидин калия применяют при тяжелых инфекционно-воспалительных процессах. Вводят в виде 1%-ного раствора внутривенно.

Производные бензофурана

Бензофуран лежит в основе химической структуры двух лекарственных веществ, различных по фармакологическому действию - амиодарона и гризеофульвина (табл. 41.2).

Амиодарон - синтетическое антиангинальное и антиаритмическое средство. Гризеофульвин - антибиотик, продуцируемый различными видами плесневых грибов, в частности Penicillium nigricans griseofulvum. При биосинтезе накапливается в мицелии и ферментативном растворе, откуда извлекается экстракцией хлороформом. Экстракт упаривают, остаток экстрагируют горячим бензолом и перекристаллизовывают из этанола. Он проявляет противогрибковое действие.

Помимо бензофуранового ядра, в молекуле амиодарона имеется фенильный радикал с двумя атомами иода и две алифатические цепи (табл. 51.2). Основой химической структуры гризеофульвина является гетероциклическая система гризан, включающая 2,3-дигидробензофуран и конденсированный с ним (в положении 2) циклогексан:

51.2. Свойства лекарственных веществ, производных бензофурана

Амиодарон и гризеофульвин - белые или с желтоватым (кремоватым) оттенком кристаллические вещества. Амиодарон очень мало растворим в воде, умеренно растворим в этаноле, легко растворим в метиленхлориде. Гризеофульвин практически нерастворим в воде и эфире, мало растворим в этаноле, ацетоне, бутилацетате, легко растворим в диметилформамиде.

Для испытания подлинности амиодарона и гризеофульвина используют ИК-спектроскопию, УФ-спектрофотометрию, а также методы ТСХ и ВЭЖХ. Сравнивают ИК-спектры испытуемых веществ и стандартных образцов, снятых в дисках с бромидом калия в области 4000-400 см –1 (амиодарон) или 3300-680 см –1 (гризеофульвин). Они должны полностью совпадать. С теми же стандартными образцами сравнивают УФ-спектры поглощения гризеофульвина в области 230-300 нм. Его растворы в этаноле должны иметь максимумы поглощения при 231 и 291 нм. Хроматограммы испытуемого и стандартного растворов амиодарона, полученные на пластинках силикагеля F 254 , не должны отличаться по расположению и интенсивности окраски основного пятна (в УФ-свете). Должны также совпадать времена удерживания амиодарона и его ГСО при выполнении анализа методом ВЭЖХ.

Для испытания подлинности используют цветные реакции. Раствор гризеофульвина в концентрированной серной кислоте под действием дихромата калия приобретает темно-красное окрашивание. Если поместить в пробирку амиодарон, прибавить дихромат калия и концентрированную серную кислоту, накрыть пробирку фильтровальной бумагой, смоченной раствором дифенилкарбазида в уксусной кислоте, то бумага окрашивается в фиолетово-красный цвет. Подлинность гризеофульвина устанавливают также по голубовато-сиреневому свечению нанесённого на фильтровальную бумагу его 1%-ного раствора в ацетоне, возникающему при облучении ртутно-кварцевой лампой. При нагревании до кипения спиртового раствора гризеофульвина с 0,2 г бисульфита натрия и 2 мл раствора гидроксида натрия появляется лимонно-желтое окрашивание. Тот же раствор после добавления концентрированной хлороводородной кислоты и порошка магния приобретает жёлтое окрашивание, переходящее в желто-коричневое. Окрашенное соединение извлекается амиловым спиртом.

Амиодарон испытывают на наличие хлорид-иона.

Для испытания на чистоту амиодарона используют различные методы. Наличие примеси иодидов определяют фотоколориметрическим методом по интенсивности поглощения испытуемого и стандартного растворов при длине волны 420 нм после действия раствором иодата калия в кислой среде. Примеси родственных по структуре соединений (не более 0,5%) и примесь (2-хлорэтил)-диэтиламина (не более 0,2%) определяют методом ТСХ. Остаточные растворители: ацетон (не более 0,5%), метиленхлорид (не более 0,01%) определяют методом ГЖХ с плазменно-ионизационным детектором.

Методом ВЭЖХ на хроматографе с УФ-детектором устанавливают наличие в гризеофульвине специфических примесей с относительными временами удерживания 0,56-0,57; 0,87-0,88 и 1,09-1,10. Подвижная фаза состоит из воды, ацетонитрила и ледяной уксусной кислоты (49:45:1). Детектируют при длине волны 291 нм. Суммарное содержание примесей не должно превышать 2%. При испытании на чистоту порошка гризеофульвина требуется микроскопический контроль с помощью окулярмикрометра, т.к. его активность повышается с увеличением степени дисперсности и достигает оптимального значения при размере кристаллов не более 4 мкм. Проводится также испытание на микробиологическую чистоту.

Количественное определение амиодарона (по НД) выполняют методом нейтрализации. Навеску растворяют в смеси этанола и 0,01 М раствора хлороводородной кислоты. Титруют с использованием потенциометра 0,1 М раствором натрия гидроксида. Объём титранта, пошедшего на титрование, устанавливают на потенциометрической кривой между двумя точками перегиба.

Количественное определение амиодарона и гризеофульвина можно выполнить методом ВЭЖХ. При определении гризеофульвина используют подвижную фазу вода-ацетонитрил-тетрагидрофуран (60:35:5). Детектируют при длине волны 254 нм, сравнивая со стандартным раствором гризеофульвина в метаноле.

Можно определить содержание гризеофульвина спектрофотометрическим методом (по МФ) при длине волны 291 нм, используя в качестве растворителя безводный этанол. Расчёты выполняют по величине удельного показателя поглощения (686). Известен фотоколориметрический метод, основанный на использовании цветной реакции со стабилизированной солью диазония из 4-амино-2’,5’-диметоксибензанилида. Описан люминесцентный способ определения гризеофульвина.

Хранят амиодарон и гризеофульвин по списку Б в сухом, защищенном от света месте при температуре не выше 25 °C, в хорошо укупоренной таре. Применяют амиодарон внутрь при хронической ишемии сердца с синдромом стенокардии и нарушением сердечного ритма в виде таблеток по 0,2 г или вводят внутривенно 5%-ный раствор. Гризеофульвин, являющийся фунгицидным средством, назначают внутрь в таблетках по 0,125 г или наружно в виде 2,5%-ного линимента (суспензии) для лечения больных дерматомикозами, вызванными патогенными грибами.

ГЛАВА 52.

К гетероциклическим относятся органические соединения, содержащие в своих молекулах циклы, в которых кроме углерода есть атомы других элементов (гетероатомы: O, N, S).

Гетероциклические соединения классифицируются:

а) по числу атомов в цикле (от трехчленного до макроциклического);

б) по количеству и виду гетероатомов (–O, –N, –S);

в) по степени ненасыщенности гетероцикла (насыщенные и ненасыщенные).

Особый интерес представляют ненасыщенные гетероциклические соединения, которые удовлетворяют условиям ароматичности: по количеству π-электронов соответствуют правилу Хюккеля; имеют плоское строение и замкнутую систему π-электронов.

При наименовании гетероциклов широко используются тривиальные названия:

Нумерация в гетероциклах фиксирована и в большинстве случаев зависит от старшинства заместителей. В отдельную группу выделяют гетероциклические соединения с конденсированными ядрами:

Гетероциклические соединения играют большую роль в жизнедеятельности организмов и имеют важное физиологическое значение (ДНК, РНК, хлорофилл, алкалоиды, ряд витаминов, антибиотиков).

ПЯТИЧЛЕННЫЕ СИСТЕМЫ С ОДНИМ ГЕТЕРОАТОМОМ

Наиболее важными представителями являются фуран, тиофен, пиррол. Все они являются ароматическими соединениями: удовлетворяют правилу Хюккеля, 4 электрона атома углерода цикла находятся в π-сопряжении с неподеленной парой электронов гетероатома, сам цикл имеет плоское строение. Поэтому как для бензола, их формулы могут быть изображены следующим образом:

СПОСОБЫ ПОЛУЧЕНИЯ

1. Циклизация 1,4-дикарбонильных соединений (дикетонов, дикарбоновых кислот или кетокислот). При их нагревании с дегидратирующим агентом (CaCl 2 , H 2 SO 4 , P 2 O 5) образуются производные фурана; при проведении дегидратации в среде NH 3 – пиррола; в присутствии P 2 S 5 – тиофена:

2. Выделение из природных источников. Тиофен и пиррол содержатся в каменноугольной смоле, фуран – из пентозансодержащего сырья (шелуха семян подсолнечника, кукурузные кочерыжки) через стадию получения фурфурола.

3. Взаимопревращения фурана, тиофена, пиррола (реакция Юрьева) происходят при t=450 o C над Al 2 O 3:

4. Взаимодействие ацетилена с сероводородом или аммиаком. При пропускании смеси H 2 S над Al 2 O 3 образуется тиофен

а смеси с NH 3 – пиррол

Физические свойства

Все три вещества – бесцветные жидкости, практически нерастворимые в воде.

ХИМИЧЕСКИЕ СВОЙСТВА

Так как данные соединения обладают ароматическим характером, для них характерны реакции электрофильного замещения (нитрование, сульфирование, галогенирование, ацилирование), протекающие в положение 2 (α-положение) в очень мягких условиях.

Фуран, тиофен и пиррол являются слабыми основаниями. Продукты протонирования фурана и пиррола минеральными кислотами:

неустойчивы, получающийся катион быстро теряет ароматичность, приобретает свойства сопряженного диена и легко полимеризуется. Это явление называется ацидофобностью (“боязнь кислоты”).

Тиофен не ацидофобен (из-за равенства электроотрицательностей атомов S и С цикла). Пиррол способен проявлять кислотные свойства по связи N–H и замещать атом водорода на атом Na или К при взаимодействии с металлами или концентрированной щелочью КОН:

1. Галогенирование . Проводится комплексом Br 2 с диоксаном, Br 2 при низкой температуре (бромирование) или Cl 2 при пониженной температуре, SO 2 Cl 2 (хлорирование):

2. Сульфирование . Проводится пиридинсульфотриоксидом C 5 H 5 N·SO 3 , так как в этом случае в реакционной смеси отсутствуют соединения кислотного характера:

3.Нитрование . Проводится ацетилнитратом (смесь уксусного ангидрида и HNO 3):

4. Ацилирование . Осуществляется ангидридами кислот в присутствии катализаторов: AlCl 3 , SnCl 4 , BF 3 (реакция Фриделя-Крафтса):

5. Алкилирование по Фриделю-Крафтсу провести не удается, однако пирролкалий при взаимодействии с галогенопроизводными дает N-алкилпирролы, изомеризующиеся при нагревании в 2-алкилпирролы:

6. Гидрирование . Происходит в присутствии катализаторов Ni или Pt – для фурана и пиррола, Pd – для тиофена:

ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ С ОДНИМ АТОМОМ АЗОТА

Наибольший интерес представляет собой пиридин:

Является гетероциклическим аналогом бензола, у которого одна группа –СН= заменена на sp 2 -гибридный атом углерода. Обладает ароматическим характером. Так как неподеленная пара электронов атома азота не вступает в π-сопряжение, пиридин не ацидофобен и проявляет высокие основные свойства. Электронная плотность в кольце снижена, особенно в положениях 2,4,6, поэтому пиридин легче вступает в реакции нуклеофильного, чем электрофильного замещения.

СПОСОБЫ ПОЛУЧЕНИЯ

1. Выделение из природных источников. Пиридин и его гомологи получают из каменноугольного дегтя.

2. Гомологи пиридина могут быть получены следующими способами:

2.1. Конденсация альдегидов с аммиаком

2.2. Взаимодействие ацетилена с аммиаком (метод Репе)

2.3. Конденсация β-дикетонов или β-кетоэфиров с альдегидами и аммиаком (метод Ганча). Промежуточно образующиеся при этом 1,4-дигидропиридины окисляют до пиридинов азотной кислотой или NO 2

Дальнейший гидролиз и декарбоксилирование полученного продукта приводит к триалкилпиридинам.

Физические свойства

Пиридин – бесцветная жидкость с характерным неприятным запахом. Растворим в воде, образует с ней смесь с плотностью ρ=1,00347 г/дм 3 .

ХИМИЧЕСКИЕ СВОЙСТВА

1. Основность . Пиридин проявляет основные свойства в большей степени, чем фуран, тиофен и пиррол. Являясь слабым основанием, с сильными минеральными кислотами дает соли пиридиния, имеющие ароматический характер

2. Алкилирование . Проводится галогенопроизводными с образованием солей пиридиния, которые при нагревании дают 2- (или 4-) алкилзамещенные пиридины

3. Реакции электрофильного замещения . Для пиридина протекают с трудом (так как атом азота обладает акцепторными свойствами) в положение 3

4. Реакции нуклеофильного замещения . Протекают легко (из-за обеднения кольца электронной плотностью) в положение 2

5. Восстановление . Проводится водородом в жестких условиях

6. Окисление пиридина происходит только в очень жестких условиях. Гомологи, содержащие алкильные боковые цепочки, окисляются по ним аналогично гомологам бензола