Способы нахождения ускорения. Нормальное ускорение

Позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз - в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок - и веревка изменяет свое направление, еще рывок - еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: "С каким ускорением будет двигаться тело в это мгновение?"

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO - вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at 2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω - угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.

При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 10 3 = 1кг х V 2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 10 3 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки - сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

Термин «ускорение» один из немногих, смысл которого понятен тем, кто говорит по-русски. Он обозначает величину, которой измеряют вектор скорости точки по ее направлению и числовому значению. Ускорение зависит от приложенной к этой точке силы, оно прямо пропорционально ей, но обратно пропорционально массе этой самой точки. Вот основные критерии того, как найти ускорение.

Исходить следует из того, где именно применяется ускорение. Напомним, что оно обозначается как «а». В интернациональной системе единиц принято считать единицей ускорения величину, которая состоит из показателя 1 м/с 2 (метр на секунду в квадрате): ускорение, при котором за каждую секунду скорость тела изменяется на 1 м в секунду (1м/с). Допустим, ускорение тела составляет 10м/ с 2 . Значит, в течение каждой секунды, его скорость изменяется на 10 м/с. Что в 10 раз быстрее, если бы ускорение было 1м/с 2 . Другими словами, скорость означает физическую величину, характеризующую путь, пройденный телом, за определенное время.

Отвечая на вопрос о том, как находить ускорение, надо знать путь движение тела, его траекторию – прямолинейная или криволинейная, и скорость – равномерная или неравномерная. Относительно последней характеристики. т.е. скорости, необходимо помнить, что она может меняться векторно или по модулю, тем самым, придавая движению тела ускорение.

Зачем нужна формула ускорения

Вот пример того, как найти ускорение по скорости, если тело начинает равноускоренное движение: необходимо разделить изменение скорости на тот отрезок времени, в течение которого и произошло изменение скорости. Поможет решить задачу, как найти ускорение, формула ускорения a = (v -v0) / ?t = ?v / ?t, где начальная скорость тела v0, конечная– v, промежуток времени - ?t.

На конкретном примере это выглядит следующим образом: допустим, автомобиль начинает движение, трогаясь с места, и за 7 секунд набирает скорость 98 м/с. Используя вышеприведенную формулу, определяется ускорение автомобиля, т.е. взяв исходные данные v= 98 м/с,v0 = 0, ?t =7с, надо найти, чему равна а. Вот ответ: a=(v-v0)/ ?t =(98м/с – 0м/с)/7с = 14 м/с 2 . Получаем 14 м/с 2 .

Поиск ускорения свободного падения

А как найти ускорение свободного падения? Сам принцип поиска хорошо виден на таком примере. Достаточно взять металлический тело, т.е. предмет из металла, закрепить его на высоте, которую можно измерить в метрах, причем, при выборе высоты надо учитывать сопротивление воздуха, причем, такое, которым можно пренебречь. Оптимально это высота 2-4 м. Внизу должна быть установлена платформа, специально под этот предмет. Теперь можно отсоединить металлическое тело от кронштейна. Естественно, оно начнет свободное падение. Зафиксировать время приземления тела необходимо в секундах. Все, можно найти ускорение предмета в свободном падении. Для этого заданную высоту надо разделить на время полета тела. Только это время необходимо взять во второй степени. Полученный результат следует умножить на 2. Это и будет ускорение, точнее – значение ускорения тела в свободном падении, выраженное в м/с 2 .

Можно определить ускорение свободного падения, используя силу тяжести. Измерив весами массу тела в кг, соблюдая предельную точность, подвесить затем это тело на динамометре. Полученный результат силы тяжести будет в ньютонах. Разделив значение силы тяжести на массу тела, которое только что подвешивалось на динамометр, получится ускорение свободного падения.

Ускорение определяет маятник

Поможет установить ускорение свободного падения и математический маятник. Он представляет собой тело, закрепленное и подвешенное на нити достаточной длины, которая заранее измерена. Теперь надо привести маятник в состояние колебания. И с помощью секундомера сосчитать количество колебаний за определенное время. Затем разделить это зафиксированное количество колебаний на время (оно – в секундах). Число, полученное после деления, возвести во вторую степень, умножить на длину нити маятника и число 39,48. Результат: определилось ускорение свободного падения.

Приборы для измерения ускорения

Логично завершить этот информационный блок об ускорении тем, что измеряется оно специальными приборами: акселерометрами. Они бывают механические, электромеханические, электрические и оптические. Диапазон, который им под силу, - от 1 см/с 2 до 30 км/с 2 , что означает O,OOlg - 3000g.Если воспользоваться вторым законом Ньютона, вычислить ускорение можно нахождением частного от деления силы F, действующей на точку, на ее массу m: а=F/m.

Хотите провести эксперимент? Да запросто. Возьмите длинную линейку, положите ее горизонтально и приподнимите один конец. У вас получится наклонная плоскость. А теперь возьмите монетку и положите на верхний конец линейки. Монетка начнет скользить вниз по линейке, проследите, как будет двигаться монетка с одинаковой скоростью или нет.

Вы заметите, что скорость монетки будет постепенно возрастать. И изменение скорости будет напрямую зависеть от угла наклона линейки. Чем угол наклона круче, тем большую скорость будет набирать монетка к концу пути.

Изменение скорости монетки

Можно попытаться узнать, как меняется скорость монетки за каждый одинаковый промежуток времени. В случае с линейкой и монеткой в домашних условиях это трудно проделать, но в условиях лаборатории можно зафиксировать, что при постоянном угле наклона скользящая монетка за каждую секунду изменяет свою скорость на одинаковую величину.

Такое движение тела, когда его скорость за любые равные промежутки времени меняется одинаково, а тело при этом движется по прямой линии, называется в физике прямолинейным равноускоренным движением. Под скоростью в данном случае понимается скорость в каждый конкретный момент времени.

Такая скорость называется мгновенной скоростью. Мгновенная скорость тела может меняться по-разному: быстрее, медленнее, может возрастать, а может уменьшаться. Для того чтобы охарактеризовать это изменение скорости, вводят величину, называемую ускорением.

Понятие ускорения: формула

Ускорение это физическая величина, показывающая, насколько изменилась скорость тела за каждый равный промежуток времени. Если скорость меняется одинаковым образом, то ускорение будет величиной постоянной. Так происходит в случае прямолинейного равноускоренного движения. Формула для ускорения выглядит следующим образом:

a = (v - v_0)/ t,

где a ускорение, v конечная скорость, v_0 начальная скорость, t время.

Измеряется ускорение в метрах на секунду в квадрате (1 м/с2). Немного странная на первый взгляд единица очень легко объясняется: ускорение= скорость/время=(м/с)/с, откуда и выводится такая единица.

Ускорение величина векторная. Оно может быть направлена либо в ту же сторону, что и скорость, если скорость возрастает, либо в противоположную сторону, если скорость уменьшается. Пример второго варианта это торможение. Если, например, автомобиль тормозит, то скорость его уменьшается. Тогда ускорение будет являться отрицательной величиной, и направлено оно будет не по ходу движения автомобиля, а в обратную сторону.

В случаях, когда скорость у нас меняется от нуля до какой-либо величины, например, при старте ракеты, либо в случае, когда скорость наоборот уменьшается до нуля, например, при торможении поезда до полной остановки, можно использовать в расчетах только одно значение скорости. Формула тогда примет вид: a =v /t для первого случая либо же: a = v_0 /t для второго.

Ускорение в кинематике формула. Ускорение в кинематике определение.

Что такое ускорение?

Скорость может изменяться во время движения.

Скорость является векторной величиной.

Вектор скорости может изменяться по направлению и по модулю, т.е. по величине. Для учёта таких изменений скорости используют ускорение.

Ускорение определение

Определение ускорения

Ускорение служит мерой любых изменений скорости.

Ускорение, его ещё называют полным ускорением, является вектором.

Вектор ускорения

Вектор ускорения есть сумма двух других векторов. Один из этих других векторов называется тангенциальным ускорением, а другой называется нормальным ускорением.

Описывает изменение модуля вектора скорости.

Описывает изменение направления вектора скорости.

При прямолинейном движении направление скорости не меняется. В этом случае нормальное ускорение равно нулю, а полное и тангенциальное ускорения совпадают.

При равномерном движении модуль скорости не меняется. В этом случае тангенциальное ускорение равно нулю, а полное и нормальное ускорения совпадают.

Если тело совершает прямолинейное равномерное движение, то его ускорение равно нулю. А это значит, что и составляющие полного ускорения, т.е. нормальное ускорение и тангенциальное ускорение, тоже равны нулю.

Вектор полного ускорения

Вектор полного ускорения равен геометрической сумме нормального и тангенциального ускорений, как показано на рисунке:

Формула ускорения:

a = a n + a т

Модуль полного ускорения

Модуль полного ускорения:

Угол альфа между вектором полного ускорения и нормальным ускорением (он же угол между вектором полного ускорения и радиус-вектором):

Обратите внимание, что вектор полного ускорения не направлен по касательной к траектории.

По касательной направлен вектор тангенциального ускорения.

Направление вектора полного ускорения определяется векторной суммой векторов нормального и тангенциального ускорений.

Рассмотрим более детально, что такое ускорение в физике? Это сообщение телу дополнительной скорости за единицу времени. В Международной системе единиц (СИ) за единицу ускорения принято считать количество метров, пройденных за секунду (м/с). Для внесистемной единицы измерения Гал (Gal), которая применяется в гравиметрии, ускорение равно 1 см/с 2 .

Виды ускорений

Что такое ускорение в формулах. Вид ускорения зависит от вектора движения тела. В физике это может быть движение по прямой, по кривой линии и по окружности.

  1. Если предмет движется по прямой линии, движение будет равноускоренным, и на него начнут действовать линейные ускорения. Формула для его вычисления (смотри формулу 1 на рис): a=dv/dt
  2. В случае, если речь идет о движении тела по окружности, то ускорение будет состоять из двух частей (a=a т +a n): тангенциального и нормального ускорения. Оба они характеризуются скоростью движения предмета. Тангенциальное - изменением скорости по модулю. Его направление идет по касательной к траектории. Такое ускорение вычисляется по формуле (см. формулу 2 на рис): a t =d|v|/dt
  3. Если же скорость движения предмета по окружности постоянна, ускорение называется центростремительным или нормальным. Вектор такого ускорения постоянно направлен к центру окружности, а значение модуля равно (смотри формулу 3 на рис): |a(вектор)|=w 2 r=V 2 /r
  4. Когда скорость тела по окружности разная, возникает угловое ускорение. Оно показывает, как изменилась угловая скорость за единицу времени и равно (см. формулу 4 на рис.):E(вектор)=dw(вектор)/dt
  5. В физике также рассматриваются варианты, когда тело движется по окружности, но при этом приближается или удаляется от центра. В этом случае на предмет действуют ускорения Кориолиса.Когда тело движется по кривой линии, вектор его ускорения будет вычисляться по формуле (см. формулу 5 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)+a b b(вектор),в которой:
  • v - скорость
  • T (вектор) - единичный касательный к траектории вектор, идущий вдоль скорости (касательный орт)
  • n (вектор) - орт главной нормали относительно траектории, который определяется как единичный вектор в направлении dT (вектор)/dl
  • b (вектор) - орт бинормали относительно траектории
  • R - радиус кривизны траектории

При этом бинормальное ускорение a b b(вектор) всегда равно нулю. Поэтому конечная формула выглядит так (см. формулу 6 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)

Что такое ускорение свободного падения?

Ускорением свободного падения (обозначается буквой g) называется ускорение, которое придается предмету в вакууме силой тяжести. Согласно второму закону Ньютона, такое ускорение равно силе тяжести, которая воздействует на объект единичной массы.

На поверхности нашей планеты значением g принято называть 9,80665 или 10 м/с². Для вычисления реального g на поверхности Земли нужно будет учесть некоторые факторы. Например, широту и время суток. Так что значение истинного g может быть от 9,780 м/с² до 9,832 м/с² на полюсах. Для его вычисления применяют эмпирическую формулу (см. формулу 7 на рис), в которой φ - широта местности, а h - расстояние над уровнем моря, выраженное в метрах.

Формула для вычисления g

Дело в том, что такое ускорение свободного падения состоит из гравитационного и центробежного ускорения. Примерное значение гравитационного можно подсчитать, представляя Землю однородным шаром с массой M, и вычисляя ускорение на протяжении её радиуса R (формула 8 на рис, где G - гравитационная постоянная величина со значением 6,6742·10 −11 м³с −2 кг −1).

Если использовать эту формулу для вычисления гравитационного ускорения на поверхности нашей планеты (масса М = 5,9736·10 24 кг, радиус R = 6,371·10 6 м), получится формула 9 на рис, однако данное значение условно совпадает с тем, что такое скорость, ускорение в конкретном месте. Несоответствия объясняются несколькими факторами:

  • Центробежным ускорением, имеющим место в системе отсчёта вращения планеты
  • Тем, что планета Земля не шарообразной формы
  • Тем, что наша планета неоднородна

Приборы для измерения ускорения

Ускорение принято измерять акселерометром. Но он вычисляет не само ускорение, а силу реакции опоры, возникающую при ускоренном движении. Такие же силы сопротивления появляются и в поле тяготения, поэтому акселерометром можно измерять и гравитацию.

Есть еще один прибор для измерения ускорения – акселерограф. Он вычисляет и графически фиксирует значения ускорения поступательного и вращательного движения.