Во вселенной все повторяется. Образование химического элемента — водорода

Закон намерения гласит: «Все есть мысль»

Мысль первична и предшествует любой материализации. В жизни мы получаем ровно то, что себе намыслили. Этот закон, основанный на ментальности Вселенной, составляет саму основу нашей жизни. Все, что с вами происходит, изначально появляется в вашем сознании в виде мысленного образа. Своими мыслями мы воплощаем реальность. Мы создаем свой мир своими мыслями, чувствами и эмоциями.

Ментальность Вселенной – это первооснова существования. Благодаря закону намерения, образы, созданные нашими мыслями, материализуются и проявляются во всем, что нас окружает. Какие-то образы лишь мелькают в наших мыслях, не оказывая особенного влияния на нашу судьбу, а какие-то занимают прочное место.

Все зависит от того, с какой интенсивностью происходит наполнение мыслеобраза вашей ментальной энергией, или, выражаясь более простым языком, от того, с какой силой вы представляете себе что-либо, и насколько верите в то, о чем думаете. Не имеет значения, положительные это образы или отрицательные. Тот мир, который мы привыкли называть реальностью, на самом деле реален только по отношению к конкретному человеку, поскольку выстроен им самим – его представлениями, убеждениями, желаниями, устремлениями, страхами и опасениями.

Однако бывает и так, что желая получить что-то определенное, у человека возникают угнетающие мысли, связанные с сильными эмоциями – Смогу ли я достичь цели? Что будет, если я не получу желаемого, не добьюсь своей цели…

Таким образом, страхи загоняют нас в королевство кривых зеркал, и, в результате, мы получаем искаженную проекцию своих желаний. Если идти к цели таким способом, результат, скорее всего, будет отрицательным, поскольку в своем страхе недостижения того, что хотите, вы питаете энергией идею недостижения цели в той же или большей степени, чем саму избранную цель.

Человек сам создает свою реальность и свою жизнь. Это очень важно осознать.

Мы создаем свой мир своими мыслями, чувствами и эмоциями. И разные грани реальности, нашей внутренней реальности: состояние здоровья, отношения в семье, работа, финансовое положение, отношения с людьми и окружающим миром – все это внешнее отражение наших мыслей, чувств и эмоций.

Из закона намерения вытекает несколько других законов. Вот один из них…

Второй закон – Закон соответствия

Закон соответствия гласит: «Как наверху, так и внизу»

Поскольку мы сами создаем свой мир своими мыслями, чувствами, убеждениями и эмоциями, внешний мир является полным отражением мира внутреннего.

Если вы чем-то недовольны в своей жизни, или Вас что-то раздражает в поведении других людей, с которыми Вам приходится часто общаться – ищите причину в себе.

Вселенная очень интересным образом обучает нас. Она не пишет книг, не говорит нам директивным тоном, в каком направлении двигаться … Она просто дает нам такие жизненные ситуации, которые приходят именно к нам, и которые мы должны преодолеть для своего дальнейшего развития.

Если же вы стараетесь уйти от неприятной ситуации, избегать её всеми известными способами, или просто «не думать» о ней, Вселенная ещё раз преподнесет Вам подобную ситуацию, возможно с другими участниками и событиями, и вы все же будете должны «пройти» через такую ситуацию, сделав определенные выводы внутри себя и о себе. Да-да именно о себе, а не о том, что это другие такие плохие… Ведь эта неприятная ситуация произошла именно с вами, а не с ними, другими и плохими – они, другие люди, лишь помогают нам, указывая нам на наши недостатки.

Этот закон позволяет нам понять, что внешние раздражители, вызывающие в нас некомфортные душевные состояния, такие, как обида, горечь, злость, раздражение являются всего лишь отражением того, что происходит у нас внутри.

Внешнее равно внутреннему… Как наверху, так и внизу.

Подобные рассуждения применимы и в случае болезни. Болезнь – это сигнал о нарушении равновесия, гармонии со Вселенной. Болезнь также является внешним отражением наших мыслей, нашего поведения и наших намерений. Это сигнал мудрой Вселенной о том, что мы запутались и двигаемся в неправильном направлении.

Может ли таблетка или иной лекарственный препарат пусть даже дорогой и «хороший» изменить наши мысли… наше поведение… A наши убеждения?… Ответ, наверняка, очевиден. Тогда стоит ли, вообще, «пытаться» устранить причину болезни таким способом?

Действительно устранить причину болезни можно лишь через работу над собой, поиск причин внутри себя и осознание своей личной ответственности за процесс выздоровления.

Ошо говорил в своих книгах:

«Не ищите истину вне вас, её там нет, истина только внутри вас».

Об этом говорится и в Библии :

«И Я скажу вам: просите, и дано будет вам; ищите, и найдете; стучите, и отворят вам,
ибо всякий просящий получает, и ищущий находит, и стучащему отворят».
(Евангелие от Луки, гл.11, ст.9-10).

Следствия данного закона:

«Познай самого себя, и познаешь весь мир».

«Во мне есть все необходимое, для развития, благополучия и счастья».

Третий закон – Закон сохранения энергии

Понятие энергии является в эниологии ключевым, равно как и в науке. Само понятие энергии достаточно «широкоформатное» и несет в себе большую смысловую нагрузку. Поэтому мы остановимся на законе сохранения энергии в общем его понимании, а конкретные примеры использования данного закона будем приводить непосредственно из отдельных статей.

Закон сохранения (накопления) энергии гласит:

“Ничто из ничего не возникает и ничто никуда не исчезает.
Все переходит из одного состояния в другое”.

Одним из самых характерных проявлений этого закона является наличие у человека каузального тела. Оно представляет собой энерго-информационную тонкоматериальную конструкцию. Абсолютно все события внешней и внутренней жизни человека «записываются» на каузальное тело. При этом событие отмечается в каузальном теле тем ярче, чем более значимо оно для данного человека и чем сильнее оно связано с прошлой и будущей его жизнью. Единицей информации на каузальном плане является поступок, действие со всей цепью взаимосвязей между ними.

Такое явление как «опыт» является примером работы с каузальным телом. Человек обращается к своей памяти, своему опыту и достает оттуда подходящий для данной жизненной ситуации способ поведения.

Какие-то события в нашей жизни надолго остаются в нашей памяти, другие – наоборот проходят незаметно (сознательно мы не придаем им значения), однако и первые и вторые человек в определенном состоянии сознания может в точности восстановить.

Существование данного универсального закона подтверждено физиками. Многие, возможно, помнят из школьного курса физики закон сохранения энергии – обычно он формулируется как постоянство энергии в замкнутой системе.

Примеры закона можно найти и в народной мудрости: “Что посадишь, то и пожнешь” .

Космология - это наука о Вселенной в целом, и таким образом, предметом частной науки космологии является вся Вселенная. Космология рассматривает наиболее общие закономерности развития, наиболее общие эпохи в истории Вселенной. Общий возраст нашей Вселенной оценивается в ~15-20 млрд лет. Термин "ранняя Вселенная" родился сравнительно недавно и как всякий новорожденный термин является неустоявшимся. Различные специалисты именуют этим термином разные эпохи развития нашей Вселенной. Так, еще 15-20 лет назад, говоря о ранней Вселенной, космологи имели в виду эпоху, соответствующую возрасту от ~300 тысяч лет до 1 млрд лет от начала ее истории.

Сейчас, когда говорят о ранней Вселенной, обычно подразумевают эпоху, соответствующую возрасту от ~10 - 43 секунды до 3 минут от начала истории. Это наиболее интересная часть истории Вселенной. В этот период эволюции Вселенной сформировались многие ее свойства, которые сейчас проявляются в виде хаббловского расширения , крупномасштабной структуры Вселенной и даже в виде физических законов, действующих в нашей части Вселенной. Краткому описанию основных этапов в развитии нашей Вселенной посвящена эта статья.

Эпохи во время эволюции Вселенной можно характеризовать указанием времени этой эпохи относительно момента Большого Взрыва , однако более удобно характеризовать их соответствующим значением красного смещения z - так в астрономии называют смещение линий в спектрах далеких галактик (при удалении объекта от наблюдателя его спектральные линии смещены в красное крыло спектра относительно лабораторной системы отсчета). Чтобы понять физический смысл красного смещения, предположим, что импульс излучения (фотон) проходит мимо последовательного ряда наблюдателей, каждый из которых соответствует определенному этапу состояния вещества в расширяющейся Вселенной. Скорость фотона постоянна, но из-за эффекта Доплера частота излучения фотона для каждого из наблюдателей уменьшается со временем. Если λ н и λ и - длины распространяющейся волны в месте наблюдения и месте излучения соответственно, то смещение спектральных линий не слишком далекой (в космологическом смысле) галактики определяется равенством 1+z =λ н /λ и. Таково историческое определение понятия красного смещения. Точное определение красного смещения через геометрические характеристики Вселенной - это 1+z =a н /a и, где a н и a и - значения масштабного фактора (см. ниже) соответственно в момент наблюдения и в момент излучения. Значение красного смещения для рассматриваемых здесь эпох меняется от ~10 32 до ~10 8 . Основные эпохи ранней Вселенной приведены в табл. 1.

Таблица. Основные эпохи эволюции ранней Вселенной
Название эпохи и
соответствующие ей
физические процессы
Время от Большого Взрыва,
секунды
Температура, K
Рождение классического
пространства-времени
10 - 43 10 32
Стадия инфляции
~10 - 42 -10 - 36
Меняется в очень
широких пределах
Рождение вещества 10 - 36 ~10 29
Рождение барионного избытка 10 - 35 ~10 29
Электрослабый фазовый переход 10 - 10 ~10 16 -10 17
Конфайнмент кварков 10 - 4 ~10 12 -10 13
Первичный нуклеосинтез 1-200 ~10 9 -10 10

2. Рождение Вселенной

Момент рождения Вселенной - это эпоха рождения классического пространства-времени. Общепризнанной в настоящее время считается теория Большого Взрыва , то есть рождение Вселенной из сингулярности (иногда говорят, из пространственно-временной пены). В момент рождения Вселенной плотность ρ и температура T вещества достигали планковских значений: ρ pl ≈10 93 г/см 3 , T pl =1,3·10 32 К.Великий немецкий физик Макс Планк в конце прошлого века ввел новую константу, которая теперь носит название постоянной Планка ħ. Она является основной константой в квантовой теории. Вскоре после своей знаменитой работы, где впервые было введено понятие кванта действия, Планк обосновал введение в физику новой системы единиц, которая сейчас носит название естественной системы единиц. Пользуясь тремя фундаментальными физическими константами - скоростью света c , постоянной гравитации G и постоянной Планка ħ - он сформировал основные размерные величины физики: единицу длины l pl =[ħG /c 3 ] 1/2 , времени t pl =[ħG /c 5 ] 1/2 и массы m pl =[ħc /G ] 1/2 . Из этих единиц удобно образовать две новые единицы измерения - планковскую плотность, определяя ρ pl =m pl /l pl 3 , и температуру kT pl =m pl c 2 (k - постоянная Больцмана, связывающая температуру тела с кинетической энергией составляющих его частиц). Следует отметить, что определение планковской длины l pl =[ħG /c 3 ] 1/2 совпадает с эквивалентным определением такой единицы, как комптоновская длина волны l pl =ħ/(m pl c ) для частицы с массой m pl . Подробное обсуждение систем единиц в современной физике и методическое значение правильно выбранной системы единиц содержится в статье Л.Б. Окуня "Фундаментальные константы природы" в этом томе.С момента Большого Взрыва Вселенная непрерывно расширяется, температура вещества понижается, а объем растет. При описании рождения Вселенной используются самые общие идеи о квантовой эволюции Вселенной как целого. Одно из них утверждает, что полная масса замкнутой Вселенной равна нулю. Это означает, что вся Вселенная может родиться без затрат энергии, то есть из ничего. Вероятность рождения Вселенной с радиусом кривизны $H^{-1}$ определяется как

W ∝ exp[-(18/16)π 2 m pl 2 /H 2 ].

Здесь планковская масса m pl ≈10 - 5 г, множители перед экспонентой опущены. Таким образом, вероятность рождения мира с большим значением радиуса кривизны, H - 1 ≫m pl - 1 , мала (единицы измерений выбраны так, чтобы размерности H и m pl были одинаковы), наиболее вероятно рождение мира с радиусом кривизны порядка планковского (H - 1 ~m pl - 1).Процесс расширения Вселенной принято описывать с помощью масштабного фактора a (t ), который характеризует изменение со временем расстояний между космологическими объектами.

На рис. 1 схематически представлена зависимость масштабного фактора a от времени t . Слева от оси ординат (при t 3. Расширяющаяся Вселенная После рождения Вселенной из "ничего" можно пользоваться неквантовыми уравнениями общей теории относительности (ОТО) для описания эволюции масштабного фактора. Уравнения ОТО однозначно предсказывают закон расширения Вселенной , если известны плотность энергии αc 2 и давление p вещества (в однородной и изотропной модели). Плотность энергии часто выражают с помощью параметра Ω=ρ/ρ кр, а давление - через уравнение состояния p (ρ). Здесь ρ кр - критическая плотность Вселенной , выражаемая через параметр Хаббла H : ρ кр =3H 2 /(8πG ).В общей теории относительности основной функцией является метрика или пространственно-временной интервал между двумя событиями. В космологии же основной функцией является масштабный фактор a (t ), который определяет также и метрику пространства-времени и имеет размерность длины. Функция a (t ) определяется из совместного решения уравнений Фридмана и уравнения состояния вещества во Вселенной (то есть зависимостью давления вещества от плотности).Физический смысл уравнений Фридмана ясен из следующего примера. Если мысленно в однородной и изотропной расширяющейся Вселенной описать окружность радиуса a вокруг некоторой точки, то первое уравнение Фридмана представляет собой уравнение сохранения энергии при расширении этой элементарной сферы. Удельная кинетическая энергия такой сферы

1/2[da /dt ] 2 =v 2 /2,

А удельная потенциальная энергия есть -4πG ρa 2 /3. Сумма этих энергий есть величина постоянная. Второе уравнение Фридмана представляет собой уравнение Ньютона в релятивистском случае: d 2 a /dt 2 =g , где g - сила тяжести. При вычислении массы этой элементарной сферы учитывается вклад давления в массу, что является спецификой ОТО:

M =4/3πa 3 [ρ+3p /c 2 ].

Закон расширения Вселенной зависит также от уравнения состояния вещества.В космологии различают три основных уравнения состояния . Это пылеподобное уравнение состояния (p =0), радиационно-доминированное уравнение состояния (p c 2 /3) и уравнение состояния фальшивого вакуума (p =-ρc 2), или инфляционное. Для современной Вселенной, которую описывают пылеподобным уравнением состояния, зависимость масштабного фактора от времени имеет вид a (t )∝t 2/3 . В ранней Вселенной для масштабного фактора характерно другое поведение. Через 10 - 42 секунды после рождения классического пространства-времени во Вселенной начинается инфляционная стадия. Она характеризуется предельно сильным отрицательным давлением p =-ρc 2 (состояние фальшивого вакуума), при котором меняются сами законы обычной гравитационной физики. Вещество в этом состоянии не источник притяжения, а источник отталкивания.Отрицательное давление имеет простой физический смысл - это силы натяжения. Если обычное положительное давление препятствует сжатию вещества, то отрицательное давление препятствует растяжению вещества. Тем не менее в лабораторных условиях такое уравнение состояния не встречается: при таком уравнении развивается очень большое (релятивистское) отрицательное давление, которое действует независимо от направления (паскалево давление). Натяжения в обычном твердом теле (например, в резине) являются непаскалевыми, они возникают только в одном направлении. В случае уравнения состояния p =-ρc 2 плотность не зависит от времени и масштабного фактора, то есть во время инфляционной стадии при расширении Вселенной плотность среды не меняется, ρ=const. В обычной физике только у вакуума плотность не меняется при расширении, поэтому такое состояние иногда называют состоянием фальшивого вакуума.При подстановке в уравнение массы выбранной пробной сферы отрицательного давления фальшивого вакуума p =-ρc 2 получается отрицательная масса. Это означает, что притяжение, имеющее место при обычных уравнениях состояния (p =0, p c 2 /3), меняется на отталкивание. Уравнение эволюции масштабного фактора принимает вид

d 2 a /dt 2 =8πG /3·ρa .

Поскольку ρ=const, то решение уравнения представляет собой сумму двух членов:

a (t )=a 1 e H (t - t i ) + a 2 e - H (t - t i ) ,

Где H 2 =8πG ρ/3. Масштабный фактор растет со временем экспоненциально: a (t )∝e H t , так как второе слагаемое a 2 e - H (t - t i ) быстро убывает со временем и не дает никакого значимого вклада в общее движение уже через промежуток времени H δt ≈ 10. Это свойство приводит к тому, что во время инфляционной стадии объем Вселенной увеличивается на много порядков (в некоторых моделях даже на порядки порядков, скажем в 10 1000), так что вся Вселенная оказывается в одной причинно-связанной области, уравниваются кинетическая энергия расширения Вселенной и ее потенциальная энергия. Во время этой стадии возникают физические условия, которые позже приводят к расширению Вселенной по закону Хаббла .Пусть две частицы находятся на расстоянии r друг от друга в начале инфляционной стадии t =t i . Расстояние между ними изменяется согласно выражению

l (t )=a (t )/a (t i ) ,

А скорость меняется как первая производная от расстояния:

v (t )=[Ha 1 e H (t - t i ) + Ha 2 e - H (t - t i ) ]/a (t i r .

После достаточно длительного времени (H δt ≫1) вторым членом в числителе можно пренебречь и уравнение для взаимной скорости двух частиц будет выглядеть как v (t )=Hl (t ), то есть скорость изменения расстояния будет равна самому расстоянию, умноженному на постоянный (это важно!) коэффициент. Точно такой же закон описывает рост денежной массы в период инфляции. Именно поэтому автор данной теории американский космолог А. Гус назвал эту стадию развития Вселенной инфляционной стадией . На инфляционной стадии H =const, после ее окончания H начинает меняться со временем, но закон расширения уже не меняется. Гравитационные силы отталкивания в инфляционный период разгоняют частицы, а дальше они движутся по инерции. Так формируется хаббловский закон расширения.Необходимо четко представлять разницу между причиной взрыва в бомбе и Большим Взрывом во Вселенной. В бомбе сила, ответственная за разлет частиц, вызвана градиентом давления внутри взрывчатого вещества. Во Вселенной с уравнением состояния p =-ρc 2 вещество распределено однородно и градиентов давления нет. Из-за большой величины отрицательного давления меняется знак источника гравитационного поля ρc 2 +3p и возникает эффективная антигравитация, то есть разлетание вещества. Таким образом, толчком к расширению мира, к формированию хаббловского закона расширения, к установлению причинной связи во Вселенной на больших расстояниях, а также к выравниванию кинетической энергии расширения и потенциальной энергии поля послужила эффективная антигравитация, вызванная отрицательным давлением, которое, как полагают, существовало в ранней Вселенной.Во время стадии инфляции имел место еще один важный процесс: это рождение из вакуумных квантовых флуктуаций скалярного поля малых возмущений плотности, а из квантовых флуктуаций метрики - гравитационных волн. Материя с уравнением состояния p =-ρc 2 является неустойчивой относительно малых возмущений. Квадрат скорости звука в таком веществе - величина отрицательная, поэтому эволюция малого возмущения, описываемая экспонентой с мнимым декрементом, оказывается экспоненциально растущей или экспоненциально затухающей величиной. Экспоненциальный рост возмущения разрушает вещество с отрицательным давлением и прекращает инфляцию. Однако поскольку в разных местах пространства затравочные возмущения имели разную амплитуду и, следовательно, росли разное время до критического значения, то и инфляция в разных местах пространства прекращается в разное время. Переход от стадии расширения, когда масштабный фактор меняется по экспоненциальному закону (эпоха инфляции), на фридмановскую стадию расширения, когда масштабный фактор меняется по степенному закону, происходит неодновременно. Это вызывает флуктуации метрики вида h ~H δt (r ), где δt (r ) - запаздывание, зависящее от точки пространства, а H - параметр Хаббла в эпоху инфляции.Вакуумные квантовые флуктуации, которые обычно проявляются только в микроскопических масштабах, в экспоненциально расширяющейся Вселенной быстро увеличивают свою длину и амплитуду и становятся космологически значимыми. Таким образом, возникшие впоследствии скопления галактик и сами галактики являются макроскопическими проявлениями квантовых флуктуаций на ранних этапах развития Вселенной.Спектр первичных возмущений метрики можно построить, исследуя анизотропию реликтового излучения . Фотоны, двигаясь в переменном гравитационном поле, изменяют свою частоту и, следовательно, температуру. Поэтому температура реликтового излучения различна в разных направлениях на небе. Угловой спектр температурных флуктуаций реликтового излучения однозначно связан со спектром возмущений гравитационного поля. По наблюдениям анизотропии реликтового излучения можно восстановить спектр первичных возмущений. По спектру первичных возмущений вещества и спектру гравитационных волн можно восстановить законы физики на стадии инфляции, то есть в области энергий 10 16 ГэВ. Сейчас, в результате космических экспериментов РЕЛИКТ и COBE (COsmic Background Explorer) и наземных экспериментов TENERIFE, SASKATOON и САТ, угловой спектр анизотропии реликтового излучения измерен в интервале углов от 90° до 30′. На рис. 2 приведены теоретические спектры угловых флуктуаций реликтового излучения, сформированные скалярными возмущениями (то есть флуктуациями плотности) и гравитационными волнами. Измеренные значения близки к вычисленным, что подтверждает справедливость теоретических построений.

Очень важным следствием этих экспериментов является возможность сделать некоторые выводы о физических взаимодействиях в энергетическом диапазоне 10 16 ГэВ. Можно сказать, что теория инфляционной Вселенной получила первое экспериментальное подтверждение. Выводы из этих измерений - это также первые экспериментальные данные, относящиеся к поведению взаимодействий в области энергий 10 16 ГэВ. Здесь уместны несколько слов об общечеловеческом значении этих данных. Первые физические опытные данные человечества относились к масштабу энергий ~1 эВ на молекулу, то есть к горению веток, дров и каменного угля. Овладение огнем позволило нашим предкам стать homo sapiens. Вначале экспериментально-физическое, а затем и технологическое овладение масштабом энергий от ~100 кэВ до ~1 МэВ возвестило начало ядерного и термоядерного века. Это перемещение "всего" только в миллион раз по шкале энергий! Что же тогда сулят человечеству экспериментальные знания при перемещении в десятки миллиардов миллиардов раз, от 1 МэВ до 10 16 ГэВ!

4. Стадия бариосинтеза

Уравнение состояния вещества с отрицательным давлением неустойчиво: оно должно смениться обычным (положительным или равным нулю) давлением. Поэтому инфляционная фаза развития Вселенной довольно быстро кончается. С окончанием этого этапа рождается обычная материя.Из астрономических наблюдений следует, что во Вселенной практически отсутствует антивещество. Звезды, газ и пыль нашей Галактики состоят из вещества, так как в противном случае аннигиляция вещества и антивещества, сопровождающаяся выделением большого количества энергии, была бы замечена. Известны сталкивающиеся галактики, галактики, входящие в скопления и омываемые облаками межгалактического газа, но нигде не замечено процессов аннигиляции.Многочисленные эксперименты на ускорителях элементарных частиц показывают, что процессы рождения вещества и антивещества равноправны. Однако если бы количество протонов на начальных стадиях Вселенной было в точности равно количеству антипротонов, то при остывании плазмы до температуры ~100 МэВ и ниже протоны и антипротоны аннигилировали бы, превратившись в фотоны, то есть во Вселенной вещество полностью бы исчезло, а осталось бы одно излучение. Однако сам факт нашего существования наглядно доказывает, что вещество во Вселенной все-таки есть, хотя его весьма мало по сравнению с количеством реликтовых фотонов. Отношение количества протонов n p и реликтовых фотонов n γ в настоящее время n p /n γ ≈10 - 8 -10 - 10 . Это означает, что во время горячей стадии, когда температура была очень высокой (kT m p c 2), в первичной плазме существовало не точное, а лишь приблизительно равное количество протонов n p и антипротонов n p ~ :

[n p -n p ~ ]/n γ ∝10 - 9 .

Такое несоответствие эксперимента и теории ставит проблему асимметрии вещества и антивещества во Вселенной. Чаще ее называют проблемой , имея в виду, что во Вселенной присутствуют барионы (протоны и нейтроны) и практически полностью отсутствуют антибарионы (антипротоны и антинейтроны). Некоторое количество антипротонов регистрируется в космических лучах, однако их доля мала и они имеют не космологическое происхождение.Наиболее известными из барионов являются протоны и нейтроны, они же являются самыми стабильными частицами. Время распада протона превышает 10 32 лет, а время распада нейтрона около 20 мин. Имеется еще несколько короткоживущих барионов. Для всех этих частиц эксперименты показывают сохранение полного числа барионов во всех процессах взаимодействия. Например, если распадается нейтрон, то в результате взаимодействия появляется другой барион - протон: n p +e + +ν ~ ; если в результате реакции рождается дополнительный протон, то этот процесс обязательно сопровождается рождением какого-либо антибариона, например антипротона p ~ :

π + +p p +p ~ +π + .

Для описания этого экспериментального факта введено понятие сохранения барионного заряда по аналогии с сохранением электрического заряда. Самым ярким свидетельством в пользу сохранения барионного заряда является наблюдаемая стабильность протона, а самый яркий и единственный экспериментальный факт, опровергающий эту идею, - наличие вещества в современной Вселенной. Противоречие удается разрешить в рамках моделей Великого объединения (см. статью И.Л. Бухбиндера ), описывающих единым образом три вида фундаментальных взаимодействий: сильное (ядерное), слабое (с участием нейтрино) и электромагнитное, которые предсказывают несохранение барионного заряда при сверхвысоких энергиях от ~10 15 ГэВ и выше. Точнее, эти теории утверждают, что существуют частицы, названные X - и Y -лептокварками, обладающие свойствами как барионов, так и лептонов. Они взаимодействуют с кварками q и лептонами l следующим образом: q +q X q ~ +l ~ . Здесь символы q ~ и l ~ обозначают соответственно антикварк и антилептон. В этой цепочке реакций барионный заряд не сохраняется, так как барионный заряд кварка b =1/3, барионный заряд антикварка соответственно -1/3 , то есть в реакции такого типа барионный заряд уничтожается, Δb =-1.

С помощью гипотетических лептокварков удается объяснить высокую стабильность протонов, иными словами, наблюдаемое в экспериментах сохранение барионного заряда. Распад протона в этих моделях происходит по схеме, изображенной на рис. 3. Согласно теории элементарных частиц протон представляет собой систему из трех кварков (u,u,d ). Из моделей Великого объединения следует, что существует взаимодействие, переводящее два кварка u , d в сверхтяжелую частицу X . Однако процесс рождения частицы X является виртуальным, то есть реальная частица не рождается, поскольку масса X значительно больше массы протона и при рождении реальной частицы с массой m x нарушился бы закон сохранения энергии. В результате виртуальный X -лептокварк распадается на лептон (им может быть позитрон или мюон) и кварк u ~ , который в результате взаимодействия с третьим кварком u , составлявшим протон, образует, к примеру, π 0 - или K -мезон. Необходимость допустить при распаде протона промежуточное существование сверхмассивной частицы X приводит к тому, что вероятность данной реакции в единицу времени крайне низкая, Γ≈e 4 (m p /m X ) 4 m p из-за высокой массы X -лептокварка. Иными словами, при распаде протона в моделях Великого объединения барионный заряд на самом деле может меняться, но, чтобы зарегистрировать хотя бы одно событие распада единичного протона, потребовалось бы ждать не менее 10 32 лет. Уменьшить время ожидания, например, до одного года тоже можно, но в этом случае придется одновременно следить уже не за одним протоном, а за 100 тоннами водорода. Однако при столкновении двух протонов вероятность их распада растет пропорционально квадрату энергии в системе центра масс протонов, и, когда энергия частиц превышает ~10 15 ГэВ, распады протонов весьма интенсивны. Такие энергии были характерны для плазмы в ранней Вселенной в промежутке времени от ~10 - 42 до ~10 - 36 секунды после Большого Взрыва. Механизм бариосинтеза имеет много общего с обычными химическими реакциями, поэтому его называют горячим бариосинтезом, а эпоху генерирования избытка вещества над антивеществом - стадией бариосинтеза. Существует несколько альтернативных механизмов образования барионного избытка. Один из таких механизмов, который работает при значительно более низких температурах (когда энергия частиц падает до 10 ТэВ), носит название холодного бариогенеза.Среди других механизмов образования барионного заряда заслуживает упоминания механизм, связанный с испарением первичных черных дыр (подробнее см. статью Д.А. Киржница "Горячие черные дыры" в этом томе) . Этот процесс также ведет к образованию избытка вещества над антивеществом.

5. Нуклеосинтез

Когда температура Вселенной понижается до 10 16 -10 17 К, в горячей плазме, наполняющей Вселенную, происходит электрослабый фазовый переход. До этого момента электромагнитные и слабые взаимодействия с участием нейтрино являются единым электрослабым взаимодействием. После того как происходит фазовый переход, бозоны W ± и Z 0 - переносчики электрослабого взаимодействия - становятся массивными (срабатывает механизм динамического рождения массы) и слабое взаимодействие становится очень слабым и короткодействующим. В эту эпоху слабые и электромагнитные взаимодействия, бывшие до этого момента времени едиными, расщепляются на обычные электромагнитные, основным квантом которых является фотон, и слабые взаимодействия с участием нейтрино, основными квантами которых являются W ± - и Z 0 -бозоны.Позже, примерно при температуре T ≈10 11 К, происходит конфаймент (невылетание) кварков. В свободном состоянии кварки могут существовать только в очень горячей плазме с температурой T >10 11 К. В ранней Вселенной, когда температура была значительно больше этой величины, протонов и нейтронов не было, существовал "кварковый суп". В результате расширения Вселенной температура падает, кварки начинают соединяться, образуя протоны и нейтроны, и как самостоятельные частицы уже не встречаются в природе (не вылетают).После эпохи образования протонов и нейтронов наиболее замечательной является эпоха нуклеосинтеза . Она начинается через 1 секунду после Большого Взрыва и продолжается вплоть до ~100 секунд. В этот период синтезируются легкие ядра (с атомным весом A >5), более тяжелые ядра синтезируются позже взвездах.Первичная плазма в рассматриваемые эпохи подчиняется радиационно-доминированному уравнению состояния p c 2 /3, что позволяет использовать простое приближенное уравнение, связывающее температуру первичной плазмы T (МэВ) с возрастом Вселенной t (в секундах): T t - 1/2 .Через 1 секунду после Большого Взрыва температура первичной плазмы упала до 10 10 K, что соответствует энергии ~1 МэВ. Промежуток времени от t ≈1 до t ≈200 cекунд играет существенную роль в жизни Вселенной. В этот период образуются первичные легкие ядра: 4 He (25 %), дейтерий 2 H (3·10 - 5 %), 3 He (2·10 - 5 %), 7 Li (10 - 9 %), то есть начинает рождаться привычное нам вещество. Кинетические уравнения, описывающие рождение легких элементов в эпоху нуклеосинтеза , образуют достаточно громоздкую цепочку, каждое из них соответствует одной термоядерной реакции. Рождение различных ядер в процессе первичного нуклеосинтеза существенно зависит от отношения n /p числа нейтронов к числу протонов в рассматриваемую эпоху. При t T>1 МэВ относительная концентрация нейтронов и протонов описывалась равновесной формулой n /p =exp[-Δm /T ]), где Δm ≈1,3 МэВ - разница в массах нейтрона и протона. Это равновесие поддерживалось реакциями слабого взаимодействия. При падении температуры до T =0,7 МэВ эти реакции практически прекратились и отношение n /p стало постоянным и равным отношению этих величин в конце процесса. На этом этапе развития Вселенной нейтроны и протоны существовали в свободном виде, не связываясь в ядра. Позже, когда температура упала ниже 100 кэВ, большая часть нейтронов (кроме тех, что успели распасться) оказалась связанной при образовании дейтерия в ходе реакции p +n →2 2 H+γ.В свою очередь дейтерий, эффективно захватывая барионы первичной плазмы, рождал 3 He и тритий (3 H). С захватом еще одного протона или нейтрона образовывался 4 He, в котором практически все нераспавшиеся нейтроны заканчивали свой путь. Отсутствие подходящих ядер с массовым числом A =5 тормозило дальнейшие реакции, делая образование более тяжелых элементов (3 He+ 4 He → 7 Be, 3 4 He→ 12 C и т. п.) маловероятным событием.Относительный (по массе) выход 3 He, 4 He, 2 H и 7 Li в зависимости от плотности барионов Ω b показан на рис. 4. Уменьшение выхода дейтерия с ростом Ω b объясняется тем, что при увеличении плотности барионов растет число столкновений между ними и соответственно возрастает вероятность образования тяжелых ядер. Следовательно, количество дейтерия во Вселенной является чувствительным индикатором плотности барионной составляющей. Другим таким индикатором является количество 7 Li.

Из сравнения расчетов с наблюдаемым обилием элементов следует, что плотность барионов Ω b =0,05±0,03. Предсказание количества водорода (H ≈75 %), гелия (4 He≈25 %), а также остальных легких элементов, достаточно хорошо согласующееся с наблюдениями, является основным результатом теории нуклеосинтеза, а предсказание плотности барионов во Вселенной - основным побочным продуктом этой теории. Стадия нуклеосинтеза является заключительной стадией, которая относится к ранней Вселенной. Она заканчивается через 3 минуты после Большого Взрыва. Эпохи в жизни нашей Вселенной, следующие за эпохой нуклеосинтеза , представляют интерес уже с точки зрения космологии современной Вселенной.

6. Заключение

Вслед за эпохой нуклеосинтеза следует стадия, играющая немаловажную роль в космологии - эпоха доминирования (преобладания) скрытой массы , которая в зависимости от типа носителя скрытой материи наступает примерно при температуре T ≈10 5 К. Начиная с этой эпохи растут малые возмущения плотности вещества, которые к нашему времени увеличиваются настолько, что появляются галактики, звезды и планеты.Затем наступает эпоха рекомбинации водорода, в процессе которой протоны и электроны объединяются и образуется водород - самый распространенный элемент во Вселенной. Эпоха рекомбинации совпадает с эпохой "просветления" Вселенной: плазма исчезает и вещество становится прозрачным. Температура этой эпохи известна очень хорошо из лабораторной физики T ≈4500-3000 К. После рекомбинации фотоны доходят до наблюдателя, практически не взаимодействуя с веществом по дороге, составляя реликтовое излучение , энергетический спектр которого соответствует в настоящее время спектру абсолютно черного тела, нагретого до температуры 2,75 К. Разница в температурах ~3000 и ~3 К обусловлена тем, что с эпохи просветления Вселенной ее размеры увеличились примерно в 1000 раз.В промежутке между эпохой рекомбинации и нашим временем расположена еще одна важная эпоха - образование крупномасштабной структуры Вселенной или образование сверхскоплений галактик. Условно эта эпоха приходится на красное смещение z ≈10, когда температура реликтовых фотонов падает до 30 К. В промежутке от z ≈10 до z ≈0 лежит эпоха нелинейной стадии эволюции внегалактических объектов, то есть эпоха обычных галактик, квазаров, скоплений и сверхскоплений галактик. Но все это уже за рамками настоящей статьи.

Литература

  1. Космология . Физика космоса. Маленькая энциклопедия. М.: Сов. энциклопедия, 1986, с. 90.
  2. Вайнберг С. Первые три минуты. М.: Энергоиздат, 1981.
  3. Долгов А.Д., Зельдович Я.Б., Сажин М.В. Космология ранней Вселенной. М.: МГУ, 1988.
  4. Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М.: Наука, 1975.
  5. Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1988.

Это переход от ложных к истинным жизненным ценностям. И в первую очередь это правильно расставленные в жизни приоритеты.
Чтобы лучше понять, как происходит работа с кармой, придется познакомиться с проявлением и действием трех сил во Вселенной.
Изначально, оценивая любую ситуацию, люди усматривают в ней или хорошее, или плохое. Но человек, владеющий определенными знаниями и имеющий более развитый ум, может прийти к пониманию, что хорошее и плохое - всего лишь две стороны одной медали, две составляющие одного и того же явления.

Однако целостный объект воспринимается любым человеком, как включающий в себя не две, а три составляющие. Что такое целостный объект? За примером далеко ходить не надо. Физическое пространство, в котором мы живем, целостно. Но в нем мы выделяем длину, ширину и высоту. Правда, о высоте обычно вспоминают только тогда, когда поднимаются в гору или ходят по лестницам. Говоря про время, люди упоминают прошлое, настоящее и будущее. Но в жизни эти разговоры касаются, как правило, или прошлого в виде воспоминаний, или планов на будущее. А настоящее? О! О нем все как-то забывают.
Поэтому неизменно популярен лозунг психологов: «Быть здесь и сейчас». Но на деле действительно БЫТЬ «здесь и сейчас» удается лишь единицам.

Тайна золотого сечения

Можно привести и другие примеры троичности, с которыми приходится встречаться в жизни. Архитекторам, живописцам и математикам хорошо известна так называемая золотая пропорция, или золотое сечение. Если отрезок разделить на две части так, чтобы длина большей части относилась к длине меньшей части, как длина всего отрезка относится к длине его большей части, то мы и получим деление отрезка в отношении золотого сечения. Эта же идея выражается численно в виде отношения 1,61803398875 к единице. По поводу золотого сечения и его замечательных свойств написано немало книг. Пифагорейцы выбрали в качестве своего опознавательного знака пентаграмму, возможно потому, что она несет в себе отношение золотого сечения. Здание, построенное с учетом золотой пропорции, выглядит очень гармоничным. Живописные произведения, созданные на основе золотых сечений, обычно признаются шедеврами. Эти и другие замечательные свойства золотого сечения, например, его проявление в строении живых организмов, членении человеческого тела, во временных ритмах исторических процессов, можно понять, если учесть, что оно несет в себе идею троичности. А через троичность проявляется целостность, единство, поскольку все три части объединены друг с другом золотой пропорцией.

Дает нам еще один пример единства в троичности. Вспомним, что треугольник - жесткая геометрическая фигура. Все треугольные конструкции оказываются очень прочными, потому что и тут через троичность проявлена целостность. И это свойство тоже часто используется в архитектуре и технике.
Идея троичности стара, как мир. Три субстанции составляют божественную триаду в индуистской мифологии. Это Тримурти - «тройственный образ» или «обладающий(ая) тремя обликами». Все три облика персонифицированы и известны как боги Брахма, Вишну и Шива. Похожая персонификация существовала и у славян. Божественная триада называлась у них Триглав. Каждый из трех богов имел свое имя: Световид, Белбог и Чернобог.

В мифологии многих народов Мир - это целое, но он содержит три уровня: верхний, средний и нижний, причем человек обычно обитает на среднем уровне.
Судьба человека в античных мифах представлялась в виде трех женских образов Мойр.
Идею троичности в своих таинственных книгах своеобразно выражали средневековые алхимики, указывая, что есть три субстанции: ртуть, сера и соль. Обязательным атрибутом древних ясновидцев был треножник. Великий Учитель Орфей считал, что в триаде «бытие, жизнь, интеллект» бытие соответствует духу, жизнь - душе, материя - интеллекту.

Рассмотрим, как эти три составляющие проявлены в нашей повседневности. Для этого введем следующие обозначения: пусть, например, первая составляющая, субстанция, или , называется активной, или положительной, вторая - пассивной, или отрицательной, третья - нейтрализующей, или уравновешивающей.

Используемые термины - это только названия, слова. Не стоит к ним сильно придираться. Например, термин «сила» не используется тут с позиции физики. В разных жизненных ситуациях это может быть как сила, так и энергия. В действительности, все эти три силы одинаково активны и проявляют себя как активная, пассивная и уравновешивающая только в отношении друг друга. Здесь можно провести аналогию с трехфазным электрическим током. По всем трем проводам передается энергия, но токи отличаются друг от друга сдвигом по фазе на 120 градусов. Причем выбор начальной фазы может быть достаточно произвольным.

В нашем физическом мире трудно познавать эти субстанции, или силы, сами по себе. Чаще всего, люди могут наблюдать их через проводники, которыми могут стать вещество, энергия или информация. Известное из натурфилософии и древней алхимии понятие «стихии», как раз и является попыткой осмыслить действие этих сил в физическом мире. Так, активная сила проявляется, как стихия «огонь», пассивная - как стихия «вода», уравновешивающая - как стихия «воздух». Если же не действует никакая сила, то мы имеем дело со стихией «земля».

Человек является целостным, совершенным объектом, и в нем действуют все три силы. Он является их проводником. Но иногда та или иная сила может превалировать, что влияет на поведение человека.

Активная сила. В физике к проявлению активной силы можно отнести процессы извлечения энергии из вещества (например, сжигании газа, угля). В механике ей соответствует кинетическая энергия.
Активная сила побуждает к действию, к изменению существующей ситуации. Причем именно побуждает или направляет. Ведь для того, чтобы совершилось действие, нужно проявление всех трех сил. Активной силе соответствует мужское начало и энергия ЯН в китайской философии. Для человека активная сила проявляется, когда он направляет свое внимание на объекты окружающего мира, желая изменить этот мир. Она может дать о себе знать, как сильное стремление что-то делать, например, достичь поставленной цели или заниматься собственным развитием. Активная сила проявляется и как сексуальная энергия и желание. Ей соответствует растяжение, возникающее в мышцах. Людей с преобладанием активной силы в психологии называют экстравертами.

Эту силу можно усмотреть в заботе о собственном выживании. Изначальная задача природы для всех видов биологической жизни одна - выжить, и человек следует своему биологическому началу. Данная сила, пожалуй, наиболее понятна людям, так как они ведут активную жизнь по отношению к среде и другим людям. Недаром большой популярностью и во многом примером для подражания в социуме пользуется тип энергичного, пробивного и целеустремленного человека. Когда эта сила доминирует, люди стремятся к жизни без ограничений.
Но активность может вызывать и что-то, сильно захватывающее внимание, требующее повышенной заботы и тем самым побуждающее к действию, например, маленький ребенок.

Социум по отношению к человеку будет выступать как проявление активной силы, побуждая к труду, предлагая и обеспечивая рабочие места. И деньги могут стать проводником активной силы. Когда появляются деньги, появляются и желания. А деньги позволяют их удовлетворять, то есть начать действовать.

Пассивная сила - это сила стабилизации. Заряженные конденсатор или аккумулятор демонстрируют нам проявление пассивной силы в электротехнике, а в механике этой субстанции соответствует потенциальная энергия.
Для человека она проявлена как внимание к себе, своему внутреннему миру. В теле эта сила преобладает в момент сокращения мышцы. Людей с преобладанием пассивной силы в психологии называют интровертами.

Можно увидеть ее проявление в виде обеспечения стабильности существования или торможения процесса развития. Пассивная сила - это сила женственности. Это энергия ИНЬ в китайской философии, Шакти у индусов.
Различные процессы овеществления, например, приобретения покупок, можно отнести к проявлению этой силы.

Дом, семья, родственники, если они проявляют заботу о человеке, будут такой пассивной силой. «Дома и стены помогают». Например, мать в отношении ребенка обычно проявляет себя как пассивная сила. Социум по отношению к человеку будет выступать как проявление пассивной, стабилизирующей силы, обеспечивая соблюдение законов, поддерживая доверие к деньгам, предлагая разнообразные социальные гарантии и льготы, в том числе и тогда, когда это касается вопросов собственного развития человека. тоже могут стать проводником пассивной силы. Например, это счет в банке, который позволяет безбедно существовать на проценты.

Уравновешивающая, или третья, сила редко доступна нашему пониманию и прямому наблюдению. Причину тому можно найти в привычном для людей мировоззрении: ощущении пространства и времени, в дуальности ума.
Это сила сохранения, субстанция, благодаря которой происходит благоустройство космоса, формирование его из хаоса, то есть установление порядка и меры. Ее проявление связано с созданием разных классификаций, всевозможных измерений, установлением законов, постановкой диагноза и даже в момент счета предметов. Сколько предметов лежит сейчас в вашем портфеле, сумочке или ящике стола? Вряд ли кто даст внятный ответ. А вот перечислить это содержимое вы, скорее всего, сможете.

В физике она проявлена в так называемых . Наверное, проявление именно третьей силы привело однажды к изобретению колеса.
Социум по отношению к человеку будет выступать как проявление уравновешивающей силы, создавая структуры управления и обеспечивая формулирование законов. Новое знание для человека может выступать в виде третьей силы, помогая ему решать вопросы собственного развития.

Большинство общепризнанных гуманитарных дисциплин предполагают наличие в социальной ориентации человека двух полюсов: открытости (экстраверт) и закрытости (интроверт). Но поскольку всегда существуют три полюса, то значит есть и три типа отношения к обществу, и третий полюс - это ортодоксальность. Ортодоксальность - это как раз и есть проявление третьей силы, совершенно самостоятельное отношение человека к миру и себе самому.

Ортодоксы стремятся зафиксировать некоторый объем, площадь, замкнуть круг и, как следствие, бесконечно двигаться по нему. Поэтому неудивительно, что в теле человека третья сила проявляется в момент скручивающего движения. Если ортодокс сумел очертить круг идей, друзей, событий, то он чувствует себя нормально. Занудство, упрямство, консерватизм - вот внешние проявления ортодоксальности. Идея, основательно овладевшая ортодоксом, станет догмой. Особенность ортодоксальности, как появления третьей силы в том, что она подразумевает поиск стабильности. Ведь не даром третья сила - это сила сохранения. Поэтому человек, тяготеющий к ортодоксальности, жаждет сохранения стабильности, неизменности внешних обстоятельств.
Ребенок по отношению к родителям выступает как проявление третьей силы. Подобна тому и роль пастуха для стада. К проявлению уравновешивающей силы можно отнести некоторые ограничения, например, диету.

Прошлое, которое уже свершилось, пассивно и неизменно. Будущее многовариантно и потому активно. Настоящее находится между прошлым и будущим. Поэтому его можно отнести к проявлению действия третьей силы. Благодаря ей обеспечивается пребывание человека в настоящем времени, в сущности, сама жизнь.

Когда осуществляется обмен товарами между людьми по известной формуле: товар - деньги - товар, то в качестве третьей силы будут выступать деньги.

Натуральный обмен по формуле ТОВАР на ТОВАР - это обмен на уровне активной и пассивной сил. Продавец выступает как проводник активной силы, отдавая товар, а покупатель как проводник пассивной силы, поскольку принимает товар. Но когда появились деньги, ситуация в корне изменилась. Банкноты в кошельке можно считать проводниками третьей силы. Теперь в обмене стали участвовать все три силы. Появление третьего полюса в добавление к двум другим, приводит к тому, что ситуация становится сформированной, целостной. Это значительно упростило и ускорило весь процесс.

Каждое событие, какого бы оно ни было масштаба и где бы оно ни проявлялось, всегда есть результат сочетания трех сил. Когда наблюдается остановка в чем-то, бесконечное топтание на одном месте, то можно сказать, что в этом случае нет третьей силы. Например, нет денег и никак не сделать покупку. Известно немало примеров, когда в момент экономического кризиса вновь всплывает натуральный обмен и как трудно, оказывается, обменять один товар на другой.
Уравновешивающая сила всегда несет в себе элемент обмена, согласования двух или более несогласованных объектов. Она практически неуловима, поскольку все внимание человека сосредоточено на самих объектах. Мы лишь видим результат ее действия, но не знаем, как она работает. Если бы мы захотели изобразить все три силы графически, в виде векторов, то они оказались бы взаимно ортогональны, как оси координат. Третья сила не входит в мир активных и пассивных сил, и поскольку она плохо осознается, то можно сказать, что она всегда «не от мира сего».

В жизни полезно учитывать наличие всех трех сил. Например, для умелого обращения с деньгами. Люди хорошо научились зарабатывать деньги. Это проявление активной силы. Еще лучше умеют их тратить. Это проявление пассивной силы. Но когда вопрос касается сохранения или меры при получении или расходовании денег, иначе говоря, третьей силы, то тут люди чаще всего пасуют. Иногда на вопрос: «Сколько бы вы хотели иметь денег?» можно услышать ответ: «Столько, чтобы можно было их не считать!» или «Надоело считать копейки!» Это в корне неверно. Денежные потоки должны протекать, но при этом нужен учет и контроль, как прихода, так и расхода денег. Иначе говоря, необходима бухгалтерия и мера при управлении денежными потоками. Если мы хотим владеть деньгами, их придется считать, ведь недаром говорят «денежки счет любят». Но это не жадность или скупость. Искусство владеть деньгами связано с третьей силой, умением сохранять и считать деньги, управлять денежными потоками.

Другой пример. Применим концепцию трех сил для решения вопросов, связанных со здоровьем. Очевидно, что хорошему состоянию человека будет соответствовать наличие гармоничного баланса всех трех сил. Превалирование любой из них негативно сказывается на здоровье. Читателю, наверное, уже понятно, что проблемы чаще всего связаны с недостатком, а то и отсутствием в некоторых случаях именно уравновешивающей силы. Так, например, если возникло желание достичь некоторой цели, оно обязательно должно подкрепляться действием. Тогда будут на месте все три полюса. Желание может рассматриваться, как проявление активной силы. Цель соответствует пассивной силе. Но когда есть только два полюса, возникнет неустойчивое равновесие, которое вызовет разрушение организма. А вот если есть действие, то возникает третий полюс и ситуация становится более целостной. Чтобы избежать нежелательного течения событий, лучше дать возможность организму проявить третью силу иначе, чем болезнь.

Еще пример. У каждого человека в жизни много конкретных задач, но основные, так сказать, бытовые цели и желания можно свести к трем. Это наличие здоровья, счастья в семье и материального достатка. Эти три жизненные задачи, которые приходится решать любому человеку, можно соотнести с выше упомянутыми тремя полюсами и изобразить в виде схемы (см. рис.).

Из этой схемы следует, что мужчинам для обретения третьего полюса надо больше внимания уделять собственному здоровью. Если вы мужчина, то вспомните, когда вы, например, были у зубного врача? Здоровый мужчина может и денег заработать достаточно. А вот для женщины обретение третьего полюса в большей степени связано с наличием материального благосостояния. Исследователи установили, что если у женщины доход уменьшается на 10%, то ее вес, видимо от расстройства, может увеличиться на 30%.
Ну, а если здоровьем природа щедро не одарила, и денежные потоки оставляют желать лучшего? Тогда третья сила может проявиться через налаживание семейных отношений. Крепкая семья - проводник третьей силы.

Третья сила и карма

Закон смешивания

В метафизике индусов карма представлялась как нечто материальное. Считалось, что некая тонкая материя, готовая превратиться в карму, вливается в душу. Душа, являющаяся прибежищем страстей, задерживает эту тонкую материю, и она вступает в контакт с душой, образуя с ней в некоторое «химическое» соединение. Это «химическое» соединение превращается в карму и образует своего рода тонкое тело, которое определяет индивидуальное состояние и удел данной души. Третья сила проявляется, когда нечто высшее смешивается с низшим, чтобы появилось среднее, которое становится высшим для прежнего низшего и низшим для прежнего высшего. Карма есть результат действия третьей силы.

Если применить закон смешивания ко всему сущему, то словом «высшее» можно обозначить то, что выходит за границы восприятия, мир, который люди не могут постигать при помощи ощущений. А слово «низшее» будет означать мир, полностью доступный органам чувств человека. Между этими двумя мирами есть ниша, которую заполняет их смесь: это жизнь.

Третья сила проявляется только в момент объединения активной и пассивной силы. Тогда возникает целостное состояние и происходит действие. Все делается отнюдь не посредством активной или пассивной силы. Именно третья сила позволяет что-либо делать. И карма появляется как результат действия третьей силы, она сопровождает жизнь. Поэтому карма должна быть. Другое дело, какое качество имеет эта карма.

Происхождение, эволюция и устройство Вселенной как целого изучаются

космологией.

Слово «космология» происходит от греч. kosmos – вселенная и logos – закон. Уже древние мудрецы задались вопросом о происхождении и устройстве Вселенной, поэтому космология – учение о строении мира – и космогония – учение о происхождении мира – были неотъемлемым компонентом философских систем древности.

Современная космология – это раздел астрономии, в котором аккумулированы частнонаучные данные физики и математики и универсальные философские принципы, космология представляет собой синтез научных и философских знаний. Именно этим определяется ее специфика. Выводы космологии почти полностью обусловлены теми философскими принципами, на которые опирается исследователь. Дело в том, что размышления о происхождении и устройстве Вселенной эмпирически труднопроверяемы и существуют в виде теоретических гипотез или математических моделей (4.1). Космолог движется от теории к практике, от модели к эксперименту, в этом случае роль исходных философских и общенаучных оснований существенно возрастает. Именно поэтому космологические модели радикально различаются между собой – в их основе лежат разные, порой конфликтующие мировоззренческие принципы. Понятно, что религиозная космология будет серьезно отличаться от космологии, построенной на материалистических мировоззренческих основаниях. В свою очередь любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т. е. изменяют фундаментальные представления человека о мире и самом себе. Таким образом, можно сказать, что современная космология – это не только «физика», но и «философия», а иногда и «религия».

Классические космологические представления, сутью которых было утверждение абсолютности и бесконечности пространства и времени, а также неизменности и вечности Вселенной, сталкивались с двумя неразрешимыми парадоксами – гравитационным и фотометрическим.

Гравитационный парадокс

заключался в противоречии между исходными постулатами о бесконечности Вселенной и ее вечности. Так, если предположить бесконечность мира, то необходимо также признать и бесконечность действующих в нем сил тяготения. Бесконечность сил тяготения между небесными телами должна была бы привести к коллапсу, т. е. Вселенная не могла бы существовать вечно, а это противоречит постулату о ее вечности.

Фотометрический парадокс

также вытекает из постулата бесконечности Вселенной. Если Вселенная бесконечна, то в ней должно существовать бесконечное число небесных тел, а значит, светимость неба также должна быть бесконечной, однако этого не происходит.

Парадоксы классической науки разрешаются в современной релятивистской космологии.

Началом революции в астрономии считается создание в 1917 г. А. Эйнштейном

стационарной релятивистской космологической модели.

В ее основу положена релятивистская теория тяготения, обоснованием которой служит общая теория относительности (3.2). А. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению А. Эйнштейна, зависят от распределения в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Сигнал, пущенный наблюдателем во Вселенной, вернется к нему с противоположной стороны. Согласно стационарной релятивистской модели пространство однородно и изотропно (3.2), материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. Таким образом, несмотря на новизну и даже революционность идей, А. Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира: А. Эйнштейна более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый. В конце жизни великий ученый с сожалением говорил о том, что теория статичной Вселенной не имеет эмпирического подтверждения.

В 1922 г. российский математик и физик А. Фридман выступил с критикой теории А. Эйнштейна. Его идеи стали началом

нестационарной релятивисткой космологии.

Космологическая концепция А. Фридмана основывается на нескольких принципах.

Космологический принцип однородности и изотропности пространства.

Изотропность означает, что во Вселенной не существует выделенных точек и направлений. Однородность характеризует распределение вещества во Вселенной. Космологический постулат имеет сильный и слабый варианты. Слабый вариант предполагает независимость процессов, протекающих во Вселенной, от направления (изотропность) и места (однородность). Сильный вариант космологического принципа предполагает независимость (инвариантность преобразований) процессов не только от направления и места, но и от времени. Это значит, что Вселенная выглядит одинаково из любого места, в любом направлении и в любой момент времени. Этот принцип получил название совершенного космологического принципа.

Релятивистский принцип взаимосвязи пространства и времени и их зависимости от материи.

Пространственно-временная метрика Вселенной задается гравитационными полями, признаются также искривленность пространства и замедление времени во всех частях Метагалактики. Пространственно-временная метрика описывается уравнениями общей теории относительности.

Принцип конечной скорости протекания любых физических процессов.

Принцип нестационарности Вселенной,

поначалу основанный только на математических расчетах, согласно которым искривленное пространство не может быть стационарным, его кривизна должна меняться во времени.

Все эти принципы дают основание переносить данные, полученные в одной части Вселенной, на все остальные ее части.

А. Фридман предложил три модели Вселенной. В первой рассматривается случай средней плотности вещества и неискривленности пространства. В такой ситуации Вселенная должна бесконечно расширяться из некоторой исходной точки. Во второй модели предполагалась плотность вещества меньше критической. В этом случае пространство обладает отрицательной кривизной, а Вселенная также должна неограниченно расширяться из начальной точки. В третьей модели рассматривался случай плотности вещества выше критической. В этой ситуации пространство должно иметь положительную кривизну, а Вселенная периодически расширяться и сжиматься.

Концепция А. Фридмана некоторое время не имела эмпирического подтверждения. Однако в 1929 г. физик Э. Хаббл обнаружил эффект «красного смещения» в спектрах удаленных галактик. «Красное смещение» означает понижение частот электромагнитного излучения при удалении источника света от наблюдателя. Т. е. если источник света удаляется от нас, то воспринимаемая частота излучений уменьшается, а длины волн увеличиваются, линии видимого спектра смещаются в сторону более длинных красных волн. Оказалось, что «красное смещение» пропорционально расстоянию до источника света. Исследования Э. Хаббла подтвердили, что удаленные от нас галактики разбегаются, т. е. Вселенная находится в состоянии расширения, а значит, нестационарна. Другим важным экспериментальным свидетельством в пользу гипотезы расширяющейся Вселенной стало открытие реликтового излучения – слабого радиоизлучения, свойства которого являются в точности такими, какими они должны были быть на этапе горячей, взрывной Вселенной.

В 1927 г. бельгийский ученый Ж. Леметр предложил понятие

сингулярности

как исходное состояние Вселенной . Ж. Леметр предположил, что первоначальный радиус Вселенной равнялся 10-12см, а ее плотность– 1096г/см3, т. е. в начальном состоянии Вселенная должна представлять собой микрообьект, по размерам близкий к электрону. В 1965 г. С. Хокинг математически обосновал необходимость состояния сингулярности в любой модели расширяющейся Вселенной.

Представление о развитии Вселенной привело к постановке проблемы начала эволюции (рождения) Вселенной и ее конца (смерти). Вселенная развивается из исходного сингулярного состояния, радиус которого бесконечно мал, а плотность материи бесконечно велика, проходит различные этапы своего развития, а затем умирает. Состояние сингулярности можно трактовать как обрыв времени в прошлом. По-видимому, такой обрыв времени следует предположить и в будущем. В моделях пульсирующей Вселенной та точка, в которой расширение сменится сжатием, рассматривается как обрыв времени в будущем. Момент «начала» времени называется Большим Взрывом . Момент «конца» времени был назван Ф. Типлером Великим Стоком.

Если есть рождение и смерть, то можно говорить о возрасте Вселенной. Ученые рассчитали, что если бы скорость расширения была постоянной на протяжении всего существования Вселенной, то можно было бы говорить о возрасте в 18 млрд лет. Однако современная космология утверждает, что расширение Вселенной постепенно замедляется. Поэтому время, прошедшее с момента Большого Взрыва, может составить 12 млрд лет. Если же предположить существование космических сил отталкивания – такое допущение делается в инфляционных моделях, – то возраст Вселенной будет значительно больше. Современные космологи оценивают возраст Вселенной в 12–20 млрд лет.

С представлением о возрасте Вселенной связано понятие

космологического горизонта,

отделяющего доступную для наблюдений область пространства от недоступной. За время, прошедшее с момента возникновения Вселенной, свет мог пройти конечное расстояние, которое оценивается величиной в 6000 Мпк. Мы можем наблюдать только ту часть мира, которая находится в пределах этого радиуса, поскольку от более удаленных областей пространства свет еще не успел до нас дойти. Кроме того, удаленные области пространства мы видим такими, какими они были миллиарды лет назад. Космологический горизонт растет пропорционально времени, с каждым днем область доступной для наблюдения Вселенной увеличивается.

В 40-е гг. XX в. наступил новый этап развития космологии: для объяснения происхождения Вселенной американским физиком Дж. Гамов хм была предложена

гипотеза Большого Взрыва.

Согласно этой гипотезе, Вселенная возникла в результате взрыва из первоначального состояния сингулярности. Дальнейшая эволюция происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением структур. Этапы эволюции Вселенной называются эрами.

Адронная эра:

длительность 10-7с, температура Вселенной составляет 1032К. Главными действующими лицами являются элементарные частицы, между которыми осуществляется сильное взаимодействие. Вселенная представляет собой разогретую плазму.

Лептонная эра:

длительность 10 с, температура Вселенной 1015К. Главные действующие лица – лептоны (электроны, позитроны и др.).

Эра излучения::

длительность 1 млн лет, температура Вселенной 10 000 К. В это время во Вселенной преобладало излучение, а вещество было ионизированным.

Эра вещества::

длится и сейчас. Вселенная остывает, становится нейтральной и темной, образуется вещество. В начале этой эры возникают первые протозвезды и протогалак-тики. Излучение перестает взаимодействовать с веществом и начинает свободно перемещаться по Вселенной. Именно эти фотоны и нейтрино, остывшие до 3 К, наблюдаются сейчас в виде реликтового излучения.

Гипотезу Большого Взрыва называют также моделью горячей Вселенной, или стандартной моделью. Эта гипотеза стала общепринятой после открытия в 1965 г. реликтового излучения. Несмотря на стандартность и общепринятость, концепция Большого Взрыва не дает ответа на некоторые вопросы. Например, каковы причины образования галактик из ионизированного газа? Почему наблюдается асимметрия вещества и антивещества? Самой большой проблемой остается состояние сингулярности, введение которого требуется уравнениями общей теории относительности А. Эйнштейна.

Для моделирования первых мгновений существования Вселенной, прояснения причин Большого Взрыва и обьяснения сингулярности физиком А. Гутом была предложена

инфляционная гипотеза,

модель инфляционной Вселенной.

На данном этапе развития науки инфляционная концепция не может получить прямого эмпирического подтверждения, однако она предсказывает новые факты, которые в принципе могут быть проверены. Инфляционная теория описывает эволюцию Вселенной начиная с 10-45с после начала расширения. Модель раздувающейся (инфляционной) Вселенной не противоречит гипотезе Большого Взрыва, включая ее в качестве своего частного случая. Различие между концепцией Большого Взрыва и концепцией инфляционной Вселенной касается только первых мгновений существования мира– до 10-30с, принципиальных мировоззренческих расхождений между этими гипотезами нет.

Согласно инфляционной модели первоначальное состояние Вселенной – состояние квантовой супергравитации. Радиус Вселенной в этот момент составляет 10-50см. Это значительно меньше радиуса атомного ядра, который оценивается величиной 10-13см. Первоначальное состояние Вселенной – вакуум, особая форма материи, характеризующаяся высокой активностью. Вакуум как бы «кипит», в нем постоянно рождаются и уничтожаются виртуальные частицы. Возникновение частиц из вакуума описывается понятием флуктуации. Вакуум может находиться в состояниях, характеризующихся разными давлениями и энергиями. Если вакуум возбужден (так называемый ложный вакуум), то в процессе порождения и уничтожения виртуальных частиц возникает огромная сила космического отталкивания, которая и приводит к раздуванию «пузырей» – зародышей вселенных. Исходное состояние ложного вакуума можно сравнить с кипением воды в котле. Каждый из «пузырей» – домен, отдельная Вселенная, характеризующаяся собственными значениями фундаментальных физических констант. Считается, что наша Вселенная – один из «пузырей», возникших из вакуумной пены.

Раздувание, или быстрое расширение, было названо инфляцией. На фазе инфляции примерно в промежутке с 10-43с до 10-34с формируются пространственно-временные характеристики Вселенной. Таким образом, в рамках инфляционной модели предполагается существование мира без пространства и времени, поскольку в первой стадии раздувания Вселенной такие характеристики отсутствуют.

Во время фазы инфляции Вселенная «раздулась» до размера 101000000см, что намного превосходит размер наблюдаемой сейчас Метагалактики (1028см). Примерно через 10-34с после начала расширения неустойчивый вакуум распадается, а силы космического отталкивания иссякают. Как показали эксперименты, при падении температуры ниже 1027К наблюдаются процессы распада. Однако в силу того что распад частиц и античастиц идет по-разному, во Вселенной образуется незначительное преобладание вещества над антивеществом: на миллиард античастиц образуется миллиард плюс одна частица. Удовлетворительных объяснений этой асимметрии пока не найдено. Именно это избыточное вещество и стало «материалом» для Вселенной. Нарушение симметрии между веществом – антивеществом привело к нарушению равновесности системы, и она перешла в новое состояние, изменив свою структуру.

В это время во Вселенной начинает действовать известная нам сила гравитационного притяжения. Но поскольку начальный импульс расширения был очень сильным, Вселенная продолжает расширяться, однако значительно медленнее. Расширение сопровождается понижением температуры. На этом этапе Вселенная пуста, в ней нет ни излучения, ни вещества. Однако энергия, которая выделилась при распаде ложного вакуума, идет на мгновенный нагрев Вселенной до температуры примерно 1027К. Происходит своеобразная вспышка света. Энергия, мгновенно разогревшая Вселенную, сейчас понимается как суперсила, которая объединяла все известные четыре типа фундаментальных взаимодействий: гравитационное, сильное, слабое и электромагнитное (3.5).

На этом заканчивается стадия инфляции и начинается эволюция горячей Вселенной, описываемая моделью Большого Взрыва. Первый этап эволюции Вселенной был назван

эрой Великого объединения.

Через 10-12с после Большого Взрыва температура Вселенной составляла около 1015К. В это время начинается образование известных нам частиц и античастиц. Однако в силу того что температура очень высока, свойства этих частиц сильно отличались от тех, которые наблюдаются сейчас. При падении температуры ниже 1015К возникают современные частицы, которые теперь становятся вполне различимыми.

При температуре 1013К кварки начинают объединяться в группы и образуются адроны – протоны и нейтроны. На этом этапе единая суперсила распадается на гравитационное, сильное и электрослабое взаимодействия. В конце первой секунды после Большого Взрыва температура Вселенной составляет 1010К.

В начале следующего этапа, длительность которого от 1 с до 1 млн лет, происходит разделение электрослабого взаимодействия на электромагнитное и слабое. Через минуту температура Вселенной падает до 108К, а еще через несколько минут складываются условия, при которых стали возможны ядерные реакции синтеза сложных элементов. В это время материя представляет собой плазму, на 10 % состоящую из ядер гелия и на 90 % – из ядер водорода. В момент, когда возникли атомы водорода и гелия, космическое вещество стало «прозрачным», проницаемым для фотонов, которые начинают излучаться в пространство. Сейчас мы можем наблюдать остаточные явления этого процесса в виде реликтового излучения. Из атомов водорода и гелия образовался газ, и сложились условия для формирования других химических элементов – бериллия и лития.

Через 1 млн лет после начала расширения Вселенной наступил этап образования звезд и галактик. В недрах звезд в результате термоядерных реакций стали синтезироваться тяжелые элементы, которые в результате взрывов звезд разбрасывались по Вселенной и становились строительным материалом для других космических объектов. Дальнейшая эволюция Вселенной пошла в направлении создания все более сложных структур, что в свое время привело к возникновению жизни и разума. Таким образом, микроэволюция выступила предпосылкой макроэволюции, а космогенез получил продолжение в гео– и химогенезе.

Несмотря на то что гипотезы Большого Взрыва и инфляционной Вселенной являются общепринятыми в научной среде, они порождают серьезные теоретические проблемы и подвергаются критике. Так, например, американский ученый К. Болдинг считает, что проблемы возникают уже на уровне общепринятых постулатов, лежащих в основе космологического моделирования, и нет никаких оснований заранее отвергать альтернативные подходы к пониманию Вселенной.

Самые большие проблемы современной космологии связаны с описанием ненаблюдаемого и труднообъяснимого состояния сингулярности, которое даже иногда называют аномальным фактом. Введение состояния сингулярности требуется математическими расчетами, но при этом само не поддается математическому описанию и представляет серьезную концептуальную проблему. Некоторые ученые вообще заявляют, что физическая теория, предсказывающая сингулярность, является несостоятельной, поскольку проблема сингулярности оставляет открытым фундаментальный вопрос космологии – о начальных параметрах Вселенной. Проблема сингулярности имеет важное мировоззренческое значение, поскольку разрушает представление о вечном и бесконечном мире и подталкивает к выработке новой картины мира.

Вторая проблема современной космологии связана с принципом экстраполяции на всю Вселенную законов, открытых в земных условиях. Возникает серьезный вопрос: правомочна ли такая экстраполяция? Причем речь идет не только о переносе «земных законов на „неземную“ область, но и об экстраполяции законов и свойств наблюдаемой Вселенной на принципиально ненаблюдаемую. Нет никаких доказательств того, что физические законы, открытые на Земле, действуют во всей Вселенной и на всех этапах ее эволюции. Как считают математики С. Хокинг и Г. Эллис, предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, является очень смелым.

Трудности, с которыми сталкивается современная научная космология, используются как аргумент в пользу существования высшего разума, который и создает Вселенную. В этом случае научная картина мира подменяется теологической. В такого рода космологических концепциях состояния сингулярности и ложного вакуума рассматриваются как то самое «ничто», о котором говорится в религиозных текстах. Из этого «ничто» божественная сила творит мир. Точная «подогнанность» фундаментальных физических параметров нашей Вселенной, приведшая в конце концов к возникновению жизни и разума, также переинтерпретируется в телеологическом и теологическом духе и рассматривается как свидетельство высшего замысла, согласно которому и происходит эволюция мира (7.3).

Религиозные и мистические версии происхождения и развития Вселенной, маскирующиеся под научные объяснения, представляют собой различные варианты квазинаучного знания (1.1), которое на очередной волне ремифологизации стремится завоевать прочные позиции в культуре. Следует все же сказать, что, несмотря на все трудности нынешних космологических моделей, наиболее приемлемым по-прежнему остается поиск естественных причин возникновения и эволюции Вселенной без апелляции к сверхъестественным силам и сущностям.

Как это можно видеть в результатах исследований процессов на Земле, все процессы кругообразные: появляются, увеличиваются и разлагаются.
Разложение материи очень частое явление во Вселенной. Самый радикальный пример – случаи взрывов звёзд разных величин, называемых новыми и сверхновыми, в зависимости от величины взорванной звезды. Другие способы разложения материи происходят при столкновениях объектов во Вселенной или радиации с видимой материей.
Первые доказательства об исчезновении (разложении) материи обнаружены в лабораториях везде в мире, в которых регистрированы краткоживущие частицы (одна из 2.2 х 106 частей одной секунды). Частицу назвали мюон. Исследования тогда пошли в двух направлениях: одно направление хотело доказать, что материя в общем смысле разлагается. С такой целью его сторонники начали строить бассейны с жидкостью (ряд величины свыше 1033протонов) с очень большим числом детекторов глубоко под почвой, чтобы космическая радиация не влияла на процесс.
Доказательство, полученное такими экспериментами: материя не разлагается сама по себе.
Другая возможность была столкновение долгоживущих частиц (протонов, нейтронов и электронов) в акселераторах, которые становятся всё больше и сильнее. Самый большой – всё ещё активный коллайдер в Швейцарии. В начале, задача была сломить атом (протон), и определить, что его сочиняет, т.е. соответствен ли он уже существующему определению атома, которое взглад атома описывает системой, похожей к Солнечной системе.
Все тем способом формированные структуры существовали кратко, одну миллиардную часть секунды. Очень интересным было обнаружение мюона, на основе которого сразу можно было сделать вывод, что такие же столкновения происходят при столкновениях радиации и Земной атмосферы. Так как мюон на ~ 8 раз меньше протона, можно поставить вопрос: почему из Вселенной при разложении частицы мы регистрируем только мюоны, но не и другие частицы, появившиеся вследствие разложения протона? Причина простая – из-за разницы в заряде мюона и Земли. У Земли позитивный заряд и она притягивает ту часть протона, у которой негативный заряд. Самая большая часть протона имеет позитивный заряд, и поэтому не могла появиться и быть регистрированной в лабораториях.
Даже в сегодняшнее время для официальной науки неприемлемое сущетвование протона как частицы с три полюса. Два из них заряжены: один главным образом позитивный; второй негативный; и третий, в котором заряд аннулирован, и поэтому он без него. Существование три полюса обменилось тремя кварками, которые стали видимыми при бомбардировке протона с помощью электрона. Одна и та же проблема осталась, потому что при разложении протона не формируются кварки. Случайные события они приписывают кварками, а если бы они действительно существовали, то они стали бы долгоживущими частицами, а на самом деле, они не то.
Большое достоинство тех экспериментов заключается в обнаружении самой маленькой и долгоживущей частицы, называемой нейтрино. В буквально каждом эксперименте разложения протон, наконец, после несколько интерфаз, разложился в электроны и нейтрино. Раньше, тоже как и ныне, мир науки был очарован краткоживущими творениями или интерфазами разложения протона, и поэтому тому доказательству не посвятили ни меньшего внимания, потому что не совпадал с существующими восприятиями атома и предпосылками о том, какой он должен быть.
Проблемы с нейтрино наверно появились оттого, что они слишком мелкие для наших инструментов. Даже и в это время трудно определить их массу (новые данные: 0.320 ± 0.081 эВ / c2; сумма трёх ароматов, wikipedia.org/wiki). В недостатке данных, как и всегда, начинаются фантастические и сенсационные утверждения, которые ничем не связаны с наукой. Основная проблема с нейтрино в том, что его наблюдают вне закона о материи, а он появился из материи. В формировании нейтронов тоже участвуют нейтрино и электроны, поэтому масса нейтрона больше массы протона с присоединённой массой электрона. Я часто подчёркиваю, что людям легче продавать фантастические выдумки, как например: нейтрино ведут себя похоже к привидениям; они проходят через всякую материю, якобы её не было; десятки тысяч в каждую секунду проходят через ваши глаза (как же вы это не видите?); и т.д., чем сказать правду. Её здесь немного, да ну что ж.

(Рост материи вместо Биг Банг I. )
В формировании Вселенной участвуют только долгоживущие частицы: протон, с вариантом: нейтрон, электрон, нейтрино и энергия (фотон). Поворачивая поступок разложения атома наоборот, т.е. желая составить атом из разложенных частей, соблюдая правило, что в формировании атомов участвуют только долгоживущие частицы, получается то, что он состоит из очень большого количества нейтрино, электронов и энергии. Все интерфазы наконец разлагаются на электроны, нейтрино и энергию. Поэтому не стоит предположить, что какая-то фаза, существующая менее одной миллиардной части секунды, может отдельно существовать или думать, что так краткое время достаточно, чтобы из тех интерфаз появились частицы. Кроме того, такие интерфазы в природе не существуют самостоятельно. Электрон меньше протона в ~1836 раз; поэтому можно предположить, что он тоже состоит из большого, приблизительного тому же, количества нейтрино.
Теперь нужно объяснить два полюса атома. Химия определяет водород одновалентным, но допускает и существование слабой водородовой связи, которая появляется в химических процессах C-H…O. Сила такой связи оценивается на приблизительно 5% силы нормальной связи (отклонения от этой цифры зависят от кислотности химического соединения).
Связывание частиц материи только возможно при наличии разных зарядов частиц. Самый очевидный пример того – протон (H), который не появляется один или с электроном (электронами), а в паре (H2). Почему бы частица связывалась с такой же частицей одинакового заряда, а не с вездесущими и различными по заряду электронами?
Единственная возможная причина то, что частица двуполюсная, причём один полюс подчинён другом, однако он на много больше от несколько электронов, которые не могут преодолеть другой полюс (в этом случае, негативный полюс) протона. Одно связывание двух протонов есть ясное доказательство, что, на самом деле, два полюса. Не только у электронов негативный заряд; если бы так было, то связывание атомов не происходило бы, потому что они были бы насыщенные электронами, и поэтому материи и не было бы. Уже в акселераторах мы обнаружили существование позитивных электронов, а тоже и позитивных нейтрино. Это ясный намёк, что и те две частицы двуполюсного ведения. Используя слабую водородовую связь, можно оценить число от больше 90 электронов на негативном полюсе. Это большой барьер, которого электроны и нейтрино не могут пополнить. Из состава нейтрона видно, что в связь вступают только два электрона и два нейтрино, и что такая связь отнюдь не устойчива (её устойчивость длится в течение приблизительно 17 минут или 1.01 x 103 секунд), а связь H2 устойчива полностью или до вступления в какой-то химический процесс.
Большое количество нейтрино и электронов с энергией формируют нить, у которой на её концах различные заряды. Они связываются и нить превращается в шарик. При ударе электрона в коллайдере можно регистрировать три вершины: нейтральная на месте соединения, а сбоку позитивный и негативный заряды. Сразу из этого можно заметить наличие геометрии атома. Она будет меняться с увеличением атома, с помощью присоединения.
Присоединение – это не то, что простое расположение шариков или блоков. Это видно из радиуса Ван-дер-Ваальса: у атомов, у которых 200 протонов и нейтронов, радиус меньше радиуса кислорода (16 тех частиц) или азота (14 частиц). Когда на протон действует достаточное количество заряда (количество, которое сильнее его слабого связывания), нить открывается и присоединяется с пришельцем. Только так можно объяснить, например, большие разницы между аргоном, калием и кальцием, у которых одинаковое или близкое количество протонов и нейтронов. Их разницы последствие разных структур, появившихся в связывании протонов и нейтронов.
Когда атом присоединением увеличится за пределы природных границ существования, он начинает разлагаться. Связывание и увеличение атома – постоянные процессы, из-за постоянного потока новых частиц. Поэтому атом должен отбросить избыточное, будь то протон, нейтрон или гелий. При таком отбрасывании избыточного материала появляется радиация. Радиация и отбрасывание избыточного – только последствие балансировки атома из неблагоприятного в благоприятное положение.
Увеличение не останавливается на атомах; наоборот, связывание продолжается дальше (присоединением, химическими реакциями и в их комбинациях). Так формируются газ, пыль, песок, горные породы, называемые астероидами и кометами,…, планеты. Когда масса планеты увеличится до 10% массы Солнца, планета становится звездой; некоторые из них могут быть огромными (звёзды супер-гиганты).
Что увеличение объектов действительно и существует, доказывают миллионы кратеров, разброшенных по объектам нашей системы, а что те процессы непрерывно существуют и в это время, тоже так, как это было в любом периоде прошлого времени, доказательством могут быть постоянные удары астероидов в нашу атмосферу и Землю. Некоторые оценки утверждают, что на Землю ежегодно падает 4.000 - 100.000 тонн внеземного материала. Мы свидетельствовали и столковениям объектов с Юпитером, Луной, и т.д. Отнюдь не стоит говорить о каком-то пра-формировании, особенно не об одновременном формировании. У каждого объекта своя история, своя масса, своя старость; они не такие же ни у одного другого объекта. Как правило, чем объект больше, тем и старше. Хотя, есть некоторые коррективные факторы, из-за условий, в которых объекты существуют.
Внутри этого процесса происходит процесс увеличения и разложения элементов; тот процесс в связи с температурой и вращением. На маленьких объектах: астероидах, кометах, и на большем числе спутников и маленьких планет, как правило, участвуют атомы более низкого ряда. Когда масса объектов достаточно увеличится, те объекты, при помощи и других сил, становятся геологически активными. Их температура увеличивается на и внутри коры, из-за формирования горячего ядра. В таких условиях появляются атомы более высокого ряда. Чем планета теплее и более активна, тем больше высших элементов. Однако, в определённом моменте, температура начинает уничтожать (разлагать) высшие элементы.
С дальним увеличением температуры, разновидность элементов уменьшается, поэтому у горячих звёзд только водород и гелий, а остальные элементы составляют менее 1%. Оба процесса можно наблюдать на Земле, а второй из них видим в составе магмы. Магма состоит из более низких атомов; то подтверждают и её остывшие горные породы. В магме нет золота, серебра ни других высших элементов. Для их появления нужны ещё некоторые условия.
Температура звёзд в прямой связи со скоростью вращения звезды. Те, у которых маленькие скорости, красные, а с увеличением скорости вращения, увеличивается их блеск и температура, а звёзды становятся белыми и синими. Вдиаграмме Герцшпрунга-Рассела видно, что одинаковый блеск может быть и у звёзд очень маленькой массы и у супер-гигантов. Они могут быть белыми, красными или синими. Подходящим ответом, очевидно, нельзя считать их массу и количество так называемого топлива, потому что есть звёзды одинаковых масс, т.е. величин, однако, совсем различного блеска. Если бы пытались это объяснить присутствием различных элементов, то не имело бы смысла. Ведь различие элементов именно и зависит о температуре: чем температуры выше, тем и разновидность элементов ниже, а и более низкий ряд элементов. Чем температуры ниже, тем выше разновидность и присутствие.
Если бы звёзды сгорали топливо, они бы теряли массу, а это не так. Наоборот, они постоянно увеличивают массу с притоком внешней массы системы (кометы, астероиды, планеты). Противоположно доказательствам тоже и утверждения, что внутри звёзд радиоактивные процессы, которые излучают свет. Доказательства несомненно указывают на то, что звёзды не радиоактивные. В поддержку того выступает и магма на Земле, у которой полное отсутствие радиоактивности. Не стоит утверждать, что те процессы происходят глубоко во внутренности звезды, потому что, вследствие высоких температур, материя перемещается из внутренности к наружному слою. Тоже и наоборот, потому что это один объект, а не отдалённые миры. Всё, что нам о звёздах непонятно, можно узнать на Земле. Она тоже горячая, кроме коры, толщина которой составляет менее одного промилле, относительно расплавленной части Земли. Если радиоактивности нет на Земле, её нет ни на звёздах, потому что принцип один и тот же. Поэтому есть данное, что объекты с массой, которая выше 10% массы Солнца, светят. Корректор этому проценту – мощность силы тяжести. Если объект в орбите ближе звезды, тогда масса светящих объектов на много ниже 10%. Это доказывают экзопланеты, т.е. огромное большинство тех, которые до сих пор обнаружены - „горячие юпитеры“.
Никак нельзя забывать Землю. Хотя она не потеряла кору, она горячая. Причина тому более точное определение границы, когда давление вызывает плавление объекта, вследствие увеличения массы. Опять же можно видеть, что силы давления единые ответственные для тех событий, потому что температура объектов выше в центре, чем на поверхности или ближе к ней. События начинают именно там, где силы давления сильнейшие. Ещё недавно считалось, что у планет: Юпитера, Сатурна, Урана и Нептуна – замороженные ядра жидкого водорода. Конечно, это не может быть правда, потому что Юпитер и Нептун излучают в два раза больше теплоты, чем они получают от Солнца. Это ясное доказательство о расплавленном ядре.
Ещё осталось разрушение материи путём взрывов звёзд. Наблюдения доказали, что во время взрыва звезды большинство материи исчезает. Так как старые законы не допускают потерю материи, из-за сохранения совокупной материи (для которой утверждается, что появилась однажды и что никаких перемен тут не может быть), эту пустоту пополнилось с помощью чёрной дыры, которая не принадлежит физике, потому что её законы вне физики. Астрономы открыли, что материя исчезает, а не видели или измерили формирование чёрной дыры, масса которой должна быть реально измеримой. Однако, её не мерят, только предполагают и догадаются, конечно, без доказательств. Не имеет смысла утверждать, что, где-то обнаружены объекты, вращающиеся вокруг чего-то, чего не можно регистрировать как чёрную дыру. Нигде в исследовании не появилось что-либо, не соблюдающее законы физики; ничего, указывающее на то, что плотность может быть вне закона о материи. Ещё хуже такую теорию безо всяких доказательств сделать частью официальной науки и школьных учебников, якобы она была несомненно доказана. У всех систем звёзд и галактик, с исключением шарообразных групп звёзд и галактик, центральная часть, которая сочиняет больше 90% совокупной массы (чаще всего, больше 99%). Диаметр центральной части тоже в тех размерах. У чёрных дыр получается наоборот: большие объекты вращаются вокруг меньших объектов. Это противоположно всем существующим доказательствам, полученным с помощью наблюдения, с времён начала таких деятельностей до сих пор.
Циклон – уже доказанное явление во Вселенной. Он последствие вращения объектов, систем и одной Вселенной. У каждой звезды на её полюсах циклоны, а также и у газообразных планет. Ничего другого нет ни в центрах галактик, а совсем возможно, что это единственное объяснение пустоты, в которой не можно регистрировать наличие объектов, однако, вокруг её вращаются звёзды. Причина невозможности регистрирования в том, что у объекта или системы, находящихся в центре, более медленное вращение, и поэтому свет не проходит через газообразную оболочку, а циклон может формироваться и из тёмной материи, которая с трудом регистрируется. В экспериментах с акселераторами мы увидели, что в столкновениях частица разлагается и из видимой переходит в невидимую материю. Во взрыве звезды есть такие же силы и бесконечное количество таких же столкновений. Это несомненно доказывает, что большинство материи звезды при взрыве разлагается из видимой в невидимую материю и энергию.
В 80-е гг. эксперты по субатомной физике открыли, что частицы выскакивают из поля, с примечанием, что сохраняются только те, которые закончили своё формирование, а большинство из них сразу возвращается в поле. Этот процесс полностью противоположен разложению атома: невидимая материя увеличением становится видимой для наших инструментов. Так как это не соответствует большинству законов и теорий, дальние исследования тут и закончились, а также и предложение Сэр Фреда Хойла о формировании частиц, чтобы объяснить расширение Вселенной.
Формированием частиц заканчивает колоссальный круг процесса кругообращения материи во Вселенной. В галактике взрывает не менее одной звезды в 100 лет. Некоторые утверждают, что этот период 1000 лет. Во Вселенной 100-200 миллиардов галактик. Только в миллион лет, при частотности новых одной в тысячу лет, есть тысяча взрывов, разлагающих большинство материи. Для целой Вселенной, в которой 100-200 миллиардов галактик, нужно умножить тысячу взрывов в миллион лет с числом галактик. Обратим сейчас внимание на некоторые правила ведения материи во Вселенной. Хотя во Вселенной 100 миллиардов галактик, а у галактики в среднем 200 миллиардов звёзд, в пространстве между объектами полная темнота. Все охотно говорят, что Вселенная огромное пространство и что звёзд недостаточно, однако, хватит ночью посмотреть небо и видеть очень много звёзд и тем способом убедиться, что такие утверждения не удаляют сомнение в их точность.
Только километров 20 от поверхности Земли полная темнота. Когда смотрим на фотографии Земли, сделанные с Луны, или с ещё большего расстояния, мы видим, что она светит. Очевиднее всего то, что, когда светит Земля, светит тоже и Луна, однако, между ними полная темнота. Как это возможно? Если свет состоит из фотонов и у него неограниченная досягаемость, почему темно?
Сейчас приведу два примера, которые это “объясняют“. Первый, это официальная точка зрения, что пространство пустое, поэтому свету от нечего отразиться, чтобы его регистрировать. Непонятно, почему светящему объекту нужно отражение, чтобы начал светить? Почему этот свет не можно видеть во Вселенной? Если свет приходит на Землю с отражением или без него, почему километров 20 в направлении источника света темно? Что, на самом деле, приходит?
Следующий пример, это объяснение Айзека Азимова, который сказал, что мы, смотря во Вселенную, смотрим в прошлое. Поэтому Вселенная смещена в красное и из-за этого фазного смещения, мы видим тёмную Вселенную.
Это звучит убедительно. Итак, смотреть галактики значит возвращаться в прошлое, но мы видим галактики, отдалённые (извините: старые) 13 миллиардов световых лет. Очевидно, у нас два типа света: светящий и не светящий. Тем не менее, это не объяснает, почему километров 20 от нас темнота; там не прошлое, а настоящее время.
Так как это совсем что-то новое, я использую самые очевидные доказательства. Солнце излучает радиацию (не свет), которая сама по себе не фотоны и не светит. Между Солнцем и Землёй тёмный простор, без видимой материи. Свет появляется, когда радиация столкнётся с видимой материей. На Земле, это атмосфера, на Луне, это её поверхность. Радиация не светит, материя тоже не светит, кроме объектов, излучающих радиацию. При столкновении радиации и материи появляется свет.
Свет и темнота узко связаны с простором между объектами. Давайте проверим, есть ли что-нибудь в том, официально пустом, просторе.
Пустой простор не может ни увеличить ни уменьшить скорость в нём находящегося объекта. Он тоже никаким способом не должен участвовать в формировании соотношений с объектами и радиацией. Нам известно, что, если бы космонавту в космосе щёлкнула верёвка, связывающая его с Международной космической станцией, он навсегда бы продолжил двигаться через Вселенную. Тем не менее, это не совсем так. Радиация со Солнца теряет мощность/интенсивность с увеличением пройденного пути. На Плутоне темнота, а на Луне жаркий день. Это доказательство, что радиация как-нибудь теряет мощность. Если бы посмотреть ночное небо, мы увидели бы приходящую со звёзд, но очень слабую радиацию. Ослабление интенсивности видно и при помощи температуры объектов: Меркурий, от – 173 до + 427°C; Марс, от – 143 до +35°C; Плутон, от – 235 до - 210°C, и т.д. Объекты ближе Солнца теплее на солнечной стороне и менее холодны на ночной стороне.
Давайте сравним это с видимой материей. Возьмём воду, например. Ближе к поверхности интенсивность света очень выражена, а чем глубже, тем всё больше она слабеет и темнота преодолевает. На поверхности высшая температура, которая уменьшается с увеличением глубины.
Очевидно, что видимая материя, в этом случае вода, ведёт себя соответственно тем же законам, как и простор вне нашей атмосферы. Этот простор не ведёт себя согласно пустому простору; наоборот, он показывает большое сходство с видимой материей. Итак, простор заполнен и интенсивно участвует в процессах внутри Вселенной. Это только может быть так называемая тёмная материя и энергия.
Кроме сходств, есть и разницы: вследствие столкновения с радиацией, видимая материя даёт свет, а невидимая нет. Более высокие температуры характеристика только видимой материи, в то же время как низкие температуры характеристика тёмной материи, а и видимой материи, которая вне интенсивной радиации - хотя незначительно, она немножко теплее тёмной материи, из-за слабой радиации.
Есть ещё одна важная разница: у видимой материи значительный и легко регистрируемый заряд, а у невидимой материи нет заряда, регистрируемого нашими инструментами. Всё-таки, если она частично состоит из нейтрино, некоторое количество заряда должно быть регистрируемое, однако, это невозможно в это время. Будущие инструменты будут больше замечающими. Только когда простор во и вне Вселенной пополним основной материей (тёмной материей и энергией), станет возможным Вселенную наблюдать в реальных цифрах.

(Черные дыры замените циклоны )
Температура ответствена для некоторых необычных законов во Вселенной. Вследствие гравитационных эффектов (гравитация – это сумма сил тяжести и вращения объекта), объекты, которые ближе центральному телу (звезды или галактики), из-за более интенсивной гравитации быстрее вращаются вокруг центрального тела, чем более далёкие объекты. Но, на краю системы звезды и галактики, это правило выключает низкая температура. Когда температура упадёт ниже критической точки, это даёт возможность объектам получить большие скорости по орбитам, из-за действия слабой гравитации. Для галактик это доказалось при помощи наблюдений, а для нашей системы это можно доказать на основе комет, приходящих из облака Орта. Их скорость больше скорости Плутона (в среднем, 2.5 раза, но нередко и больше 10 раз), а некоторые быстрее и Меркурия. Перемена правил ведения происходит, когда температура упадёт ниже точки плавления водорода, -259.14°С. Температура облака Орта приблизительно 12 - 4°К; это достаточно для ускорения объектов.
Вращение объекта вызывает одну специфичность, которая существует везде во Вселенной - это циклоны. Они находятся на полюсах Сатурна, Юпитера, Солнца, звёзд и галактик. Жидкие объекты (звёзды) и газообразные (газообразные планеты), вследствие вращения и магнитных сил, формируют циклоны на полюсах. Звёзды, у которых вращение вокруг своей оси быстрее, имеют значительные циклоны больших скоростей, чем объекты более медленного вращения. У тех объектов больше других объектов, захваченных в их орбите, а они тоже быстрее увеличивают свою массу - более быстрое вращение значит и более сильную гравитацию (сумму сил тяжести и вращения). Поэтому они, как правило, на много больше объектов с более медленным вращением. Нельзя забыть время или течение времени, которое сильный коррективный фактор (объект, старость которого больше десятков квадриллионов лет, доминирует своей массой над младшим объектом).
Есть два способа формирования галактик, у которых известные вертящиеся центры. Первый из них тот, что звезда большой скорости вращения должна выжить все опасности динамической Вселенной и достаточно увеличить свою массу, чтобы количество объектов в её орбите можно было считать постоянно увеличивающейся галактикой.
Второй способ тот, что в неправильной галактике, вследствие вращения объекта, из газа или невидимой материи сформируется циклон, который бы уже существующую неправильную галактику превратил в правильную.
Сходство тех способов очевидно, потому что, тоже как и у всех остальных звёзд, и в центре быстро вращающейся звезды - циклон, растягивающийся от полюса до полюса. У более медленных циклонов звёзд появляются перестановки полюсов, потому что циклоны друг друга не достигают. Вследствие того, материя на полюсах вращается быстрее материи в центре, в поясе экватора. Более быстрое вращение уравновешивает объект и тогда трудно ожидать перемежающиеся смени полюсов. Смену полюсов на Земле запрещает компактность коры (поверхностного слоя).
И у галактик есть максимум величины, удержимой во Вселенной; поэтому и они, как и атомы, должны отбрасывать избыточную материю. Есть некоторые сведения об этом, но так как я тщательно не обсудил полученные доказательства, об этом, пожалуй, буду говорить на следующий раз.
Хотя они ответствены для сохранения её целостности, циклоны на полюсах звёзд тоже и их Ахиллесова пята и, двумя способами, могут привести к её распаду.
Первый такой, что циклон, вследствие внешнего действия, остановится или значительно замедлится. Это вызывает кольцеобразный распад объекта, потому что масса объекта, управляема силой инерции после замедления циклона и исчезновения большей части гравитации (вращения), начинает отходить от центра. Если циклон остановился, центр остаётся пустым, а если циклон только замедлился, часть масы остаётся там, в качестве нового объекта: планеты, звезды или какого-то объекта, формирующегося вокруг циклона. Второй способ распада такой, который вызывает взрывы звёзд. Об этом способе большей частью говорят из-за ясной причины (выглядят колоссально и возбуждают мечту) и из-за объективной причины (производят излучение сильной радиации, которую легко обнаружить, в отличие от кольцеобразной туманности, в которой радиации нет).
На самом деле, это одно и то же событие, которое происходит когда некоторый объект придёт снаружи вертикально к одному полюсу звезды, попадёт в центр циклона и вторгнется глубоко во внутренность звезды. Если объект небольшой, его взрыв повлияет на скорость и ритм циклона, а если большой, его взрыв вызовет взрыв звезды.
В таких обстоятельствах можно дать ясное определение законности, вызывающей распад звезды, напротив так называемому сгоранию и расходу топлива. Звёзды взрывают, несмотря на их величину и факт, бывают ли они центральным объектом или объектом, вращающимся вокруг другой звезды. Это непреодолимое препятствие толкованию о сгорании топлива, котором придётся ответить: почему масса объекта не условие расхода топлива.
Теперь можно видеть, почему не происходит цепная реакция; почему объект, взорвавшийся в орбите вокруг звезды, не уничтожает и главную звезду. Причина простая: боковые столкновения не вызывают взрыв. Материя, т.е. её часть, захваченная силой тяжести, слияется с центральным объектом. О математической модели, которая объяснила бы такие события, буду говорить, может быть, на другой раз.

(Рост материи вместо Биг Банг II. )
Из угла нашей системы можно ближе познакомиться с процессами увеличения объектов и их взаимоотношений. Какой объект ни посмотрим внутри Солнечной системы, все они покрыты кратерами, вызванными ударами больших или меньших астероидов и комет. Довольно удачное обстоятельство, что мы были в возможности вблизи посмотреть все планеты, много спутников, астероидов, комет. Вскоре Новые Горизонты подойдёт к Плутону - который то планета, то не планета - и даст нам более-менее известные факты, которые мы даже могли и вычислитъ. Однако, может быть, хоть бы маленький сюрприз появится.
Особенно интересно наблюдать кратеры на Луне, Меркурии, Каллисто,... потому что они твёрдые объекты без значительных геологических активностей, которые бы могли их разъесть или опустошить.
Это отнюдь не значит, что кратеры там от так называемого начала системы. Наоборот, фотографии совершенно ясно показывают наличие старших кратеров, разъеденных приходом новых объектов, вследствие которых появляются новые кратеры. Из исследования Земли мы узнали, что кратеры относительно новые явления и их старость не стоит мерить в миллиардах лет, потому что Земля геологически активна и относительно быстро разъедает кратеры. Обский метеорит произошёл чуть больше 100 лет назад; в течение тех 100 лет мы видели большое число ударов метеоритов в Землю. Многие из них с успехом прошли через атмосферу и ударили в почву. Мы видели удар комет в Юпитер, Солнце, даже есть фотография удара в Луну; это свидетельствует о постоянной активности, которая постоянно увеличивает массу планет и иных объектов. Без всякого сомнения можно сказать, что формирование не моментальное событие, а процесс, который длится одинаковой интенсивностью, увеличивая объекты пока они не станут звёздами. Они потом во взрыве и разложении материи заканчивают свой путь в начале, в основной материи (тёмной материи и энергии).
Это познание нам даёт новые вопросы или намекает новые ответы, которые по-другому определяют старость космических объектов, а также и одной Вселенной. Больше нельзя старость Земли связывать со старостью её коры; и раньше было ясно, что это неудачное решение
. Кроме того, на основе кругообразных процессов во Вселенной (формирование видимой материи, увеличение, разложение и возвращение к началу) не можно даже ни приблизительно определить старость Вселенной. Особенно смешно о старости говорить, используя в таком контексте отдалённость регистрированных нашими инструментами объектов. Когда двинется радиация с формировавшейся звезды, она продолжается пока звезда не станет новой, если она относительно меньше и моложе, или сверхновой, если она относительно больше и старше.
Одну старость Земли очень трудно и приблизительно определить. Вычисление её старости нужно начать со старостью маленького астероида, старость которого оценивается в 4.5 миллиардов лет. Эту цифру мы постарались задать тоже и как старость коры, хотя нет ни одного доказательства, ни одной связи относительно сходства тех отдельных миров. Земля постоянно возобновляет кору, как змея кожу, либо тектоникой плит, либо вулканической активностью и постоянным приходом новой внеземной материи; оценивается, что ежегодно придёт 4 000 - 100 000 тонн внеземной материи.
Это данное следующий фактор определения старости. Его проблема в том, что его количество уменьшается чем объект меньше или увеличивается чем он больше. Интенсивность прихода или увеличения подобна той же через очень долгий период времени. Есть данное для Земли, что её количество массы, с помощью гравитационных эффектов близости Солнца, формировало расплавленное ядро. На самом деле, только кора тверда, а её толщину можно мерить в промилле. Расплавленная Земля значительно старше твёрдых объектов, например: Меркурия, Марса, Луны, и т.д. Их старость менее одного промилле старости Земли.
Когда я оцениваю старость Земли в квадриллион лет, это данное только оценка нижней границы старости, полученной из, очень сомнительной, старости астероида и ежегодного увеличения массы от 4 000 - 100 000 тонн пришедшего материала. Это количество достаточное, чтобы уничтожить иллюзию о 4.5 - 4.8 миллиардов лет, вычисленных для коры, а крайне небрежно применённых на целую Землю.
Чем объект больше, тем, как правило, и старше. Когда он достигнет 10% массы Солнца, теряет кору и становится солнечным объектом или звездой. Однако, нельзя забывать, что эта давно утверждённая граница очень сомнительна, потому что новые наблюдения с помощью более аккуратных инструментов значительно понизили ту границу. Существуют ещё и объекты, которые становятся солнечными даже и при массе, похожей массы Юпитера или меньше, из-за сил тяжести и вращения центрального объекта.
Старость Вселенной можно оценить только из её дискообразной формы. Она указывает на то, что для достижения той формы нужна большая внешная скорость, долгий период времени и большое число вращений. Учитывая отдалённость самой отдалённой галактики, чьё расстояние оцениваем в 13.7 - 13.8 миллиардов световых лет и считая, что это расстояние Вселенной от приблизительного центра - тут, где мы - до её внешней части можно назвать её радиусом, а что внешняя скорость вращения 270 000 км/сек., т.е. 9/10 скорости света, получается результат окружности Вселенной: она полный круг совершает приблизительно через 94.5 миллиардов лет.
Это число нужно умножить с большим числом вращений, нужных, чтобы вызвать формирование диска. Сейчас понятно, что старость Вселенной неважна, потому что это огромное число, у которого, именно из-за этой причины, нет никаких практических или теоретических достоинств.