Когда знак в уравнении меняется на противоположный. Неравенства

Поле действительных чисел обладает свойством упорядоченности (п. 6, стр. 35): для любых чисел а, b имеет место одно и только одно из трех соотношений: или . При этом запись а > b означает, что разность положительна, а запись разность отрицательна. В отличие от поля действительных чисел, поле комплексных чисел не упорядочивается: для комплексных чисел понятия «больше» и «меньше» не определяются; поэтому в данной главе рассматриваются только действительные числа.

Соотношения назовем неравенствами, числа а и b - членами (или частями) неравенства, знаки > (больше) и Неравенства а > b и с > d называются неравенствами одинакового (или одного и того же) смысла; неравенства а > b и с Из определения неравенства сразу следует, что

1) любое положительное число больше нуля;

2) любое отрицательное число меньше нуля;

3) любое положительное число больше любого отрицательного числа;

4) из двух отрицательных чисел больше то, абсолютная величина которого меньше.

Все эти утверждения допускают простое геометрическое истолкование. Пусть положительное направление числовой оси идет вправо от начальной точки; тогда, каковы бы ни были знаки чисел, большее из них изображается точкой, лежащей правее точки, изображающей меньшее число.

Неравенства обладают следующими основными свойствами.

1. Несимметричность (необратимость): если , то , и обратно.

Действительно, если разность положительна, то разность отрицательна. Говорят, что при перестановке членов неравенства надо смысл неравенства изменить на противоположный.

2. Транзитивность: если , то . Действительно, из положительности разностей следует и положительность

Кроме знаков неравенства применяют также знаки неравенства и Они определяются следующим образом: запись означает, что либо либо Поэтому, например, можно писать , а также . Обычно неравенства, записанные с помощью знаков называют строгими неравенствами, а записанные с помощью знаков нестрогими неравенствами. Соответственно и сами знаки называют знаками строгого или нестрогого неравенства. Свойства 1 и 2, рассмотренные выше, верны и для нестрогих неравенств.

Рассмотрим теперь действия, которые можно производить над одним или несколькими неравенствами.

3. От прибавления к членам неравенства одного и того же числа смысл неравенства не изменяется.

Доказательство. Пусть даны неравенство и произвольное число . По определению разность положительна. Прибавим к этому числу два противоположных числа от чего оно не изменится, т. е.

Это равенство можно переписать так:

Из этого следует, что разность положительна, т. е. что

а это и надо было доказать.

На этом основана возможность перекоса любого члена неравенства из одной его части в другую с противоположным знаком. Например, из неравенства

следует, что

4. При умножении членов неравенства на одно и то же положительное число смысл неравенства не изменяется; при умножении членов неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный.

Доказательство. Пусть тогда Если то так как произведение положительных чисел положительно. Раскрыв скобки в левой части последнего неравенства, получим , т. е. . Аналогичным образом рассматривается случай .

Точно такой же вывод можно сделать и относительно деления частей неравенства на какое-либо отличное от нуля число, так как деление на число равносильно умножению на число а числа имеют одинаковые знаки.

5. Пусть члены неравенства положительны. Тогда при возведении его членов в одну и ту же положительную степень смысл неравенства не изменяется.

Доказательство. Пусть этом случае по свойству транзитивности и . Тогда в силу монотонного возрастания степенной функции при и положительном будем иметь

В частности, если где -натуральное число, то получим

т. е. при извлечении корня из обеих частей неравенства с положительными членами смысл неравенства не изменяется.

Пусть члены неравенства отрицательны. Тогда нетрудно доказать, что при возведении его членов в нечетную натуральную степень смысл неравенства не изменится, а при возведении в четную натуральную степень изменится на противоположный. Из неравенств с отрицательными членами можно также извлекать корень нечетной степени.

Пусть, далее, члены неравенства имеют разные знаки. Тогда при возведении его в нечетную степень смысл неравенства не изменится, а при возведении в четную степень о смысле получающегося неравенства ничего определенного в общем случае сказать нельзя. В самом деле, при возведении числа в нечетную степень знак числа сохраняется и поэтому смысл неравенства не изменяется. При возведении же неравенства в четную степень образуется неравенство с положительными членами, и его смысл будет зависеть от абсолютных величин членов исходного неравенства может получиться неравенство того же смысла, что и исходное, неравенство противоположного смысла и даже равенство!

Все сказанное о возведении неравенств в степень полезно проверить на следующем примере.

Пример 1. Возвести в указанную степень следующие неравенства, изменив в случае необходимости знак неравенства на противоположный или на знак равенства.

а) 3 > 2 в степень 4; б) в степень 3;

в) в степень 3; г) в степень 2;

д) в степень 5; е) в степень 4;

ж) 2 > -3 в степень 2; з) в степень 2,

6. От неравенства можно перейти к неравенству между если члены неравенства оба положительны или оба отрицательны, то между их обратными величинами имеется неравенство противоположного смысла:

Доказательство. Если а и b - одного знака, то их произведение положительно. Разделим на неравенство

т. е. , что и требовалось получить.

Если члены неравенства имеют противоположные знаки, то неравенство между их обратными величинами имеет тот же смысл, так как знаки обратных величин те же, что и знаки самих величин.

Пример 2. Проверить последнее свойство 6 на следующих неравенствах:

7. Логарифмирование неравенств можно производить лишь в случае, когда члены неравенств положительны (отрицательные числа и нуль логарифмов не имеют).

Пусть . Тогда при будет

а при будет

Правильность этих утверждений основана на монотонности логарифмической функции, которая возрастает, если основание и убывает при

Итак, при логарифмировании неравенства, состоящего из положительных членов, по основанию, большему единицы, образуется неравенство того же смысла, что и данное, а при логарифмировании его по положительному основанию, меньшему единицы, - неравенство противоположного смысла.

8. Если , то если , но , то .

Это сразу следует из свойств монотонности показательной функции (п. 42), которая возрастает в случае и убывает, если

При почленном сложении неравенств одного и того же смысла образуется неравенство того же смысла, что и данные.

Доказательство. Докажем это утверждение для двух неравенств, хотя оно верно для любого количества складываемых неравенств. Пусть даны неравенства

По определению числа будут положительными; тогда положительной оказывается и их сумма, т. е.

Группируя иначе слагаемые, получим

и, следовательно,

а это и надо было доказать.

Нельзя сказать Ничего определенного в общем случае о смысле неравенства, получающегося при сложении двух или нескольких неравенств разного смысла.

10. Если из одного неравенства почленно вычесть другое неравенство противоположного смысла, то образуется неравенство того же смысла, что и первое.

Доказательство. Пусть даны два неравенства разного смысла. Второе из них по свойству необратимости можно переписать так: d > с. Сложим теперь два неравенства одинакового смысла и получим неравенство

того же смысла. Из последнего находим

а это и надо было доказать.

Нельзя сказать ничего определенного в общем случае о смысле неравенства, получающегося при вычитании из одного неравенства другого неравенства того же смысла.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)

Множество всех действительных чисел можно представить, как объединение трех множеств: множество положительных чисел, множество отрицательных чисел и множество состоящее из одного числа - число нуль. Для того чтобы указать, что число а положительно, пользуются записью а > 0 , для указания отрицательного числа используют другую запиь a < 0 .

Сумма и произведение положительных чисел также являются положительными числами. Если число а отрицательно, то число положительно (и наоборот). Для любого положительного числа а найдется такое положительное рациональное число r , что r < а . Эти факты и лежат в основе теории неравенств.

По определению неравенство а > b (или, что то же самое, b < a) имеет место в том и только в том случае, если а - b > 0, т. е. если число а - b положительно.

Рассмотрим, в частности, неравенство а < 0 . Что означает это неравенство? Согласно приведенному выше определению оно означает, что 0 - а > 0 , т. е. -а > 0 или, иначе, что число положительно. Но это имеет место в том и только в том случае, если число а отрицательно. Итак, неравенство а < 0 означает, что число а отрицательно.

Часто используется также запись аb (или, что то же самое, ).
Запись аb , по определению, означает, что либо а > b , либо а = b . Если рассматривать запись аb как неопределенное высказывание, то в обозначениях математической логики можно записать

(a b) [(a > b) V (a = b)]

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче {0} {0} }