Как работает радиотелескоп. Радиотелескопы и их характеристики, принцип действия интерферометров, космический "радиоастрон"


01.09.2017 13:40 1038

Радиотелескопом называется устройство, с помощью которого астрономы изучают космические объекты, находящиеся далеко от Земли. В отличие от обычного оптического телескопа , исследуемый объект нельзя увидеть сразу. Радиотелескоп улавливает излучение небесных тел и полученный сигнал передаёт на специальный монитор.

Идея создать такой аппарат принадлежит американскому физику Карлу Янскому. Исследуя атмосферные радиопомехи, учёный обнаружил радиоволны неизвестного происхождения. Впоследствии выяснилось, что источником радиоизлучения является центр нашей галактики Млечный Путь. Это открытие образовало новую науку – радиоастрономию, изучающую небесные объекты с помощью электромагнитного излучения.

Внешне радиотелескоп напоминает простую спутниковую антенну, способную принимать радиоизлучения из космоса. Источниками радиоизлучения во вселенной являются планеты, астероиды и кометы . С помощью радиотелескопа астрономам удалось вести наблюдения за солнцем и разными процессами, которые на нём происходят. Также данные измерений помогли определить размеры и массы планет нашей солнечной системы.

Радиоастрономические обсерватории расположены в разных уголках нашей планеты. Самый крупный радиотелескоп в мире находится на юге России, в Карачаево-Черкессии. Он входит в комплекс Зеленчукской радиоастрономической обсерватории.

ФГБОУ ВПО «Таганрогский государственный педагогический институт имени А.П. Чехова»

Радиоастрономия. Радиотелескопы.

Основные характеристики.

Выполнила студентка

физико-математического факультета

51 группы: Мазур В.Г.

Таганрог

Введение

Радиоастрономия

1. Сравнение с оптической астрономией………………………….

2. Диапазоны регистрируемого радиоизлучения………………..

3. Историческая справка…………………………………………..

Радиотелескопы………………………………………………….

4. Принцип работы ………………………………………………..

5. Радиоинтерферометры………………………………………….

6. Первые радиотелескопы ……………………………………….

7. Классификация радиотелескопов………………………………

а) Антенны с заполненной апертурой……………………………

б) Параболоиды вращения…………………………………………

в) Параболические цилиндры……………………………………

г) Антенны с плоскими отражателями……………………………

д) Земляные чаши………………………………………………….

е) Антенные решётки (синфазные антенны)……………………

ж) Антенны с незаполненной апертурой…………………………

Заключение

Список литературы


Введение

Радиоастрономия - это раздел астрономии, который изучает космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа. Радиоизлучением сопровождаются такие явления, как взаимодействие турбулентных потоков газа и ударные волны в межзвездной среде, быстрое вращение нейтронных звезд с сильным магнитным полем, "взрывные" процессы в ядрах галактик и квазаров, солнечные вспышки и др. Приходящие к Земле радиосигналы естественных объектов имеют характер шумов. Эти сигналы принимаются и усиливаются с помощью специальной электронной техники, а затем регистрируются в аналоговом или цифровом виде. Часто радиоастрономическая техника оказывается более чувствительной и дальнодействующей, чем оптическая.

Радиотелеско́п - астрономический инструмент для приёма собственного радиоизлучения небесных объектов (вСолнечной системе, Галактике и Метагалактике) и исследования их характеристик, таких как: координаты,пространственная структура, интенсивность излучения, спектр и поляризация .


РАДИОАСТРОНОМИЯ

§1.Сравнение с оптической астрономией

Из всех видов космического электромагнитного излучения к поверхности Земли сквозь ее атмосферу проходят, практически не ослабевая, только видимый свет, близкое (коротковолновое) инфракрасное излучение и часть спектра радиоволн. С одной стороны, радиоволны, имеющие значительно большую длину волны, чем оптическое излучение, легко проходят сквозь облачные атмосферы планет и облака межзвездной пыли, непрозрачные для света. С другой стороны, только самые короткие радиоволны проходят сквозь прозрачные для света области ионизованного газа вокруг звезд и в межзвездном пространстве. Слабые космические сигналы радиоастрономы улавливают с помощью радиотелескопов, основными элементами которых служат антенны. Обычно это металлические рефлекторы в форме параболоида. В фокусе рефлектора, там, где концентрируется излучение, помещают собирающее устройство в виде рупора или диполя, которое отводит собранную энергию радиоизлучения к приемной аппаратуре. Рефлекторы диаметром до 100 м делают подвижными и полноповоротными; они могут наводиться на объект в любой части неба и следить за ним. Более крупные рефлекторы (до 300 м в диаметре) - неподвижные, в виде огромной сферической чаши, а наведение на объект происходит за счет вращения Земли и перемещения облучателя в фокусе антенны. Рефлекторы еще большего размера обычно имеют вид части параболоида. Чем больше размер рефлектора, тем детальнее наблюдаемая радиокартина. Часто для ее улучшения один объект наблюдают синхронно двумя радиотелескопами или целой их системой, содержащей несколько десятков антенн, разнесенных иногда на тысячи километров.

§2. Диапазоны регистрируемого радиоизлучения

Сквозь земную атмосферу проходят радиоволны длиной от нескольких миллиметров до 30 м, т.е. в диапазоне частот от 10 МГц до 200 ГГц. Таким образом, радиоастрономы имеют дело с частотами, заметно более высокими, чем, например, широковещательный радиодиапазон средних или коротких волн. Однако с появлением УКВ и телевизионного вещания в диапазоне частот 50-1000 МГц, а также радиолокаторов (радаров) в диапазоне 3-30 ГГц у радиоастрономов возникли проблемы: мощные сигналы земных передатчиков в этих диапазонах мешают приему слабых космических сигналов. Поэтому путем международных соглашений радиоастрономам выделено для наблюдения космоса несколько диапазонов частот, в которых запрещена передача сигналов.

§3. Историческая справка

Радиоастрономия как наука началась в 1931, когда К.Янский из компании "Белл телефон" стал изучать помехи радиосвязи и обнаружил, что они приходят из центральной части Млечного Пути. Первый радиотелескоп построил в 1937-1938 радиоинженер Г.Ребер, самостоятельно сделавший у себя в саду из листов железа 9-метровый рефлектор, в принципе такой же, как нынешние гигантские параболические антенны. Ребер составил первую радиокарту неба и обнаружил, что на волне 1,5 м излучает весь Млечный Путь, но наиболее сильно - его центральная часть. В феврале 1942 Дж.Хей заметил, что в метровом диапазоне Солнце создает помехи радиолокаторам, когда на нем происходят вспышки; радиоизлучение Солнца в сантиметровом диапазоне в 1942-1943 открыл Дж. Саутворт. Планомерное развитие радиоастрономии началось после Второй мировой войны. В Великобритании были созданы крупная обсерватория Джодрелл-Бэнк (Манчестерский университет) и станция Кавендишской лаборатории (Кембридж). Радиофизическая лаборатория (Сидней) организовала несколько станций в Австралии. Нидерландские радиоастрономы стали изучать облака межзвездного водорода. В СССР были построены радиотелескопы под Серпуховом, в Пулкове, в Крыму. Крупнейшими радиообсерваториями США являются Национальные радиоастрономические обсерватории в Грин-Бэнк (шт. Зап.Виргиния) и Шарлотсвилле (шт. Виргиния), обсерватория Корнеллского университета в Аресибо (о.Пуэрто-Рико), обсерватория Калифорнийского технологического института в Оуэнс-Вэлли (шт. Калифорния), Линкольновская лаборатория Массачусетского технологического института и обсерватория Ок-Ридж Гарвардского университета (шт. Массачусетс), обсерватория Хэт-Крик Калифорнийского университета в Беркли (шт. Калифорния), Радиоастрономическая обсерватория пяти колледжей Массачусетского университета (шт. Массачусетс).

РАДИОТЕЛЕСКОПЫ

Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов для исследования электромагнитного излучения. Более высокочастотными являются телескопы теплового, видимого,ультрафиолетового, рентгеновского и гамма излучения .

Радиотелескопы предпочтительно располагать далеко от главных населённых пунктов, чтобы максимально уменьшить электромагнитные помехи от вещательных радиостанций, телевидения, радаров и других излучающих устройств. Размещение радиообсерватории в долине или низине ещё лучше защищает её от влияния техногенных электромагнитных шумов.

Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение, и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора . На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

§4. Принцип работы

Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала (см. критерий Релея). Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

,

где - мощность собственных шумов радиотелескопа, - эффективная площадь (собирающая поверхность) антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

§5. Радиоинтерферометры

Помимо увеличения диаметра апертуры, существует ещё один способ увеличить разрешающую способность (или сузить диаграмму направленности). Если взять две антенны, расположенных на расстоянии d (база) друг от друга, то сигнал от источника до одной из них будет приходить чуть раньше, чем до другой. Если затем сигналы с двух антенн проинтерферировать, то из результирующего сигнала с помощью специальной математической процедуры редукции можно будет восстановить информацию об источнике с эффективным разрешением . Такая процедура редукции называется апертурным синтезом. Интерференция может проводиться как аппаратно, путём подачи сигнала по кабелям и волноводам в общий смеситель, так и на ЭВМ с предварительно оцифрованными по меткам точного времени и сохраненными на носитель сигналами. Современные технические средства позволили создать систему РСДБ, которая включает в себя телескопы расположенные на разных материках и разнесенные на несколько тысяч километров.

§6. Первые радиотелескопы

Начало - Карл Янский

Копия радиотелескопа Янского

История радиотелескопов берёт своё начало в 1931 году, с экспериментов Карла Янского на полигоне фирмы Bell Telephone Labs. Для исследования направления прихода грозовых помех он построил вертикально поляризованную однонаправленную антенну типа полотна Брюса. Размеры конструкции составляли 30.5 м в длину и 3.7 м в высоту. Работа велась на волне 14.6 м (20.5 МГц). Антенна была соединена с чувствительным приёмником, на выходе которого стоял самописец с большой постоянной времени .

Запись излучений, полученная Янским 24 февраля 1932 года. Максимумы (стрелки) повторяются через 20 мин. - период полного оборота антенны.

В декабре 1932 г. Янский уже сообщал о первых результатах, полученных на своей установке . В статье сообщалось об обнаружении «… постоянного шипения неизвестного происхождения», которое «… трудно отличить от шипения, вызываемого шумами самой аппаратуры. Направление прихода шипящих помех меняется постепенно в течение дня, делая полный оборот за 24 часа». В двух своих следующих работах, в октябре 1933 года и октябре 1935 года, Карл Янский постепенно приходит к заключению, что источником его новых помех является центральная область нашей галактики . Причём наибольший отклик получается, когда антенна направлена на центр Млечного Пути .

Янский сознавал, что прогресс в радиоастрономии потребует антенн больших размеров с более острыми диаграммами, которые должны быть легко ориентируемы в различных направлениях. Он сам предложил конструкцию параболической антенны с зеркалом 30.5 м в диаметре для работы на метровых волнах. Однако его предложение не получило поддержки в США .

Второе рождение - Гроут Ребер

Меридианный радиотелескоп Гроута Ребера

В 1937 году Гроут Ребер, радиоинженер из Уэтона (США, штат Иллинойс) заинтересовался работой Янского и сконструировал в заднем дворе дома своих родителей антенну с параболическим рефлектором диаметром 9,5 м. Эта антенна имела меридианную монтировку, то есть была управляема лишь по углу места, а изменение положения лепестка диаграммы по прямому восхождению достигалось за счёт вращения Земли. Антенна Ребера была меньше, чем у Янского, но работала на более коротких волнах, и её диаграмма направленности была значительно острее. У антенны Ребера луч имел коническую форму с шириной 12° по уровню половинной мощности, в то время как у луча антенны Янского была веерообразная форма шириной 30° по уровню половинной мощности в наиболее узком сечении .

Весной 1939 года Ребер обнаружил на волне 1,87 м (160 МГц) излучение с заметной концентрацией в плоскости Галактики и опубликовал некоторые результаты .

Радио карта небосвода, полученная Гроутом Ребером в 1944 г.

Совершенствуя свою аппаратуру , Ребер предпринял систематический обзор неба и в 1944 году опубликовал первые радиокарты небосвода на волне 1,87 м . На картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедь A, Кассиопея A, Большого Пса и Кормы. Карты Ребера достаточно хороши даже по сравнению с современными картами, метровых длин волн.

После Второй мировой войны были сделаны существенные технологические улучшения в области радиоастрономии учёными в Европе, Австралии и США. Таким образом начался расцвет радиоастрономии, который привёл к освоению миллиметровых и субмиллиметровых длин волн, позволяющих достичь значительно больших разрешений.

§7. Классификация радиотелескопов

Широкий диапазон длин волн, разнообразие объектов исследований в радиоастрономии, быстрые темпы развития радиофизики и радиотелескопостроения, большое число независимых коллективов радиоастрономов привели к большому разнообразию типов радиотелескопов. Наиболее естественно классифицировать радиотелескопы по характеру заполнения их апертуры и по методам фазирования СВЧ поля (рефлекторы, рефракторы, независимая запись полей)

Антенны с заполненной апертурой

Антенны этого типа похожи на зеркала оптических телескопов и является наиболее простыми и привычными в использовании. Антенны с заполненной апертурой просто собирают сигнал от наблюдаемого объекта и фокусируют его на приёмнике. Записанный сигнал уже несет в себе научную информацию и не нуждается в синтезе. Недостатком таких антенн является низкая разрешающая способность. Антенны с незаполненной апертурой можно разделить на несколько классов по форме их поверхности и методу монтирования.

Параболоиды вращения

Практически все антенны такого типа устанавливаются на Альт-азимутальных монтировках и являются полноповоротным. Главным их преимуществом является то, что такие радиотелескопы могут, как и оптические, наводиться на объект и вести его. Таким образом, наблюдения могут проводиться в любое время, пока исследуемый объект находится над горизонтом. Типичные представители: Радиотелескоп Грин-Бэнк, РТ-70, калязинский радиотелескоп.

Параболические цилиндры

Строительство полноповоротных антенн сопряжено с определёнными трудностями, связанными с огромной массой таких конструкций. Поэтому строят неподвижные и полуподвижные системы. Стоимость и сложность таких телескопов растет гораздо медленнее с их ростом размеров. Параболический цилиндр собирает лучи не в точке, а на прямой, параллельной его образующей (фокальная линия). Из-за этого телескопы данного типа имеют несимметричную диаграмму направленности и различное разрешение по разным осям. Ещё одним недостатком таких телескопов является то, что ввиду ограниченной подвижности для наблюдения им доступна только часть неба. Представители: радиотелескоп Иллинойского университета , индийский телескоп в Ути .

Ход лучей в телескопе Нансэ

Антенны с плоскими отражателями

Для работы на параболическом цилиндре требуется, чтобы на фокальной линии было размещено несколько детекторов, сигнал с которых складывается с учетом фаз. На коротких волнах это сделать непросто из-за больших потерь в линиях связи. Антенны с плоским отражателем позволяют обойтись лишь одним приёмником. Такие антенны состоят из двух частей: подвижного плоского зеркала и неподвижного параболоида. Подвижное зеркало «наводится» на объект и отражает лучи на параболоид. Параболоид концентрирует лучи в точке фокуса, где располагается приёмник. Такому телескопу доступна только часть неба для наблюдений. Представители: радиотелескоп Крауса, Большой радиотелескоп в Нансэ.

Земляные чаши

Стремление удешевить конструкцию привело астрономов к мысли об использовании природного рельефа в качестве зеркала телескопа. Представителем этого типа стал 300-метровый радиотелескоп Аресибо. Он расположен в карстовой воронке, дно которой вымощено алюминиевыми листами в форме сфероида. приёмник на специальных опорах подвешивается над зеркалом. Недостатком данного инструмента является то, что ему доступна область неба в пределах 20° от зенита.

Антенные решётки (синфазные антенны)

Такой телескоп состоит из множества элементарных облучателей (диполей или спиралей) расположенных на расстоянии меньшем, чем длина волны. Благодаря точному управлению фазой каждого элемента, удается добиться высокой разрешающей способности и эффективной площади. Недостатком таких антенн является то, что они изготавливаются под строго определённую длину волны. Представители: радиотелескоп БСА в Пущино.

Антенны с незаполненной апертурой

Наиболее важными для целей астрономии являются две характеристики радиотелескопов: разрешающая способность и чувствительность. При этом чувствительность пропорциональна площади антенны, а разрешение - максимальному размеру. Таким образом, самые распространенные круглые антенны дают наихудшее разрешение при той же эффективной площади. Поэтому в радиоастрономии появились телескопы с малой

Телескоп ДКР-1000, с незаполненной апертурой

площадью, но большой разрешающей способностью. Такие антенны получили название антенн с незаполненной апертурой , так как они имеют «дыры» в апертуре, превосходящие длину волны. Чтобы получить изображение с таких антенн, наблюдения нужно проводить в режиме синтеза апертур. Для апертурного синтеза достаточно двух синхронно работающих антенн, расположенных на некотором расстоянии, которое называют базой . Чтобы восстановить изображение источника, нужно промерить сигнал на всех возможных базах с некоторым шагом вплоть до максимальной .

Если антенны всего две, то придется проводить наблюдение, затем менять базу, проводить наблюдение в следующей точке, опять менять базу и т. д. Такой синтез называется последовательным . По такому принципу работает классический радиоинтерферометр. Недостаток последовательного синтеза состоит в том, что он требует много времени и не может выявить переменность радиоисточников на коротких временах. Поэтому чаще применяется параллельный синтез . В нём участвует сразу много антенн (приёмников), которые одновременно проводят измерения для всех нужных баз. Представители: «Северный крест» в Италии,радиотелескоп ДКР-1000 в Пущино.

Крупные массивы типа VLA часто относят к последовательному синтезу. Однако, ввиду большого количества антенн, практически все базы уже представлены, и дополнительных перестановок обычно не требуется.

Список радиотелескопов.

Расположение

Тип антенны

Размер

Минимальная рабочая длина волны

США, Грин Бэнк

Параболический сегмент с активной поверхностью

Россия, Калязинская радиоастрономическая обсерватория

Параболический рефлектор

Россия, Медвежьи Озера

Параболический рефлектор

Япония, Нобеяма

Параболический рефлектор

Италия, Медичина

Параболический рефлектор

Испания, Гранада

Параболический рефлектор

Пуэрто-Рико, Пуэрто-Рико, Аресибо

Сферический рефлектор

Россия, Бадары, Сибирский солнечный радиотелескоп

Массив антенн 128х128 элементов (крестообразный радиоинтерферометр)

Франция, Нанси

Двухзеркальный

Индия, Ути

Параболический цилиндр

Италия, Медичина, «Северный крест»

«Т» из двух параболических цилиндров


Список литературы

1. Физика космоса: мал. энц., 1986, с. 533

2. Каплан С. А. Как возникла радиоастрономия // Элементарная радиоастрономия. - М.: Наука, 1966. - С. 12. - 276 с.

3. 1 2 Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. - М.: Советское радио, 1973. - С. 14-21. - 456 с.

4. Большая советская энциклопедия. - СССР: Советская энциклопедия, 1978.

5. Электромагнитное излучение. Википедия.

6. Радиотелескоп // Физика космоса: Маленькая энциклопедия / Под ред. Р. А. Сюняева. - 2-е изд. - М.: Сов. энциклопедия, 1986. - С. 560. - 783 с. - ISBN 524(03)

7. П.И.Бакулин, Э.В.Кононович, В.И.Мороз Курс общей астрономии. - М.: Наука, 1970.

8. 1 2 3 4 Джон Д. Краус. Радиоастрономия. - М.: Советское радио, 1973.

9. Jansky K.G. Directional Studies of Atmospherics at Hight Frequencies. - Proc. IRE, 1932. - Т. 20. - С. 1920-1932.

10. Jansky K.G. Electrical disturbances apparently of extraterrestrial origin.. - Proc. IRE, 1933. - Т. 21. - С. 1387-1398.

11. Jansky K.G. A note on the source of interstellar interference.. - Proc. IRE, 1935. - Т. 23. - С. 1158-1163.

12. Reber G. Cosmic Static. - Astrophys. J., June, 1940. - Т. 91. - С. 621-624.

13. Reber G. Cosmic Static. - Proc. IRE, February, 1940. - Т. 28. - С. 68-70.

14. 1 2 Reber G. Cosmic Static. - Astrophys. J., November, 1944. - Т. 100. - С. 279-287.

15. Reber G. Cosmic Static. - Proc. IRE, August, 1942. - Т. 30. - С. 367-378.

16. 1 2 Н.А.Есепкина, Д.В.Корольков, Ю.Н.Парийский. Радиотелескопы и радиометры. - М.: Наука, 1973.

17. Радиотелескоп Иллинойского университета.

18. 1 2 Л. М. Гиндилис «SETI: Поиск Внеземного Разума»


Характеристики радиотелескопов

Современные радиотелескопы позволяют исследовать Вселенную в таких подробностях, которые еще недавно находились за пределами возможного не только в радиодиапазоне, но и в традиционной астрономии видимого света. Объединенные в единую сеть инструменты, расположенные на разных континентах, позволяют заглянуть в самую сердцевину радиогалактик, квазаров, молодых звездных скоплений, формирующихся планетных систем. Радиоинтерферометры со сверхдлинными базами в тысячи раз превзошли по «зоркости» самые крупные оптические телескопы. С их помощью можно не только отслеживать перемещение космических аппаратов в окрестностях далеких планет, но и исследовать движения коры нашей собственной планеты, в том числе непосредственно «почувствовать» дрейф материков. На очереди космические радиоинтерферометры, которые позволят еще глубже проникнуть в тайны Вселенной.


Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности». Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца. Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире - примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света - лишь малая доля богатства «красок» Вселенной. Во второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны. По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.
Один из наиболее интересных и информативных диапазонов спектра для астрономии - радиоволны. Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы - в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли - слой ионизованного газа на высоте около 70 км - отражает в космос все излучение на волнах длиннее 30 м. На волнах короче 1 мм космическое излучение полностью «съедают» молекулы атмосферы (главным образом кислород и водяной пар).

Современные радиотелескопы позволяют исследовать Вселенную в таких подробностях, которые еще недавно находились за пределами возможного не только в радиодиапазоне, но и в традиционной астрономии видимого света. Объединенные в единую сеть инструменты, расположенные на разных континентах, позволяют заглянуть в самую сердцевину радиогалактик, квазаров, молодых звездных скоплений.

У Аресибо в Пуэрто-Рико - самое большое в мире неподвижное цельное зеркало - 305 м. Над сферичес-кой чашей на тросах висит конструкция в 800 т. По периметру зеркало окружено металлической сеткой, которая защищает телескоп от радиоизлучения.

Крупнейшая в мире полноповоротная параболичес-кая антенна обсерватории Грин-Бэнк (Западная Виргиния, США). Зеркало размером 100х110 м было построено после того, как в 1988 г под собственным весом обрушилась 90 м полноповоротная антенна.


Главная характеристика радиотелескопа - его диаграмма направленности. Она показывает чувствительность инструмента к сигналам, приходящим с разных направлений в пространстве. Для «классической» параболической антенны диаграмма направленности состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на порядки) более слабых боковых лепестков. «Зоркость» радиотелескопа, то есть его угловое разрешение, определяется шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, сливаются для радиотелескопа в один. Поэтому ширина диаграммы направленности определяет размер самых мелких деталей радиоисточника, которые еще можно различить по отдельности.
Универсальное для телескопостроения правило гласит, что разрешающая способность антенны определяется отношением длины волны к диаметру зеркала телескопа. Поэтому для увеличения «зоркости» телескоп должен быть побольше, а длина волны - поменьше. Но как назло радиотелескопы работают с самыми длинными волнами электромагнитного спектра. Из-за этого даже огромные размеры зеркал не позволяют добиться высокой разрешающей способности. Не самый крупный современный оптический телескоп с диаметром зеркала 5 м может различить звезды на расстоянии всего 0,02 угловой секунды. Невооруженным глазом видны детали около одной минуты дуги. А радиотелескоп диаметром 20 м на волне 2 см дает разрешение еще в три раза хуже - около 3 угловых минут. Снимок участка неба, сделанный любительским фотоаппаратом, содержит больше деталей, чем карта радиоизлучения той же области, полученная одиночным радиотелескопом.
Широкая диаграмма направленности ограничивает не только остроту зрения телескопа, но и точность определения координат наблюдаемых объектов. Между тем точные координаты нужны для сопоставления наблюдений объекта в разных диапазонах э/магнитного излучения - это непременное требование современных астрофизических исследований. Поэтому радиоастрономы всегда стремились к созданию как можно более крупных антенн. И, как ни удивительно, радиоастрономия в итоге намного обогнала по разрешению оптическую.

Принцип действия радиотелескопов
Полноповоротные параболические антенны - аналоги оптических телескопов-рефлекторов - оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником - «копить сигнал», как говорят радиоастрономы, - и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас - пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.
Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50-метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.
Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться. Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке - фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе - они усиливают друг друга, в противофазе - ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.
В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)

"Командная игра радиотелескопов"
Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае - радиоинтерферометром.
Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают - для этого нужно сделать еще один шаг. Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними - базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.
По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.

Самая известная система такого типа - «Очень большая решетка» (Very Large Array, VLA) - построена в 1980 году в Национальной радиоастрономической обсерватории США. Ее 27 параболических антенн каждая диаметром 25 м и весом 209 тонн перемещаются по трем радиальным рельсовым путям и могут удаляться от центра интерферометра на расстояние до 21 км. Сегодня действуют и другие системы: Вестерборк в Голландии (14 антенн диаметром 25 м), ATCA в Австралии (6 антенн по 22 м), MERLIN в Великобритании. В последнюю систему наряду с 6 другими инструментами, разбросанными по всей стране, входит и знаменитый 76-метровый телескоп. В России (в Бурятии) создан Сибирский солнечный радиоинтерферометр - специальная система антенн для оперативного изучения Солнца в радиодиапазоне.
В 1965 году советские ученые Л.И. Матвеенко, Н.С. Кардашев, Г.Б. Шоломицкий предложили независимо регистрировать данные на каждой антенне интерферометра, а потом совместно их обрабатывать, как бы имитируя явление интерференции на компьютере. Это позволяет разносить антенны на сколь угодно большие расстояния. Поэтому метод получил название радиоинтерферометрии со сверхдлинными базами (РСДБ) и успешно используется с начала 1970-х годов. Рекордная длина базы, достигнутая в экспериментах, составляет 12,2 тыс. км, а разрешение на волне порядка 3 мм достигает 0,00008’’ - на три порядка выше, чем у крупных оптических телескопов. Существенно улучшить этот результат на Земле вряд ли удастся, поскольку размер базы ограничивается диаметром нашей планеты.
В настоящее время систематические наблюдения ведутся несколькими сетями межконтинентальных радиоинтерферометров. В США создана система, включающая в себя 10 радиотелескопов в среднем диаметром 25 м, расположенных в континентальной части страны, на Гавайских и Виргинских островах. В Европе для РСДБ-экспериментов регулярно объединяют 100-метровый Боннский телескоп и 32-метровый в Медичине (Италия), интерферометры MERLIN, Вестерборк и другие инструменты. Эта система называется EVN. Имеется также глобальная Международная сеть радиотелескопов для астрометрии и геодезии IVS. А недавно в России начала действовать собственная интерферометрическая сеть «Квазар» из трех 32-метровых антенн, расположенных в Ленинградской области, на Северном Кавказе и в Бурятии. Важно отметить, что телескопы не закреплены жестко за РСДБ-сетями. Они могут использоваться автономно или переключаться между сетями.
Интерферометрия со сверхдлинными базами требует очень высокой точности измерений: необходимо зафиксировать пространственное распределение максимумов и минимумов электромагнитных полей с точностью до доли длины волны, то есть для коротких волн до долей сантиметра. И с высочайшей точностью отметить моменты времени, в которые проводились измерения на каждой антенне. В качестве сверхточных часов в экспериментах РСДБ используются атомные стандарты частоты. Но не стоит думать, что у радиоинтерферометров нет недостатков. В отличие от сплошной параболической антенны диаграмма направленности интерферометра вместо одного главного лепестка имеет сотни и тысячи узких лепестков сравнимой величины. Строить карту источника с такой диаграммой направленности - это все равно, что ощупывать клавиатуру компьютера растопыренными пальцами. Восстановление изображения - сложная и, более того, «некорректная» (то есть неустойчивая к малым изменениям результатов измерений) задача, которую, однако, радиоастрономы научились решать.

Достижения радиоинтерферометрии
Радиоинтерферометры с угловым разрешением в тысячные доли секунды дуги «заглянули» в самые внутренние области наиболее мощных «радиомаяков» Вселенной - радиогалактик и квазаров, которые излучают в радиодиапазоне в десятки миллионов раз интенсивнее, чем обычные галактики. Удалось «увидеть», как из ядер галактик и квазаров выбрасываются облака плазмы, измерить скорости их движения, которые оказались близкими к скорости света. Много интересного было открыто и в нашей Галактике. В окрестностях молодых звезд найдены источники мазерного радиоизлучения (мазер - аналог оптического лазера, но в радиодиапазоне) в спектральных линиях молекул воды, гидроксила (OH) и метанола (CH 3 OH). По космическим масштабам источники очень малы - меньше Солнечной системы. Отдельные яркие пятнышки на радиокартах, полученных интерферометрами, могут быть зародышами планет.
Такие мазеры найдены и в других галактиках. Изменение положений мазерных пятен за несколько лет, наблюдавшееся в соседней галактике M33 в созвездии Треугольника, впервые позволило непосредственно оценить скорость ее вращения и перемещение по небу. Измеренные смещения ничтожны, их скорость во многие тысячи раз меньше видимой для земного наблюдателя скорости улитки, ползущей по поверхности Марса. Такой эксперимент пока находится далеко за пределами возможностей оптической астрономии: заметить собственные движения отдельных объектов на межгалактических расстояниях ей просто не под силу. Наконец, интерферометрические наблюдения дали новое подтверждение существования сверхмассивных черных дыр. Вокруг ядра активной галактики NGC 4258 были обнаружены сгустки вещества, которые движутся по орбитам радиусом не более трех световых лет, при этом их скорости достигают тысячи километров в секунду. Это означает, что масса центрального тела - не менее миллиарда масс Солнца, и оно не может быть не чем иным, как черной дырой.
Целый ряд интересных результатов получен методом РСДБ при наблюдениях в Солнечной системе. Начать хотя бы с самой точной на сегодня количественной проверки общей теории относительности. Интерферометр измерил отклонение радиоволн в поле тяготения Солнца с точностью до сотой доли процента. Это на два порядка точнее, чем позволяют оптические наблюдения. Глобальные радиоинтерферометры также применяются для слежения за движением космических аппаратов, изучающих другие планеты. Первый раз такой эксперимент был проведен в 1985-м, когда советские аппараты «Вега-1» и «-2» сбросили в атмосферу Венеры аэростаты. Наблюдения подтвердили быструю циркуляцию атмосферы планеты со скоростью около 70 м/с, то есть один оборот вокруг планеты за 6 суток. Это удивительный факт, который еще ожидает своего объяснения.
В 2004 году аналогичные наблюдения с участием сети из 18 радиотелескопов на разных континентах сопровождали посадку аппарата «Гюйгенс» на спутник Сатурна Титан. С расстояния в 1,2 млрд. км велось слежение за тем, как движется аппарат в атмосфере Титана с точностью до десятка километров! Не слишком широко известно о том, что во время посадки «Гюйгенса» была потеряна практически половина научной информации. Зонд ретранслировал данные через станцию «Кассини», которая доставила его к Сатурну. Для надежности предусматривалось два дублирующихся канала передачи данных. Однако незадолго до посадки было принято решение передавать по ним разную информацию. Но в самый ответственный момент из-за пока еще не выясненного сбоя один из приемников на «Кассини» не включился, и половина снимков пропала. А вместе с ними пропали и данные о скорости ветра в атмосфере Титана, которые передавались как раз по отключившемуся каналу. К счастью, в NASA успели подстраховаться - спуск «Гюйгенса» наблюдал с Земли глобальный радиоинтерферометр. Это, по-видимому, позволит спасти пропавшие данные о динамике атмосферы Титана. Результаты этого эксперимента еще обрабатываются в Европейском объединенном радиоинтерферометрическом институте, и, кстати, занимаются этим наши соотечественники Леонид Гурвиц и Сергей Погребенко.

Будущее радиоинтерферометрии
По крайней мере в ближайшие полвека генеральной линией развития радиоастрономии будет создание все более крупных систем апертурного синтеза - все проектируемые крупные инструменты являются интерферометрами. Так, на плато Чахнантор в Чили совместными усилиями ряда стран Европы и Америки началось строительство системы антенн миллиметрового диапазона ALMA (Atacama Large Millimeter Array - Большая миллиметровая система Атакама). Всего здесь будет 64 антенны диаметром 12 метров с рабочим диапазоном длин волн от 0,35 до 10 мм. Наибольшее расстояние между антеннами ALMA составит 14 км. Благодаря очень сухому климату и большой высоте над уровнем моря (5100 м) система сможет вести наблюдения на волнах короче миллиметра. В других местах и на меньшей высоте это невозможно из-за поглощения такого излучения парами воды в воздухе. Строительство ALMA будет закончено к 2011 году.

Радиотелескопы настоящего и скорого будущего времени на Земле и в Космосе

Проект "Радиоастрон", запуск в 2007


Европейская система апертурного синтеза LOFAR будет работать на гораздо более длинных волнах - от 1,2 до 10 м. Она войдет в строй в течение трех ближайших лет. Это очень интересный проект: чтобы снизить стоимость, в нем используются простейшие неподвижные антенны - пирамиды из металлических стержней высотой около 1,5 м с усилителем сигнала. Зато таких антенн в системе будет 25 тысяч. Их объединят в группы, которые разместят по всей территории Голландии вдоль лучей «изогнутой пятиконечной звезды» диаметром около 350 км. Каждая антенна будет принимать сигналы со всего видимого неба, но их совместная компьютерная обработка позволит выделять те, что пришли с интересующих ученых направлений. При этом чисто вычислительным путем формируется диаграмма направленности интерферометра, ширина которой на самой короткой волне составит 1 секунду дуги. Работа системы потребует огромного объема вычислений, но для сегодняшних компьютеров это вполне посильная задача. Для ее решения в прошлом году в Голландии был установлен самый мощный в Европе суперкомпьютер IBM Blue Gene/L с 12 288 процессорами. Более того, при соответствующей обработки сигналов (требующей еще больших компьютерных мощностей) LOFAR сможет одновременно наблюдать на несколькими и даже на многими объектами!
Но самый амбициозный проект близкого будущего - SKA (Square Kilometer Array - Система «Квадратный километр»). Суммарная площадь его антенн составит около 1 км 2 , а стоимость инструмента оценивается в миллиард долларов. Проект SKA находится пока на раннем этапе разработки. Основной обсуждаемый вариант конструкции - тысячи антенн диаметром несколько метров, работающих в диапазоне от 3 мм до 5 м. Причем половину из них панируется установить на участке диаметром 5 км, а остальные разнести на значительные расстояния. Китайские ученые предлагали альтернативную схему - 8 неподвижных зеркал диаметром 500 м каждое, подобных телескопу в Аресибо. Для их размещения были даже предложены подходящие высохшие озера. Однако в сентябре Китай выбыл из числа стран - претендентов на размещение гигантского телескопа. Теперь основная борьба развернется между Австралией и Южной Африкой.
Возможности увеличения базы наземных интерферометров практически исчерпаны. Будущее - это запуск антенн интерферометра в космос, где нет ограничений, связанных с размерами нашей планеты. Такой эксперимент уже проводился. В феврале 1997 года был запущен японский спутник HALCA, который проработал до ноября 2003 года и завершил первый этап в развитии международного проекта VSOP (VLBI Space Observatory Programme - Программа космической обсерватории РСДБ). Спутник нес антенну в виде зонтика диаметром 8 м и работал на эллиптической околоземной орбите, которая обеспечивала базу, равную трем диаметрам Земли. Были получены изображения многих внегалактических радиоисточников с разрешением в тысячные доли секунды дуги. Следующий этап эксперимента по космической интерферометрии, VSOP-2, планируется начать в 2011-2012 годах. Еще один инструмент такого типа создается в рамках проекта «Радиоастрон» Астрокосмическим центром Физического института им. П.Н. Лебедева РАН совместно с учеными других стран. Спутник «Радиоастрон» будет иметь параболическое зеркало диаметром 10 м. Во время запуска оно будет в сложенном состоянии, а после выхода на орбиту развернется. «Радиоастрон» будет снабжен приемниками для нескольких длин волн - от 1,2 до 92 см. В качестве наземных антенн космического интерферометра будут использоваться радиотелескопы в Пущино (Россия), Канберре (Австралия) и Грин-Бэнк (США). Орбита спутника будет очень вытянутой, с апогеем 350 тыс. км. С такой базой интерферометра на самой короткой волне удастся получить изображения радиоисточников и измерять их координаты с точностью до 8 миллионных долей секунды дуги. Это даст возможность заглянуть в ближайшие окрестности ядер радиогалактик и черных дыр, в глубины областей образования молодых звезд в Галактике.

Авторы материала: Михаил Прохоров, доктор физико-математических наук и Георгий Рудницкий, кандидат физико-математических наук Журнал «Вокруг Света»: Самый зоркий телескоп

Российскими учеными разрабатывается и более совершенный космический радиотелескоп для работы в миллиметровом и субмиллиметровом диапазонах - «Миллиметрон». Зеркало этого инструмента будет охлаждаться жидким гелием до температуры 4 Кельвина (-269°C) для уменьшения теплового шума и повышения чувствительности. Рассматривается несколько вариантов работы этого интерферометра по схемам «Космос-Земля» и «Космос-Космос» (между двумя телескопами на спутниках). Аппарат может быть запущен на такую же вытянутую орбиту, как в проекте «Радиоастрон», либо в точку Лагранжа системы Солнце-Земля, на расстоянии 1,5 млн. км в противосолнечном направлении от Земли (это в 4 раза дальше, чем Луна). В последнем варианте на волне 0,35 мм интерферометр «Космос-Земля» будет давать угловое разрешение до 45 млрд долей секунды дуги!


Использование РСДБ для Земли

У метода радиоинтерферометрии есть и чисто практические применения - не зря, например, в Санкт-Петербурге этой темой занимается Институт прикладной астрономии РАН. Наблюдения по технологии РСДБ позволяют не только определять координаты радиоисточников с точностью до десятитысячной доли секунды дуги, но и измерять положения самих радиотелескопов на Земле с точностью лучше одного миллиметра. Это, в свою очередь, дает возможность с высочайшей точностью отслеживать вариации вращения Земли и подвижки земной коры. Например, именно с использованием РСДБ было экспериментально подтверждено движение континентов. На сегодня регистрация таких движений уже стала рутинным делом. Интерферометрические наблюдения далеких радиогалактик прочно вошли в арсенал геофизики наряду с сейсмическим зондированием Земли. Благодаря им надежно регистрируются периодические смещения станций друг относительно друга, вызванные деформациями земной коры. Причем отмечаются не только давно уже измеренные твердотельные приливы (впервые зарегистрированные методом РСДБ), но и прогибы, возникающие под воздействием изменений атмосферного давления, веса воды в океане и веса грунтовых вод.
Для определения параметров вращения Земли в мире ежедневно ведутся наблюдения небесных радиоисточников, координируемые Международной службой РСДБ для астрометрии и геодезии IVS. Полученные данные используются, в частности, для выявления дрейфа плоскостей орбит спутников глобальной системы позиционирования GPS. Без внесения соответствующих поправок, получаемых из РСДБ-наблюдений, погрешность определения долготы в системе GPS была бы на порядки больше, чем сейчас. В некотором смысле РСДБ играет для GPS-навигации ту же роль, что точные морские хронометры для навигации по звездам в XVIII веке. Точное знание параметров вращения Земли также необходимо для успешной навигации межпланетных космических станций.

Леонид Петров, Центр космических полетов им. Годдарда, NASA

Телескоп(от теле. . . и греч. skopeo - смотрю) Телескоп(от теле. . . и греч. skopeo - смотрю), астрономический инструмент для изучения небесных светил по их электромагнитному излучению. Телескопы делятся на гамма-телескопы, рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиотелескопы. Существуют 3 типа оптических телескопов: рефракторы (линзовые), рефлекторы (зеркальные) и комбинированные зеркально-линзовые системы. Первые астрономические наблюдения при помощи телескопов(оптического рефрактора) проведены в 1609 Г. Галилеем.

Оптические телескопы АСТРОНОМЫ НАБЛЮДАЮТ ЗВЕЗДЫ, ПЛАНЕТЫ И ДРУГИЕ ОБЪЕКТЫ ВСЕЛЕННОЙ С ПОМОЩЬЮ ТЕЛЕСКОПОВ. ТЕЛЕСКОП - ОСНОВНОЙ РАБОЧИЙ ИНСТРУМЕНТ КАЖДОГО ИССЛЕДОВАТЕЛЯ ВСЕЛЕННОЙ. КОГДА ЖЕ ПОЯВИЛИСЬ ПЕРВЫЕ ТЕЛЕСКОПЫ И КАК ОНИ БЫЛИ УСТРОЕНЫ? В 1609 ГОДУ ПРОФЕССОР ПАДУАНСКОГО УНИВЕРСИТЕТА ГАЛИЛЕО ГАЛИЛЕЙ (1564 -1642) ВПЕРВЫЕ НАПРАВИЛ ИЗГОТОВЛЕННУЮ ИМ САМИМ НЕБОЛЬШУЮ ЗРИТЕЛЬНУЮ ТРУБУ НА ЗВЕЗДНОЕ НЕБО. В ИЗУЧЕНИИ НЕБЕСНЫХ СВЕТИЛ НАЧАЛАСЬ ЭПОХА ТЕЛЕСКОПИЧЕСКОЙ АСТРОНОМИИ.

Принцип работы оптического телескопа… основан на свойствах выпуклой линзы или вогнутого зеркала, выполняющих в телескопе роль объектива, собирать в фокус параллельные лучи света, приходящие к нам от различных небесных источников, и создавать в фокальной плоскости их изображения. Астрономнаблюдатель, рассматривающий в окуляр изображение космического объекта, видит его увеличенным. При этом под увеличением телескопа понимают отношение видимых угловых размеров объекта при наблюдении в телескоп и без него. Увеличение телескопа равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра.

Телескоп Галилео Галилея Но телескоп Галилея имел существенный недостаток: У первого телескопа Галилея… объективом служила плосковыпуклая у него было очень малое поле линза диаметром 4 см с фокусным расстоянием 50 см. Роль окуляра выполняла плоско-вогнутая линза размером поменьше. Такая комбинация оптических стекол давала трехкратное увеличение. Затем Галилей сконструировал более совершенный телескоп с объективом 5, 8 см в диаметре и фокусным расстоянием 165 см. Он увеличивал изображения Луны и планет в 33 раза. С его помощью ученый сделал свои замечательные астрономические открытия: гор на Луне, спутников Юпитера, фаз Венеры, пятен на Солнце и множества слабых звезд. . . зрения, то есть в трубу был виден совсем крохотный кружочек неба. Поэтому, наводить инструмент на какое-нибудь небесное светило, и наблюдать его было совсем непросто.

Прошел лишь год со времени начала телескопических наблюдений, как немецкий астроном и математик Иоганн Кеплер (1571 -1630) предложил свою конструкцию телескопа. Новизна заключалась в самой оптической системе: объектив и окуляр были двояковыпуклыми линзами. В результате изображение в кеплеровском телескопе Конечно, так обозревать земные предметы получалось не прямое, неудобно, но при астрономических как в трубе Галилея, а наблюдениях это совершенно не имеет перевернутое. никакого значения. Ведь во Вселенной нет ни абсолютного верха, ни абсолютного низа.

Телескоп Кеплера ОКАЗАЛСЯ НАМНОГО ЛУЧШЕ ОПТИЧЕСКИХ ПЕРВЕНЦЕВ ГАЛИЛЕЯ: ОН ОБЛАДАЛ БОЛЬШИМ ПОЛЕМ ЗРЕНИЯ И БЫЛ УДОБЕН В РАБОТЕ. ЭТИ ВАЖНЫЕ ДОСТОИНСТВА НОВОГО ИНСТРУМЕНТА ОДНОЗНАЧНО ОПРЕДЕЛИЛИ ЕГО СУДЬБУ: В ДАЛЬНЕЙШЕМ ЛИНЗОВЫЕ ТЕЛЕСКОПЫ СТАЛИ КОНСТРУИРОВАТЬ ИСКЛЮЧИТЕЛЬНО ПО СХЕМЕ КЕПЛЕРА. А ОПТИЧЕСКАЯ СИСТЕМА ГАЛИЛЕЕВСКОГО ТЕЛЕСКОПА СОХРАНИЛАСЬ ЛИШЬ В УСТРОЙСТВЕ ТЕАТРАЛЬНОГО БИНОКЛЯ.

Таким образом, различают два основных типа телескопов: ЛИНЗОВЫЕ ТЕЛЕСКОПЫ-РЕФРАКТОРЫ, У КОТОРЫХ ЛУЧИ СВЕТА, ПРОХОДЯ ЧЕРЕЗ ОБЪЕКТИВ, ПРЕЛОМЛЯЮТСЯ, И ЗЕРКАЛЬНЫЕ (ОТРАЖАТЕЛЬНЫЕ) ТЕЛЕСКОПЫРЕФЛЕКТОРЫ. ЗЕРКАЛЬНЫЕ ТЕЛЕСКОПЫ СО ВРЕМЕНЕМ СТАЛИ ИСПОЛЬЗОВАТЬСЯ ДЛЯ НАБЛЮДЕНИЙ ОЧЕНЬ ДАЛЕКИХ И СЛАБОСВЕТЯЩИХСЯ ОБЪЕКТОВ. ЧЕЛОВЕЧЕСКИЙ ГЛАЗ СПОСОБЕН РАЗЛИЧАТЬ В ОТДЕЛЬНОСТИ ДВЕ ЧАСТИ НАБЛЮДАЕМОГО ПРЕДМЕТА ТОЛЬКО В ТОМ СЛУЧАЕ, ЕСЛИ УГЛОВОЕ РАССТОЯНИЕ МЕЖДУ НИМИ НЕ МЕНЬШЕ ОДНОЙ-ДВУХ МИНУТ ДУГИ. ТАК, НА ЛУНЕ НЕВООРУЖЕННЫМ ГЛАЗОМ МОЖНО РАССМОТРЕТЬ ДЕТАЛИ РЕЛЬЕФА, РАЗМЕР КОТОРЫХ ПРЕВЫШАЕТ 150 -200 КМ. НА СОЛНЕЧНОМ ДИСКЕ, КОГДА СВЕТИЛО КЛОНИТСЯ К ЗАКАТУ И ЕГО СВЕТ ОСЛАБЛЕН ПОГЛОЩАЮЩИМ ЭФФЕКТОМ ЗЕМНОЙ АТМОСФЕРЫ, БЫВАЮТ ВИДНЫ ПЯТНА ПОПЕРЕЧНИКОМ 50 -100 ТЫС. КМ. НИКАКИХ ДРУГИХ ПОДРОБНОСТЕЙ НЕВООРУЖЕННЫЙ ГЛАЗ РАССМОТРЕТЬ НЕ В СИЛАХ. И ТОЛЬКО БЛАГОДАРЯ ТЕЛЕСКОПУ, КОТОРЫЙ УВЕЛИЧИВАЕТ УГОЛ ЗРЕНИЯ, МОЖНО "ПРИБЛИЖАТЬ" К СЕБЕ ДАЛЕКИЕ НЕБЕСНЫЕ ОБЪЕКТЫ - НАБЛЮДАТЬ ИХ КАК БЫ РЯДОМ.

Характеристики радиотелескопов СОВРЕМЕННЫЕ РАДИОТЕЛЕСКОПЫ ПОЗВОЛЯЮТ ИССЛЕДОВАТЬ ВСЕЛЕННУЮ В ТАКИХ ПОДРОБНОСТЯХ, КОТОРЫЕ ЕЩЕ НЕДАВНО НАХОДИЛИСЬ ЗА ПРЕДЕЛАМИ ВОЗМОЖНОГО НЕ ТОЛЬКО В РАДИОДИАПАЗОНЕ, НО И В ТРАДИЦИОННОЙ АСТРОНОМИИ ВИДИМОГО СВЕТА. ОБЪЕДИНЕННЫЕ В ЕДИНУЮ СЕТЬ ИНСТРУМЕНТЫ, РАСПОЛОЖЕННЫЕ НА РАЗНЫХ КОНТИНЕНТАХ, ПОЗВОЛЯЮТ ЗАГЛЯНУТЬ В САМУЮ СЕРДЦЕВИНУ РАДИОГАЛАКТИК, КВАЗАРОВ, МОЛОДЫХ ЗВЕЗДНЫХ СКОПЛЕНИЙ, ФОРМИРУЮЩИХСЯ ПЛАНЕТНЫХ СИСТЕМ. РАДИОИНТЕРФЕРОМЕТРЫ СО СВЕРХДЛИННЫМИ БАЗАМИ В ТЫСЯЧИ РАЗ ПРЕВЗОШЛИ ПО «ЗОРКОСТИ» САМЫЕ КРУПНЫЕ ОПТИЧЕСКИЕ ТЕЛЕСКОПЫ С их помощью можно не только отслеживать перемещение космических аппаратов в окрестностях далеких планет, но и исследовать движения коры нашей собственной планеты, в том числе непосредственно «почувствовать» дрейф материков. На очереди космические радиоинтерферометры, которые позволят еще глубже проникнуть в тайны Вселенной.

Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности» . Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца. Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире - примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света - лишь малая доля богатства «красок» Вселенной. Во второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.

Один из наиболее интересных и информативных диапазонов спектра для астрономии - радиоволны. Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы - в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли - слой ионизованного газа на высоте около Главная характеристика радиотелескопа - его диаграмма направленности. Она показывает чувствительность инструмента к 70 км - отражает в космос все излучение сигналам, приходящим с разных направлений в пространстве. Для на волнах длиннее 30 «классической» параболической антенны диаграмма направленности м. На волнах короче 1 состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на мм космическое излучение полностью порядки) более слабых боковых лепестков. «Зоркость» «съедают» молекулы радиотелескопа, то есть его угловое разрешение, определяется атмосферы (главным шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, образом кислород и сливаются для радиотелескопа в один. Поэтому ширина диаграммы водяной пар). направленности определяет размер самых мелких деталей радиоисточника, которые еще можно различить по отдельности.

Принцип действия радиотелескопов Полноповоротные параболические антенны - аналоги оптических телескопов-рефлекторов - оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником - «копить сигнал» , как говорят радиоастрономы, - и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас - пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.

Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50 метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.

Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться. Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке - фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе - они усиливают друга, в противофазе - ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.

В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)

Современные радиотелескопы позволяют исследовать Вселенную в таких подробностях, которые еще недавно находились за пределами возможного не только в радиодиапазоне, но и в традиционной астрономии видимого света. Объединенные в единую сеть инструменты, расположенные на разных континентах, позволяют заглянуть в самую сердцевину радиогалактик, квазаров, молодых звездных скоплений, формирующихся планетных систем. Радиоинтерферометры со сверхдлинными базами в тысячи раз превзошли по «зоркости» самые крупные оптические телескопы. С их помощью можно не только отслеживать перемещение космических аппаратов в окрестностях далеких планет, но и исследовать движения коры нашей собственной планеты, в том числе непосредственно «почувствовать» дрейф материков. На очереди космические радиоинтерферометры, которые позволят еще глубже проникнуть в тайны Вселенной.

Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности». Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца . Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире — примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света — лишь малая доля богатства «красок» Вселенной. Во второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны. По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.

Один из наиболее интересных и информативных диапазонов спектра для астрономии — радиоволны. Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы — в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли — слой ионизованного газа на высоте около 70 км — отражает в космос все излучение на волнах длиннее 30 м. На волнах короче 1 мм космическое излучение полностью «съедают» молекулы атмосферы (главным образом кислород и водяной пар).

Главная характеристика радиотелескопа — его диаграмма направленности. Она показывает чувствительность инструмента к сигналам, приходящим с разных направлений в пространстве. Для «классической» параболической антенны диаграмма направленности состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на порядки) более слабых боковых лепестков. «Зоркость» радиотелескопа, то есть его угловое разрешение, определяется шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, сливаются для радиотелескопа в один. Поэтому ширина диаграммы направленности определяет размер самых мелких деталей небесного радиоисточника, которые еще можно различить по отдельности.

Универсальное для телескопостроения правило гласит, что разрешающая способность антенны определяется отношением длины волны к диаметру зеркала телескопа. Поэтому для увеличения «зоркости» телескоп должен быть побольше, а длина волны — поменьше. Но как назло радиотелескопы работают с самыми длинными волнами электромагнитного спектра. Из-за этого даже огромные размеры зеркал не позволяют добиться высокой разрешающей способности. Не самый крупный современный оптический телескоп с диаметром зеркала 5 м может различить звезды на расстоянии всего 0,02 угловой секунды. Невооруженным глазом видны детали около одной минуты дуги. А радиотелескоп диаметром 20 м на волне 2 см дает разрешение еще в три раза хуже — около 3 угловых минут. Снимок участка неба, сделанный любительским фотоаппаратом, содержит больше деталей, чем карта радиоизлучения той же области, полученная одиночным радиотелескопом.

Широкая диаграмма направленности ограничивает не только остроту зрения телескопа, но и точность определения координат наблюдаемых объектов. Между тем точные координаты нужны для сопоставления наблюдений объекта в разных диапазонах электромагнитного излучения — это непременное требование современных астрофизических исследований. Поэтому радиоастрономы всегда стремились к созданию как можно более крупных антенн. И, как ни удивительно, радиоастрономия в итоге намного обогнала по разрешению оптическую.

Рекордсмены в одиночном разряде

Полноповоротные параболические антенны — аналоги оптических телескопов-рефлекторов — оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником — «копить сигнал», как говорят радиоастрономы, — и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас — пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.

Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50-метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.

Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться.

Принцип действия

Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке — фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе — они усиливают друг друга, в противофазе — ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.

В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)

Командная игра

Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае — радиоинтерферометром.

Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают — для этого нужно сделать еще один шаг.

Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними — базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.

По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.

Самая известная система такого типа — «Очень большая решетка» (Very Large Array, VLA) — построена в 1980 году в Национальной радиоастрономической обсерватории США. Ее 27 параболических антенн каждая диаметром 25 м и весом 209 тонн перемещаются по трем радиальным рельсовым путям и могут удаляться от центра интерферометра на расстояние до 21 км.

Сегодня действуют и другие системы: Вестерборк в Голландии (14 антенн диаметром 25 м), ATCA в Австралии (6 антенн по 22 м), MERLIN в Великобритании. В последнюю систему наряду с 6 другими инструментами, разбросанными по всей стране, входит и знаменитый 76-метровый телескоп. В России (в Бурятии) создан Сибирский солнечный радиоинтерферометр — специальная система антенн для оперативного изучения Солнца в радиодиапазоне.

Размером с земной шар

В 1965 году советские ученые Л.И. Матвеенко, Н.С. Кардашев, Г.Б. Шоломицкий предложили независимо регистрировать данные на каждой антенне интерферометра, а потом совместно их обрабатывать, как бы имитируя явление интерференции на компьютере. Это позволяет разносить антенны на сколь угодно большие расстояния. Поэтому метод получил название радиоинтерферометрии со сверхдлинными базами (РСДБ) и успешно используется с начала 1970-х годов. Рекордная длина базы, достигнутая в экспериментах, составляет 12,2 тыс. км, а разрешение на волне порядка 3 мм достигает 0,00008’’ — на три порядка выше, чем у крупных оптических телескопов. Существенно улучшить этот результат на Земле вряд ли удастся, поскольку размер базы ограничивается диаметром нашей планеты.

В настоящее время систематические наблюдения ведутся несколькими сетями межконтинентальных радиоинтерферометров. В США создана система, включающая в себя 10 радиотелескопов в среднем диаметром 25 м, расположенных в континентальной части страны, на Гавайских и Виргинских островах. В Европе для РСДБ-экспериментов регулярно объединяют 100-метровый Боннский телескоп и 32-метровый в Медичине (Италия), интерферометры MERLIN, Вестерборк и другие инструменты. Эта система называется EVN. Имеется также глобальная Международная сеть радиотелескопов для астрометрии и геодезии IVS. А недавно в России начала действовать собственная интерферометрическая сеть «Квазар» из трех 32-метровых антенн, расположенных в Ленинградской области, на Северном Кавказе и в Бурятии. Важно отметить, что телескопы не закреплены жестко за РСДБ-сетями. Они могут использоваться автономно или переключаться между сетями.

Интерферометрия со сверхдлинными базами требует очень высокой точности измерений: необходимо зафиксировать пространственное распределение максимумов и минимумов электромагнитных полей с точностью до доли длины волны, то есть для коротких волн до долей сантиметра. И с высочайшей точностью отметить моменты времени, в которые проводились измерения на каждой антенне. В качестве сверхточных часов в экспериментах РСДБ используются атомные стандарты частоты.

Но не стоит думать, что у радиоинтерферометров нет недостатков. В отличие от сплошной параболической антенны диаграмма направленности интерферометра вместо одного главного лепестка имеет сотни и тысячи узких лепестков сравнимой величины. Строить карту источника с такой диаграммой направленности — это все равно, что ощупывать клавиатуру компьютера растопыренными пальцами. Восстановление изображения — сложная и, более того, «некорректная» (то есть неустойчивая к малым изменениям результатов измерений) задача, которую, однако, радиоастрономы научились решать.

Достижения радиоинтерферометрии

Радиоинтерферометры с угловым разрешением в тысячные доли секунды дуги «заглянули» в самые внутренние области наиболее мощных «радиомаяков» Вселенной — радиогалактик и квазаров, которые излучают в радиодиапазоне в десятки миллионов раз интенсивнее, чем обычные галактики. Удалось «увидеть», как из ядер галактик и квазаров выбрасываются облака плазмы, измерить скорости их движения, которые оказались близкими к скорости света.

Много интересного было открыто и в нашей Галактике. В окрестностях молодых звезд найдены источники мазерного радиоизлучения (мазер — аналог оптического лазера, но в радиодиапазоне) в спектральных линиях молекул воды, гидроксила (OH) и метанола (CH 3 OH). По космическим масштабам источники очень малы — меньше Солнечной системы. Отдельные яркие пятнышки на радиокартах, полученных интерферометрами, могут быть зародышами планет.

Такие мазеры найдены и в других галактиках. Изменение положений мазерных пятен за несколько лет, наблюдавшееся в соседней галактике M33 в созвездии Треугольника, впервые позволило непосредственно оценить скорость ее вращения и перемещение по небу. Измеренные смещения ничтожны, их скорость во многие тысячи раз меньше видимой для земного наблюдателя скорости улитки, ползущей по поверхности Марса . Такой эксперимент пока находится далеко за пределами возможностей оптической астрономии: заметить собственные движения отдельных объектов на межгалактических расстояниях ей просто не под силу.

Наконец, интерферометрические наблюдения дали новое подтверждение существования сверхмассивных черных дыр. Вокруг ядра активной галактики NGC 4258 были обнаружены сгустки вещества, которые движутся по орбитам радиусом не более трех световых лет, при этом их скорости достигают тысячи километров в секунду. Это означает, что масса центрального тела галактики — не менее миллиарда масс Солнца, и оно не может быть не чем иным, как черной дырой .

Целый ряд интересных результатов получен методом РСДБ при наблюдениях в Солнечной системе . Начать хотя бы с самой точной на сегодня количественной проверки общей теории относительности. Интерферометр измерил отклонение радиоволн в поле тяготения Солнца с точностью до сотой доли процента. Это на два порядка точнее, чем позволяют оптические наблюдения.

Глобальные радиоинтерферометры также применяются для слежения за движением космических аппаратов, изучающих другие планеты. Первый раз такой эксперимент был проведен в 1985-м, когда советские аппараты «Вега-1» и «-2» сбросили в атмосферу Венеры аэростаты. Наблюдения подтвердили быструю циркуляцию атмосферы планеты со скоростью около 70 м/с, то есть один оборот вокруг планеты за 6 суток. Это удивительный факт, который еще ожидает своего объяснения.

В прошлом году аналогичные наблюдения с участием сети из 18 радиотелескопов на разных континентах сопровождали посадку аппарата «Гюйгенс» на спутник Сатурна Титан. С расстояния в 1,2 млрд. км велось слежение за тем, как движется аппарат в атмосфере Титана с точностью до десятка километров! Не слишком широко известно о том, что во время посадки «Гюйгенса» была потеряна практически половина научной информации. Зонд ретранслировал данные через станцию «Кассини» , которая доставила его к Сатурну. Для надежности предусматривалось два дублирующихся канала передачи данных. Однако незадолго до посадки было принято решение передавать по ним разную информацию. Но в самый ответственный момент из-за пока еще не выясненного сбоя один из приемников на «Кассини» не включился, и половина снимков пропала. А вместе с ними пропали и данные о скорости ветра в атмосфере Титана, которые передавались как раз по отключившемуся каналу. К счастью, в NASA успели подстраховаться — спуск «Гюйгенса» наблюдал с Земли глобальный радиоинтерферометр. Это, по-видимому, позволит спасти пропавшие данные о динамике атмосферы Титана. Результаты этого эксперимента еще обрабатываются в Европейском объединенном радиоинтерферометрическом институте, и, кстати, занимаются этим наши соотечественники Леонид Гурвиц и Сергей Погребенко.

РСДБ для земли
У метода радиоинтерферометрии есть и чисто практические применения — не зря, например, в Санкт-Петербурге этой темой занимается Институт прикладной астрономии РАН. Наблюдения по технологии РСДБ позволяют не только определять координаты радиоисточников с точностью до десятитысячной доли секунды дуги, но и измерять положения самих радиотелескопов на Земле с точностью лучше одного миллиметра. Это, в свою очередь, дает возможность с высочайшей точностью отслеживать вариации вращения Земли и подвижки земной коры.

Например, именно с использованием РСДБ было экспериментально подтверждено движение континентов. На сегодня регистрация таких движений уже стала рутинным делом. Интерферометрические наблюдения далеких радиогалактик прочно вошли в арсенал геофизики наряду с сейсмическим зондированием Земли. Благодаря им надежно регистрируются периодические смещения станций друг относительно друга, вызванные деформациями земной коры. Причем отмечаются не только давно уже измеренные твердотельные приливы (впервые зарегистрированные методом РСДБ), но и прогибы, возникающие под воздействием изменений атмосферного давления, веса воды в океане и веса грунтовых вод.

Для определения параметров вращения Земли в мире ежедневно ведутся наблюдения небесных радиоисточников, координируемые Международной службой РСДБ для астрометрии и геодезии IVS. Полученные данные используются, в частности, для выявления дрейфа плоскостей орбит спутников глобальной системы позиционирования GPS. Без внесения соответствующих поправок, получаемых из РСДБ-наблюдений, погрешность определения долготы в системе GPS была бы на порядки больше, чем сейчас. В некотором смысле РСДБ играет для GPS-навигации ту же роль, что точные морские хронометры для навигации по звездам в XVIII веке. Точное знание параметров вращения Земли также необходимо для успешной навигации межпланетных космических станций.

Леонид Петров, Центр космических полетов им. Годдарда, NASA

Инструменты будущего

По крайней мере в ближайшие полвека генеральной линией развития радиоастрономии будет создание все более крупных систем апертурного синтеза — все проектируемые крупные инструменты являются интерферометрами. Так, на плато Чахнантор в Чили совместными усилиями ряда стран Европы и Америки началось строительство системы антенн миллиметрового диапазона ALMA (Atacama Large Millimeter Array — Большая миллиметровая система Атакама). Всего здесь будет 64 антенны диаметром 12 метров с рабочим диапазоном длин волн от 0,35 до 10 мм. Наибольшее расстояние между антеннами ALMA составит 14 км. Благодаря очень сухому климату и большой высоте над уровнем моря (5100 м) система сможет вести наблюдения на волнах короче миллиметра. В других местах и на меньшей высоте это невозможно из-за поглощения такого излучения парами воды в воздухе. Строительство ALMA будет закончено к 2011 году.

Европейская система апертурного синтеза LOFAR будет работать на гораздо более длинных волнах — от 1,2 до 10 м. Она войдет в строй в течение трех ближайших лет. Это очень интересный проект: чтобы снизить стоимость, в нем используются простейшие неподвижные антенны — пирамиды из металлических стержней высотой около 1,5 м с усилителем сигнала. Зато таких антенн в системе будет 25 тысяч. Их объединят в группы, которые разместят по всей территории Голландии вдоль лучей «изогнутой пятиконечной звезды» диаметром около 350 км. Каждая антенна будет принимать сигналы со всего видимого неба, но их совместная компьютерная обработка позволит выделять те, что пришли с интересующих ученых направлений. При этом чисто вычислительным путем формируется диаграмма направленности интерферометра, ширина которой на самой короткой волне составит 1 секунду дуги. Работа системы потребует огромного объема вычислений, но для сегодняшних компьютеров это вполне посильная задача. Для ее решения в прошлом году в Голландии был установлен самый мощный в Европе суперкомпьютер IBM Blue Gene/L с 12 288 процессорами. Более того, при соответствующей обработки сигналов (требующей еще больших компьютерных мощностей) LOFAR сможет одновременно наблюдать на несколькими и даже на многими объектами!

Но самый амбициозный проект близкого будущего — SKA (Square Kilometer Array — Система «Квадратный километр») . Суммарная площадь его антенн составит около 1 км2, а стоимость инструмента оценивается в миллиард долларов. Проект SKA находится пока на раннем этапе разработки. Основной обсуждаемый вариант конструкции — тысячи антенн диаметром несколько метров, работающих в диапазоне от 3 мм до 5 м. Причем половину из них панируется установить на участке диаметром 5 км, а остальные разнести на значительные расстояния. Китайские ученые предлагали альтернативную схему — 8 неподвижных зеркал диаметром 500 м каждое, подобных телескопу в Аресибо. Для их размещения были даже предложены подходящие высохшие озера. Однако в сентябре Китай выбыл из числа стран — претендентов на размещение гигантского телескопа. Теперь основная борьба развернется между Австралией и Южной Африкой.

И целого мира мало

Возможности увеличения базы наземных интерферометров практически исчерпаны. Будущее — это запуск антенн интерферометра в космос, где нет ограничений, связанных с размерами нашей планеты. Такой эксперимент уже проводился. В феврале 1997 года был запущен японский спутник HALCA, который проработал до ноября 2003 года и завершил первый этап в развитии международного проекта VSOP (VLBI Space Observatory Programme — Программа космической обсерватории РСДБ). Спутник нес антенну в виде зонтика диаметром 8 м и работал на эллиптической околоземной орбите, которая обеспечивала базу, равную трем диаметрам Земли. Были получены изображения многих внегалактических радиоисточников с разрешением в тысячные доли секунды дуги. Следующий этап эксперимента по космической интерферометрии, VSOP-2, планируется начать в 2011—2012 годах. Еще один инструмент такого типа создается в рамках проекта «Радиоастрон» Астрокосмическим центром Физического института им. П.Н. Лебедева РАН совместно с учеными других стран. Спутник «Радиоастрон» будет иметь параболическое зеркало диаметром 10 м. Во время запуска оно будет в сложенном состоянии, а после выхода на орбиту развернется. «Радиоастрон» будет снабжен приемниками для нескольких длин волн — от 1,2 до 92 см. В качестве наземных антенн космического интерферометра будут использоваться радиотелескопы в Пущино (Россия), Канберре (Австралия) и Грин-Бэнк (США). Орбита спутника будет очень вытянутой, с апогеем 350 тыс. км. С такой базой интерферометра на самой короткой волне удастся получить изображения радиоисточников и измерять их координаты с точностью до 8 миллионных долей секунды дуги. Это даст возможность заглянуть в ближайшие окрестности ядер радиогалактик и черных дыр, в глубины областей образования молодых звезд в Галактике.

Российскими учеными разрабатывается и более совершенный космический радиотелескоп для работы в миллиметровом и субмиллиметровом диапазонах — «Миллиметрон». Зеркало этого инструмента будет охлаждаться жидким гелием до температуры 4 Кельвина (–269°C) для уменьшения теплового шума и повышения чувствительности. Рассматривается несколько вариантов работы этого интерферометра по схемам «Космос—Земля» и «Космос—Космос» (между двумя телескопами на спутниках). Аппарат может быть запущен на такую же вытянутую орбиту, как в проекте «Радиоастрон», либо в точку Лагранжа системы Солнце—Земля, на расстоянии 1,5 млн. км в противосолнечном направлении от Земли (это в 4 раза дальше, чем Луна). В последнем варианте на волне 0,35 мм интерферометр «Космос—Земля» будет давать угловое разрешение до 45 миллиардных долей секунды дуги — в сотни тысяч раз лучше, чем в современных оптических инструментах!

Михаил Прохоров, доктор физико-математических наук
Георгий Рудницкий, кандидат физико-математических наук