Химическое равновесие. Принцип Ле – Шателье

Николаевская средняя школа

Открытый урок:

«Химическое равновесие.

Принцип Ле Шателье».

Подготовила:

учитель химии

Сафонова Н.В.

Тема: «Химическое равновесие. Принцип Ле Шателье.»

Цели урока: обобщить и углубить знания об обратимых химических реакциях, химическом равновесии и условиях ею смещения. Рассмотреть принцип Ле Шателье.

План урока.

1.Проверка домашнего задания: классификация химических реакций.

2.Объяснение нового материала.

3. Закрепление изученного

4. Домашнее задание.

5. Итоги урока.

Проверка домашнего задания.

1) Как классифицируют химические реакции? Приведите названия по разным признакам классификации:

Ответ: По числу и составу реагирующих веществ и продуктов реакции: изомеризация, соединение, разложение, замещение и обмен;

По изменению степеней окисления: ОВР и без изменения ст. ок.;

По тепловому эффекту: экзо- и эндотермические;

По фазовому (агрегатному) составу: гомо- и гетерогенные;

По участию катализатора: каталитические и некаталитические;

По направлению: необратимые и обратимые и т.д.

2) Учащиеся получают задания и проводят реакции в микролабораториях.

Лабораторная работа.

Проведите реакции, укажите признаки, составьте уравнения в молекулярном и ионных видах, укажите тип каждой реакции, какие из них идут до конца? В пробирки добавляйте по 2-3 капли каждого реактива.

а) карбонат натрия + соляная кислота →

б) гидроксид натрия (добавить каплю фенолфталеина) + серная кислота →

в) сульфат меди(II) + гидроксид натрия →

г) хлорид железа(III) + серная кислота →

Ответ: это реакции обмена, в первой реакции выделяется газ, во второй образуется вода (малодиссоциирующее вещество), в третьей выпадает осадок, а четвёртая – обратима, признаков реакции не наблюдается. Согласно правилу Бертолле, реакции обмена, протекающие в растворах, идут до конца только в том случае, если в результате их образуется осадок, газ или вода.

3) Дайте определение обратимых и необратимых реакций.

Ответ: обратимые реакции – реакции, идущие во взаимно противоположных направлениях, необратимые – идут только в одном направлении, с полным превращением исходных веществ.

Объяснение нового материала:

Мы выяснили, что реакция

2FeCl 3 +3Н 2 SO 4 Fe 2 (SO 4 ) 3 +6HCl

2Fe 3+ +6Cl - +6H + +3SO4 2- 2Fe 3+ +3SO4 2- +6H + +6Cl -

является обратимой, учащимся предлагается прочить уравнение прямой и обратной реакций.

На начальном этапе скорость прямой реакции значительно превышает скорость обратной реакции, но наступает такой момент, когда их скорости выравниваются.

Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции называют химическим равновесием.

Химическое равновесие является динамическим (подвижным), так как при его наступлении одновременно протекают и прямая, и обратная реакции с одинаковой скоростью.

При постоянных температуре, давлении равновесии обратимой реакции может сохраняться неопределённо долгое время.

Принцип Ле Шателье.

Очень небольшое число реакций являются необратимыми. В основе большинства производственных синтезов находятся именно обратимые реакции.

На производстве, конечно, заинтересованы в преимущественном протекании прямой реакции. Возникает проблема: как сместить химическое равновесие в сторону прямой реакции. Эта проблема была решена во второй половине 19 века.

Французкий химик Анри Ле Шателье в 1885 году вывел, а немецкий физик Фердинанд Браун в 1887 году обосновал, общий закон смещения химического равновесия в зависимости от внешних факторов, который известен теперь под названием принципа Ле Шателье:

Если на систему, находящуюся в состоянии химического равновесия, оказывать какое-либо воздействие (изменить концентрацию, температуру, давление), то равновесие смещается в таком направлении, которое способствует ослаблению этого воздействия.

Этот принцип можно было бы назвать принципом «делай наоборот и добьёшься своего».

А теперь подробнее рассмотрим, как можно сместить химическое равновесие с помощью концентрации, температуры, давления.

Концентрация.

Рассмотрим реакцию обмена между хлоридом железа (III) роданидом аммония:

FeCl 3 +3NH 4 CNSFe(СNS) 3 +3NH 4 Cl

Появляется характерное кроваво-красное окрашивание, обусловленное присутствием молекул Fe(CNS) 3 .

Полученный в стакане раствор разливаем поровну в 3 пробирки;

1-эталон;

2-добавляем раствор NH 4 CNS – окраска усиливается, равновесие смещается вправо, в сторону образования роданида железа (III) Fe(CNS) 3 ;

3-добавляем кристаллический NH 4 Cl, перемешиваем стеклянной палочкой. Окраска раствора по мере растворения хлорида аммония ослабляется, что свидетельствует о смещении равновесия влево, в направлении образования хлорида железа (III) и роданида аммония.

Делаем вывод:

* при увеличении концентрации реагирующих веществ химическое равновесие системы смещается в сторону образования продуктов реакции;

* при увеличении концентрации продуктов реакции химическое равновесие системы смещается в сторону образования исходных веществ.

P.S Можно рассмотреть влияние концентрации на примере реакции

3С 6 H 5 OH+FeCl 3 (C 6 H 5 O) 3 Fe+3HCl

Фиолетовый

При добавлении HCl окраска исчезает, так как равновесие химической реакции смещается влево и комплекс: фенолят железа (III) разрушается.

Температура.

Процесс разложения азотной кислоты протекает при обычных условиях на свету, поэтому раствор азотной кислоты и безводная HNO 3 окрашены в бурый цвет (примесь NO 2 -бурый газ). Этот процесс равновесный.

4HNO 3 4NO 2 + O 2 +2H 2 O -Q

Равновесие реакции можно сместить вправо с помощью температуры.

В ходе прямой реакции теплота поглощается, чтобы равновесие сместилось вправо (Vпр>Vобр, V- скорость химической реакции), нужно температуру повысить, тогда система будет стремиться охладить себя, и пойдёт процесс эндотермический, т.е прямая реакция.

Добавляем индикатор метилоранж и нагреваем пробирку с азотной кислотой. Цвет меняется от розового до оранжевого, что свидетельствует о нейтральной среде и разложении кислоты.

Если реакция эндотермическая, то при нагревании Vпр>Vобр.

Если реакция экзотермическая, то при нагревании Vобр> Vпр.

*Если нагревать систему, то пойдёт в большой степени такая реакция, которая будет это тепло забирать (поглощать); т.е эндотермическая реакция.

*Если охлаждать систему, то пойдёт в большой степени такая реакция, которая будет это тепло выделять; т.е экзотермическая реакция.

Давление.

На примере окисления оксида серы (4) в серный ангидрид. 2SO 2 +O 2 2SO 3 +Q

3V 2V

SO 3 - в производственных условиях (при высокой t и p) находится в газообразном состоянии.

Давление напрямую зависит от объёма (p~v)

Прямая реакция идёт с уменьшением давления (числа моль газообразных веществ).

Чтобы пошла прямая реакция, надо сделать наоборот, т.е. давление повысить, чтобы система затем его понижала.

Увеличение давления ведёт к смещению равновесия в сторону реакции с меньшим числом молекул.

2SO 2 +O 2 2SO 3 +Q

чтобы сместить равновесие вправо, необходимо:

1)взять избыток одного из исходных веществ;

2)температуру взять максимально низкую (в производственных условиях ~400С);

3)давление повысить.

Далее классу предлагается посмотреть кинофрагмент «Динамический характер химического равновесия», в котором рассматривается процесс окисления сернистого ангидрида, т.е. реакция 2SO 2 +O 2 2SO 3 +Q

После просмотра классу предлагается ответить на вопрос: Как влияет катализатор на химическое равновесие? В какую сторону V 2 O 5

смещает равновесие реакции?

Ответ: Катализатор не влияет на химическое равновесие, он в равной степени ускоряет как прямую, так и обратную реакции.

Можно рассмотреть влияние давления на примере реакции:

2NO+O 2 2NO 2 +Q

NO- бесцветный газ, NO 2 - бурый газ

Также предлагается просмотр кинофрагмента данного процесса.

Сообщение учащегося.

Чаще всего принцип Ле Шателье используется, чтобы подобрать условия, увеличивающие выход необходимого продукта. Реже мы говорим о том, как сократить выход вредного продукта.

В человеческом организме протекают биохимические процессы, которые так же могут регулироваться по принципу Ле Шателье. Порой в результате такой реакции в организме начинают вырабатываться вещества – яды, вызывающие то или иное заболевание. Как воспрепятствовать этому процессу?

Вспомним такой метод лечения, как гомеопатия. Метод заключается в применении очень малых доз тех лекарств, которые в больших дозах вызывают у здорового человека признаки какого-нибудь заболевания. Как же в данном случае действует лекарство-яд?

В организм вводят продукт нежелаемой реакции, и по принципу Ле Шателье равновесие смещается в сторону исходных веществ.

Процесс, вызывает болезненные нарушения в организме, угасает.

(Из «Химии в школе» № 2-93, статья: Тушина Е.Н. Принцип Ле Шателье и некоторые методы лечения).

3. Закрепление изученного.

1) Какие реакции называются обратимыми?

2) Какое состояние системы называется равновесным?

3) Почему химическое равновесие является динамическим?

4) Расскажите о принципе Ле Шателье.

5) Какие факторы влияют на химическое равновесие?

6) Химическое равновесие в системе

2NO (г) + O 2 (г) 2NO

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Таким образом, искомые равновесные концентрации: [СО 2 ] Р = 1,2 моль/л; [Н 2 ] р = 1,2 моль/л; [СО] Р = 3 - 1,2 = 1,8 моль/л; [Н 2 О] Р = = 2- 1,2 = 0,8 моль/л.

Пример 8. Эндотермическая реакция разложения пента-хлорида фосфора протекает по уравнению

РС1 5 (г) РС1 3 (г) + С1 2 (г); ∆Н = +92,59 кДж.

Как надо изменить: а) температуру; б) давление; в) концент­рацию, чтобы сместить равновесие в сторону прямой реакции - разложения РСl 5 ?

Решение. Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции. Направление, в котором сместилось равновесие, определяется по принципу Ле Шателье: а) так как реакция разложения РС1 5 эндотермическая (∆Н > 0), то для смещения равновесия в сторону прямой реакции нужно повысить температуру: б) так как в данной системе разложение РС1 5 ведет к увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление; в) смещения равновесия в указанном направлении можно достигнуть как увеличением концентрации РС1 5 , так иуменьшением концентрации РСl 3 или С1 2 .

Изменение внешних условий может привести к изменению термодинамических параметров и функций, характеризующих систему, при этом нарушается состояние равновесия. В системе начинаются процессы, приводящие к новому состоянию равновесия с другими равновесными параметрами. Покажем это на примере. В реакторе находится смесь газов N 2 , Н 2 и NH 3 в состоянии равновесия:

Введем в реактор при изотермических условиях дополнительное количество N 2 , т.е. увеличим его концентрацию. Константа равно- 2

весия К =---^ останется неизменной, поскольку не зависит

[М 2 ПН 2 ] 3

от концентрации. Это возможно только в результате изменения величин равновесных концентраций: увеличение приведет к уменьшению [Н 2 ] за счет дополнительного взаимодействия части введенного водорода с азотом, при этом соответственно увеличится . Изменение параметров системы, приводящее ее к новому состоянию равновесия путем преимущественного протекания прямого или обратного процессов, называется смещением химического равновесия соответственно в прямом или обратном направлении. В рассматриваемом примере произошло смещение равновесия в прямом направлении.

Качественные задачи смещения химического равновесия могут быть решены и без термодинамических или кинетических расчетов с помощью правила, которое сформулировал в 1884 г. Ле Шателье.

Оно получило название принципа Ле Шателье (независимо от Ле Шателье этот принцип был сформулирован в 1887 г. Брауном): если на систему, находящуюся в состоянии равновесия, оказать какое- либо внешнее воздействие, то в результате протекания процессов в системе равновесие сместится в направлении, приводящем к уменьшению оказанного воздействия.

При увеличении концентрации какого-либо вещества, находящегося в равновесии (например NH 3 в рассмотренной выше системе), равновесие смещается в сторону расхода этого вещества (в обратном направлении). При уменьшении концентрации какого-либо вещества (например Н 2) равновесие смещается в сторону образования этого вещества (т.е. в данном случае также в обратном направлении).

Рассмотрим влияние давления на процесс синтеза аммиака (4.51). Пусть давление в реакторе увеличили посредством сжатия в 2 раза. В изотермических условиях объем при этом уменьшится в два раза, следовательно, концентрации всех компонентов возрастут вдвое. До изменения давления скорость прямой реакции составляла

После сжатия она стала

т.е. увеличилась в 16 раз. Скорость обратной реакции тоже увеличилась:

но лишь в 4 раза. Следовательно, равновесие сместилось в прямом направлении.

В соответствии с принципом Ле Шателье при увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения количества молекул газов, т.е. в сторону понижения давления (в приведенном примере в прямом направлении); при уменьшении давления равновесие сдвигается в сторону возрастания количества молекул газов, т.е. в сторону увеличения давления (в приведенном примере в обратном направлении). Если реакция протекает без изменения количества молекул газов, равновесие не нарушается при сжатии или расширении системы. Так, например, в системе

Н 2 (г) + 1 2 (г) 2Н1(г) при изменении давления равновесие не нарушается; выход HI от давления не зависит.

Давление практически не оказывает влияния на равновесие реакций, протекающих без участия газовой фазы, так как жидкости и твердые вещества почти несжимаемы. Однако при сверхвысоких давлениях происходит смещение равновесия в сторону более плотной упаковки частиц в кристаллической решетке. Например, графит, одна из аллотропических модификаций углерода (плотность р = 2,22 г/см 3), при давлении порядка 10 ю Па (10 5 атм) и температуре около 2000 °С переходит в алмаз, другую модификацию углерода с более плотной упаковкой атомов (р =3,51 г/см 3).

При повышении температуры равновесие смещается в направлении эндотермической реакции, а при понижении - в направлении экзотермической реакции. Например, синтез аммиака (уравнение 4.51) представляет собой экзотермическую реакцию (ДН^ 98 = -92,4 кДж). Поэтому при повышении температуры равновесие в системе Н 2 - N 2 - NH 3 сдвигается влево - в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты. Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе N 2 - О 2 - NO сдвигается вправо - в сторону образования N0.

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот , так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.


Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А + В 2С, если равновесные концентрации [А] = 0,3 моль · л -1 ; [В] = 1,1 моль · л -1 ; [С] = 2,1 моль · л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: .

Подставим сюда указанные в условии задачи равновесные концентрации: = 5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А + 2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль · л -1 , а константа равновесия реакции К р = 50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль.

Равновесные концентрации реагирующих веществ будут:

С А = (0,5 х) моль · л -1 ; С В = (0,7-х) моль · л -1 ; С С = 2х моль · л -1

х 1 = 0,86; х 2 = 0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А = 0,5 - 0,44 = 0,06 моль · л -1 ; С В = 0,7 - 0,44 = 0,26 моль · л -1 ; С С = 0,44 · 2 = 0,88 моль · л -1 .

Пример 3. Определение изменения энергии Гиббса G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО + Cl 2 = COCl 2 при 700К, если константа равновесия равна Кр = 1,0685 · 10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325 Па.

Решение. G 700 = 2,303 · RT .

Для данного процесса:

Так как Gо < 0, то реакция СО + Cl 2 COCl 2 при 700 К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 + 3H 2 2NH 3 - 22 ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г) при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака - экзотермическая. Повышение температуры вызывает смещение равновесия влево - в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: = а, = b, = с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны:

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной — только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 -х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 = 6 - 2х - 3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Таким образом, искомые равновесные концентрации: [СО 2 ] Р = 1,2 моль/л; [Н 2 ] р = 1,2 моль/л; [СО] Р = 3 - 1,2 = 1,8 моль/л; [Н 2 О] Р = = 2- 1,2 = 0,8 моль/л.

Пример 8. Эндотермическая реакция разложения пента-хлорида фосфора протекает по уравнению:

РС1 5 (г) РС1 3 (г) + С1 2 (г); Н = + 92,59 кДж.

Как надо изменить: а) температуру; б) давление; в) концент-рацию, чтобы сместить равновесие в сторону прямой реакции — разложения РСl 5.

Решение. Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции.

Направление, в котором сместилось равновесие, определяется по принципу Ле Шателье :

а) так как реакция разложения РС1 5 эндотермическая (Н > 0), то для смещения равновесия в сторону прямой реакции нужно повысить температуру;

б) так как в данной системе разложение РС1 5 ведет к увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление;

в) смещения равновесия в указанном направлении можно достигнуть как увеличением концентрации РС1 5 , так иуменьшением концентрации РСl 3 или С1 2 .

Состояние равновесия для обратимой реакции может длиться неограниченно долгое время (без вмешательства извне). Но если на такую систему оказать внешнее воздействие (изменить температуру, давление или концентрацию конечных либо исходных веществ), то состояние равновесия нарушится. Скорость одной из реакций станет больше по сравнению со скоростью другой. С течением времени система вновь займет равновесное состояние, но новые равновесные концентрации исходных и конечных веществ будут отличаться от первоначальных. В этом случае говорят о смещении химического равновесия в ту или иную сторону.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то это значит, что химическое равновесие сместилось вправо. Если же, наоборот, становится больше скорость обратной реакции, это значит, что химическое равновесие сместилось влево.

При смещении равновесия вправо происходит уменьшение равновесных концентрацийисходных веществ и увеличениеравновесных концентраций конечных веществ по сравнению с первоначальными равновесными концентрациями. Соответственно, при этом возрастает и выход продуктов реакции.

Смещение химического равновесия влево вызывает возрастание равновесных концентраций исходных веществ и уменьшение равновесных концентраций конечных продуктов, выход которых при этом уменьшится.

Направление смещения химического равновесия определяется с помощью принципа Ле-Шателье: «Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие (изменить температуру, давление, концентрацию одного или нескольких веществ, участвующих в реакции), то это приведет к увеличению скорости той реакции, протекание которой будет компенсировать (уменьшать) оказанное воздействие» .

Например, при увеличении концентрации исходных веществ возрастает скорость прямой реакции и равновесие смещается вправо. При уменьшении концентрации исходных веществ, наоборот, возрастает скорость обратной реакции, а химическое равновесие смещается влево.

При увеличении температуры (т.е. при нагревании системы) равновесие смещается в сторону протекания эндотермической реакции, а при ее уменьшении (т.е. при охлаждении системы) – в сторону протекания экзотермической реакции. (Если прямая реакция является экзотермической, то обратная обязательно будет эндотермической, инаоборот).

Следует подчеркнуть, что увеличение температуры, как правило, увеличивает скорость и прямой, и обратной реакции, но при этом скорость эндотермической реакции возрастает в большей степени, чем скорость экзотермической реакции. Соответственно, при охлаждениисистемы скорости прямой и обратной реакций уменьшаются, но тоже не в одинаковой степени: для экзотермической реакции существенно меньше, чем для эндотермической.

Изменение давления влияет на смещение химического равновесия только при выполнении двух условий:

    необходимо, чтобы хоть одно из веществ, участвующих в реакции, находилось в газообразном состоянии, например:

СаСО 3(т) СаО (т) + СО 2(г) - изменение давления влияет насмещение равновесия.

СН 3 СООН (ж.) + С 2 Н 5 ОН (ж.) СН 3 СООС 2 Н 5(ж.) + Н 2 О (ж.) – изменениедавления не влияет на смещение химического равновесия, т.к. ни одно из исходных или конечных веществ не находится в газообразном состоянии;

    если в газообразном состоянии находятся несколько веществ, необходимо, чтобы число молекул газа в левой части уравнения такой реакции не было равно числу молекулгаза в правой части уравнения, например:

2SO 2(г) +O 2(г) 2SO 3(г) – изменение давления влияет на смещение равновесия

I 2(г) + Н 2(г) 2НI (г) – изменение давления не влияет на смещение равновесия

При выполнении этих двух условий увеличение давления приводит к смещению равновесия в сторону реакции, протекание которой уменьшает число молекул газа в системе. В нашем примере (каталитическое горение SO 2) это будет прямая реакция.

Уменьшение давления, наоборот, смещает равновесие в сторону реакции, идущей с образованием большего числа молекул газа. В нашем примере это будет обратная реакция.

Увеличение давления вызывает уменьшение объема системы, а значит, и увеличение молярных концентраций газообразных веществ. В результате скорость прямой и обратной реакций увеличивается, но не в одинаковой степени. Понижение же давления по аналогичной схеме приводит к уменьшению скоростей прямой и обратной реакций. Но при этом скорость реакции, в сторону которой смещается равновесие, уменьшается в меньшей степени.

Катализатор не влияет на смещение равновесия, т.к. он в одинаковой степени ускоряет (или замедляет) как прямую, так и обратную реакцию. В его присутствии химическое равновесие только быстрее (или медленнее) устанавливается.

Если на систему оказывают воздействие сразу несколько факторов одновременно, то каждый из них действует независимо от других. Например, при синтезе аммиака

N 2(газ) + 3H 2(газ) 2NH 3(газ)

реакцию осуществляют при нагревании и в присутствии катализатора для увеличения ее скорости.Но при этом воздействие температуры приводит к тому, что равновесие реакции смещается влево, в сторону обратной эндотермической реакции. Это вызываетуменьшение выхода NH 3 . Чтобы компенсировать данноенежелательное действие температуры и увеличитьвыход аммиака, одновременно в системе повышают давление,которое смещает равновесие реакции вправо, т.е. в сторону образования меньшего числа молекул газа.

При этом опытным путем подбирают наиболее оптимальные условия осуществленияреакции (температуру, давление), при которых она протекала бы с достаточно большой скоростью и давала экономическирентабельный выход конечного продукта.

Принцип Ле-Шателье аналогичным образом используется в химической промышленности при производстве большого числа различных веществ, имеющих огромное значение для народного хозяйства.

Принцип Ле-Шательеприменим не только к обратимым химическим реакциям, но и к различным другим равновесным процессам: физическим, физико-химическим, биологическим.

Организм взрослого человека характеризуется относительным постоянством многих параметров, в том числе различных биохимических показателей, включающих в себя концентрации биологически активных веществ. Однако такое состояние нельзя назвать равновесным, т.к. оно не приложимо к открытым системам.

Организм человека, как любая живая система, постоянно обменивается с окружающей средой различными веществами: потребляет продукты питания и выделяет продукты их окисления и распада. Следовательно, для организма характерно стационарное состояние , определяемое как постоянство его параметров при постоянной скорости обмена с окружающей средой веществом и энергией. В первом приближении стационарное состояние можно рассматривать как ряд равновесных состояний, связанных между собой процессами релаксации. В состоянии равновесия концентрации веществ, участвующих в реакции, поддерживаются за счёт восполнения извне исходных и удаления наружу конечных продуктов. Изменение их содержания в организме не приводит, в отличие от закрытых систем, к новому термодинамическому равновесию. Система возвращается в первоначальное состояние. Таким образом, поддерживается относительное динамическое постоянство состава и свойств внутренней среды организма, обусловливающее устойчивость его физиологических функций. Данное свойство живой системы называется иначегомеостазом .

В ходе жизнедеятельности организма, находящегося в стационарном состоянии, в отличие от закрытой равновесной системы, происходит увеличение энтропии. Однако, наряду с этим, одновременно протекает и обратный процесс – уменьшение энтропии за счёт потребления из окружающей среды питательных веществ с низким значением энтропии (например, высокомолекулярных соединений – белков, полисахаридов, углеводов и др.) и выделения в среду продуктов распада. Согласно положению И.Р.Пригожина, суммарное производство энтропии для организма, находящегося в стационарном состоянии, стремится к минимуму.

Большой вклад в развитие неравновесной термодинамики внес И. Р. Пригожий , лауреат Нобелевской премии 1977 г., который утверждал, что «в любой неравновесной системе существуют локальные участки, находящиеся в равновесном состоянии. В классической термодинамике равновесие относится ко всей системе, а в неравновесной - только к ее отдельным частям».

Установлено, что энтропия в таких системах возрастает в период эмбриогенеза, при процессах регенерации и росте злокачественных новообразований.