Вероятность произведения двух трех или нескольких. Теоремы сложения и умножения вероятностей

Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n – общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Часто бывает так, что вероятность некото-рого события можно найти, зная вероятности других событий, связанных с этим со-бытием.

Теорема сложения вероятностей.

?Теорема 2.6. (Теорема сложения вероятностей ). Вероят-ность суммы (объедине-ния; появления одного из них, безраз-лично какого) двух произвольных событий равна сумме вероят-ностей этих событий за вычетом вероятности их совместного появле-ния, т.е. P (A +B ) = P (A ) + P (B ) - P (AB ).

Следствие 1. Вероятность суммы (объединения) попарно не-совместных событий равна сумме их вероятностей, т.е. P (A 1 +A 2 +...+A n ) = = P (A 1) + P (A 2) + ... + P (A n ).

Следствие 2. Пусть A 1 , A 2 , ... , A n - полная группа попарно несовместных собы-тий. Тогда P (A 1)+P (A 2)+ ... +P (A n ) = 1.

Следствие 3. Сумма вероятностей противоположных собы-тий равна единице, т.е. P (A ) + P (`A ) = 1.

Пример 2.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?

Решение. Здесь имеется всего 20 элементарных исходов, из кото-рых появлению черного шара бла-гоприятствует 6, а появлению крас-ного - 9. Поэтому вероятность со-бытия A - появление черного шара: P (A ) = 6/20, а вероятность события B - появление красного шара: P (A ) = 9/20. Поскольку собы-тия A и B несовме-стны (вынимается всего один шар), то P (A +B ) = P (A ) + P (B ) = 6/20 + 9/20 = 0,75. Ответ : 0,75.

? Условная вероятность события B (P A (B)) - вероятность события B, вычислен-ная при условии, что событие A уже про-изошло . Если A и B - независимые события, то P A (B ) = P (B ), P B (A ) = P (A ).

Теорема умножения вероятностей.

?Теорема 2.7. (Теорема умножения вероятностей ). Вероят-ность произведения (пе-ресечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при усло-вии, что первое собы-тие уже наступило, т.е. P (AB ) = P (A P A (B ) = P (B P B (A ).

Пример 2.11. На полке стоят 11 научно-популярных книг и 5 ху-дожественных. Какова вероят-ность того, что две подряд наугад взятые книги окажутся художественными?

Решение. Рассмотрим два события B 1 и B 2: B 1 - при первом испы-та-нии взята художественная книга, B 2 - при втором испытании взята ху-дожественная книга. По теореме 2.7 вероятность такого собы-тия равна P (B 1 B 2)=P (B 1)·P B 1 (B 2). Вероятность события B 1 P (B 1) = 5/16. По-сле первого испытания на полке останется 15 книг, из которых 4 ху-доже-ственные, по-этому условная веро-ятность P B 1 (B 2) = 4/15. Отсюда искомая вероятность равна: P (B 1 B 2) = . Ответ : 1/12.


Следствие 1. Вероятность совместного появления несколь-ких событий равна про-изведению вероятности одного из них на условные вероят-ности всех остальных, при-чем вероятность ка-ждого последующего события вычис-ляют при условии, что все предыдущие события уже наступили, т.е. P (A 1 ·A 2 ·...·A n ) = P (A 1)·P A 1 (A 2) P A 1A 2 (A 3). · ... ·P A 1 A 2… An -1 (A n ).

Пример 2.12. Из десяти карточек составлено слово «МАТЕМА-ТИКА». Из них школьник нау-дачу выбирает поочередно четыре кар-точки и приставляет одну к другой. Какова вероятность того, что по-лучится слово «ТЕМА»?

Решение. Введем события A 1 , A 2 , A 3 , A 4 , состоящие в том, что пер-вая выбранная буква - Т, вторая - Е, тре-тья - М и четвертая - А. Нам нужно найти вероят-ность произведения этих событий. По след-ствию 1 из тео-ремы 2.7 имеем:

P (A 1 ·A 2 ·A 3 ·A 4) = P (A 1)·P A 1 (A 2)·P A 1A 2 (A 3)·P A 1A 2A 3 (A 4) = Ответ : 1/420.

Следствие 2. Если A 1 ,A 2 ,...,A n - независимые события, то ве-роятность их произве-дения (совместного появления) равна про-изведению вероятностей этих собы-тий, т.е. P (A 1 ·A 2 · ... ·A n ) = P (A 1)·P (A 2)· ... ·P (A n ).

Пример 2.13. Два стрелка независимо один от другого де-лают по одному выстрелу по од-ной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7, вторым - 0,8. Какова вероят-ность того, что ми-шень будет поражена?

Решение. Пусть событие А состоит в том, что мишень поразил пер-вый стрелок, а событие В - в том, что ми-шень поразил второй стрелок. По условию Р (А ) = 0,7 и Р (В ) =0,8.

1-й способ . Рассмотрим противоположные события:`A - промах первого стрелка,`B - промах вто-рого. По следствию 3 из тео-ремы 2.6 получаем Р (`A ) = 1-0,7 = 0,3 и Р (`B ) = 1-0,8 = 0,2. Произведение собы-тий `A ·`B означает промах обоих стрелков. По смыслу задачи собы-тия А и В являются незави-симыми, поэтому и противоположные со-бытия`A и`B также будут независимыми. По следствию 2 из теоремы 2.7 получаем вероят-ность того, что оба стрелка промахнутся: Р(`А·`В) = 0,3·0,2 = 0,06. Нас же интересу-ет вероятность противоположного события, состоящего в том, что мишень поражена. По-этому искомую вероят-ность мы находим по следствию 3 из теоремы 2.6: 1 - 0,06 = 0,94.

2-й способ . Искомая событие (мишень будет поражена хотя бы од-ним стрелком) есть сумма собы-тий A и B . По теореме 2.6. P (A +B ) = P (A ) + P (B ) - P (AB ) = 0,7 + 0,8 - 0,7·0,8 = 1,5 - 0,56 = 0,94. Ответ : 0,94.

Пример 2.14 . В студенческой группе 25 человек. Какова вероят-ность того, что дни рождения хотя бы у двоих совпадают?

Решение . Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году - равновозможные случаи). Тогда ве-роятность того, что дни рожде-ния двух людей не совпадают, т.е. веро-ятно-сть противопо-ложного события равна 1-1/365 = 364/365. Вероят-ность того, что день рожде-ния третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благо-приятст-вуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта веро-ятность равна 341/365. Далее найдем вероят-ность того, что дни рождения всех 25 членов группы не совпадают. По-скольку все эти события (несовпадение дня рождения каждого оче-редного члена группы с днями ро-ждения преды-дущих) независимы, то по следствию 2 из теоремы 2.7 получаем:

P (A 2 A 3 ... A 25) = · · ... · » 0,43.

Это вероятность того, что дни рождения у всех 25 человек не сов-падают. Ве-роятность противопо-ложного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. иско-мой веро-ятностью P » 1-0,43 = 0,57. Ответ : » 0,57.

Формула полной вероятно-сти.

?Теорема 2.8. Пусть B 1 , B 2 , …, B n - полная группа попарно не-совместных событий. Ве-роятность события A , которое может наступить лишь при условии наступления од-ного из событий B 1 , B 2 , …, B n , равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность собы-тия A , т.е.

P(A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + … + P (B n P Bn (A ).

Эта формула называется формулой полной вероятно-сти . События B 1 , B 2 , …, B n , удовлетворяющие условию теоремы 2.8, называют гипотезами .

Пример 2.15. Турист равновероятно выбирает один из трех маршру-тов: конный, водный и горный. Вероятность, что он успешно преодолеет путь при выборе конного способа передвижения, равна 0,75, при выборе водного пути - 0,8, при выборе горного маршрута - 0,55. Найдите вероятность, что турист успешно преодолеет весь путь при любом выборе маршрута.

Решение . Введем события: A - «Турист успешно преодолеет весь путь при любом выборе маршрута», B 1 , B 2 , B 3 - выбран соответственно, конный, водный и горный маршрут. Поскольку выбор маршрута равновероятен, то вероятно-сти выбора каждого маршрута P (B 1) = P (B 2) = P (B 3) = 1/3. По условию P B 1 (A ) = 0,75; P B 2 (A ) = 0,8; P B 3 (A ) = 0,55. Тогда по формуле полной вероятности: P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = (1/3)·0,75 + (1/3) ·0,8 + (1/3)0,55 = 0,7.

Ответ : 0,7.

?Теорема 2.9. Условная вероятность любой гипотезы B i (i = 1, 2, … ,n ) вычисляется по формуле Бейеса :

Формула Бейеса позволяет переоценить вероятности гипотез после того, как ста-но-вится известным результат испытания, в итоге которого появилось событие A .

Пример 2.16. Имеется три набора микросхем, первый из которых содержит 100, второй 300 и тре-тий 600 микросхем. Вероятность того, что микросхема, взятая наугад из первого набора, исправна, равна 0,9, а для второго и третьего наборов - соответственно 0,85 и 0,8. Какова вероятность того, что: а) произвольно взятая микросхема исправна: б) исправная микросхема извлечена из второго на-бора?

Решение . а) В данном случае имеется три гипотезы, вероятности которых P (B 1) = 0,1, P (B 2) = 0,3, P (B 3) = 0,6. Пользуясь формулой полной вероятности, находим P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = 0,1·0,9 + 0,3·0,85 + 0,6·0,8 = 0,825.

б) Допустим, что искомое событие A произошло - извлечена ис-правная микросхема. Найдем ве-ро-ятность P A (B 2) того, что эта микро-схема извлечена из второго набора. Согласно формулы Бейеса,

Ответ : а) 0,825; б) 17/55.

Пример 2.17. Из 10 учеников, которые пришли на экзамен по ма-тематике, трое подготовились от-лично, четверо - хорошо, двое - удовлетворительно, а один совсем не готовился. В билетах 20 вопро-сов. Отлично подготовившиеся ученики могут ответить на все 20 во-просов, хорошо - на 16 вопросов, удовлетворительно - на 10, и непод-готовившийся - на 5 вопросов. Каждый ученик получает наугад 3 во-проса из 20. Ученик, приглашенный первым, ответил на все 3 вопроса. Какова вероятность того, что он отличник?

P A (B 1). По фор-муле Бейеса P A (B 1) = » 0,58.

Как видим, искомая вероятность сравнительно не велика, Поэтому учителю придется предложить ученику еще несколько дополнитель-ных вопросов. Ответ : 0,58.

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.