Две фигуры симметричные относительно прямой. Оси симметрии

Понятие движения

Разберем сначала такое понятие как движение.

Определение 1

Отображение плоскости называется движением плоскости, если при этом отображении сохраняются расстояния.

Существуют несколько теорем, связанных с этим понятием.

Теорема 2

Треугольник, при движении, переходит в равный ему треугольник.

Теорема 3

Любая фигура, при движении, переходит в равную ей фигуру.

Осевая и центральная симметрия являются примерами движения. Рассмотрим их более подробно.

Осевая симметрия

Определение 2

Точки $A$ и $A_1$ называются симметричными относительно прямой $a$, если эта прямая перпендикулярна к отрезку ${AA}_1$ и проходит через его центр (рис. 1).

Рисунок 1.

Рассмотрим осевую симметрию на примере задачи.

Пример 1

Построить симметричный треугольник для данного треугольника относительно какой-либо его стороны.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно стороны $BC$. Сторона $BC$ при осевой симметрии перейдет в саму себя (следует из определения). Точка $A$ перейдет в точку $A_1$ следующим образом: ${AA}_1\bot BC$, ${AH=HA}_1$. Треугольник $ABC$ перейдет в треугольник $A_1BC$ (Рис. 2).

Рисунок 2.

Определение 3

Фигура называется симметричной относительно прямой $a$, если каждая симметричная точка этой фигуры содержится на этой же фигуре (рис. 3).

Рисунок 3.

На рисунке $3$ изображен прямоугольник. Он обладает осевой симметрией относительно каждого своего диаметра, а также относительно двух прямых, которые проходят через центры противоположных сторон данного прямоугольника.

Центральная симметрия

Определение 4

Точки $X$ и $X_1$ называются симметричными относительно точки $O$, если точка $O$ является центром отрезка ${XX}_1$ (рис. 4).

Рисунок 4.

Рассмотрим центральную симметрию на примере задачи.

Пример 2

Построить симметричный треугольник для данного треугольника какой-либо его вершины.

Решение.

Пусть нам дан треугольник $ABC$. Будем строить его симметрию относительно вершины $A$. Вершина $A$ при центральной симметрии перейдет в саму себя (следует из определения). Точка $B$ перейдет в точку $B_1$ следующим образом ${BA=AB}_1$, а точка $C$ перейдет в точку $C_1$ следующим образом: ${CA=AC}_1$. Треугольник $ABC$ перейдет в треугольник ${AB}_1C_1$ (Рис. 5).

Рисунок 5.

Определение 5

Фигура является симметричной относительно точки $O$, если каждая симметричная точка этой фигуры содержится на этой же фигуре(рис. 6).

Рисунок 6.

На рисунке $6$ изображен параллелограмм. Он обладает центральной симметрией относительно точки пересечения его диагоналей.

Пример задачи.

Пример 3

Пусть нам дан отрезок $AB$. Построить его симметрию относительно прямой $l$, не пересекающий данный отрезок и относительно точки $C$, лежащей на прямой $l$.

Решение.

Изобразим схематически условие задачи.

Рисунок 7.

Изобразим для начала осевую симметрию относительно прямой $l$. Так как осевая симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A"B"$. Для его построение сделаем следующее: проведем через точки $A\ и\ B$ прямые $m\ и\ n$, перпендикулярно прямой $l$. Пусть $m\cap l=X,\ n\cap l=Y$. Далее проведем отрезки $A"X=AX$ и $B"Y=BY$.

Рисунок 8.

Изобразим теперь центральную симметрию относительно точки $C$. Так как центральная симметрия является движением, то по теореме $1$, отрезок $AB$ отобразится на равный ему отрезок $A""B""$. Для его построения сделаем следующее: проведем прямые $AC\ и\ BC$. Далее проведем отрезки $A^{""}C=AC$ и $B^{""}C=BC$.

Рисунок 9.

Сегодня мы с вами поговорим о явлении, с которым каждому из нас приходится постоянно встречаемся в жизни: о симметрии. Что такое симметрия?

Приблизительно мы все понимаем значение этого термина. Словарь гласит: симметрия – это соразмерность и полное соответствие расположения частей чего-нибудь относительно прямой или точки. Симметрия бывает двух видов: осевая и лучевая. Сначала рассмотрим осевую. Это, скажем так,«зеркальная» симметрия, когда одна половина предмета полностью тождественна второй, но повторяет ее как отражение. Поглядите на половинки листа. Они зеркально симметричны. Симметричны и половины человеческого тела (анфас) – одинаковые руки и ноги, одинаковые глаза. Но не станем заблуждаться, на самом деле в органическом (живом) мире абсолютной симметрии не встретить! Половинки листа копируют друг друга далеко не в совершенстве, то же относится к человеческому телу (присмотритесь сами); так же обстоит дело и с другими организмами! Кстати, стоит добавить, что любое симметричное тело симметрично относительно зрителя только в одном положении. Стоит, скажем, повернуть лист, или поднять одну руку и что же? – сами видите.

Подлинной симметрии люди добиваются в произведениях своего труда (вещах) - одежде, машинах… В природе же она свойственна неорганическим образованиям, например, кристаллам.

Но перейдем к практике. Начинать со сложных объектов вроде людей и животных не стоит, попробуем в качестве первого упражнения на новом поприще дорисовать зеркальную половинку листа.

Рисуем симметричный предмет - урок 1

Следим, чтобы получилось как можно более похоже. Для этого будем буквально строить нашу половинку. Не подумайте, что так легко, тем более с первого раза, одним росчерком провести зеркально-соответствующую линию!

Разметим несколько опорных точек для будущей симметричной линии. Действуем так: проводим карандашом без нажима несколько перпендикуляров к оси симметрии - средней жилке листа. Четыре-пять пока хватит. И на этих перпендикулярах отмеряем вправо такое же расстояние, какое на левой половине до линии края листика. Советую пользоваться линейкой, не очень-то надейтесь на глазок. Нам, как правило, свойственно уменьшать рисунок - на опыте замечено. Отмерять расстояния пальцами не порекомендуем: слишком большая погрешность.

Полученные точки соединим карандашной линией:

Теперь придирчиво смотрим - действительно ли половины одинаковы. Если всё правильно - обведём фломастером, уточним нашу линию:

Лист тополя дорисовали, теперь можно замахнуться и на дубовый.

Нарисуем симметричную фигуру - урок 2

В этом случае сложность заключается в том,что обозначены жилки и они не перпендикулярны оси симметрии и придётся не только размеры но ещё и угол наклона точно соблюдать. Ну что ж - тренируем глазомер:

Вот и симметричный лист дуба нарисовался, вернее, мы его построили по всем правилам:

Как нарисовать симметричный предмет - урок 3

И закрепим тему - дорисуем симметричный лист сирени.

У него тоже интересная форма - сердцевидная и с ушками у основания придётся попыхтеть:

Вот и начертили:

Поглядите на получившуюся работу издали и оцените насколько точно нам удалось передать требуемое сходство. Вот вам совет: поглядите на ваше изображение в зеркале, и оно вам укажет, есть ли ошибки. Другой способ: перегните изображение точно по оси (правильно перегибать мы с вами уже научились) и вырежьте листик по изначальной линии. Посмотрите на саму фигуру и на отрезанную бумагу.

Симметрия I Симме́трия (от греч. symmetria - соразмерность)

в математике,

1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости α в пространстве (относительно прямой а на плоскости), - преобразование пространства (плоскости), при котором каждая точка М переходит в точку M" такую, что отрезок MM" перпендикулярен плоскости α (прямой а ) и делится ею пополам. Плоскость α (прямая а ) называется плоскостью (осью) С.

Отражение - пример ортогонального преобразования (См. Ортогональное преобразование), изменяющего ориентацию (См. Ориентация) (в отличие от собственного движения). Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений - этот факт играет существенную роль в исследовании С. геометрических фигур.

2) Симметрия (в широком смысле) - свойство геометрической фигуры Ф , характеризующее некоторую правильность формы Ф , неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой (См. Группа), называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).

Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой - оси С. (рис. 1 ); здесь группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n , n - целое число ≥ 2, переводят её в себя, то Ф обладает С. n -го порядка относительно точки О - центра С. Примером таких фигур являются правильные многоугольники (рис. 2 ); группа С. здесь - т. н. циклическая группа n -го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.

а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О - середина отрезка, соединяющего симметричные точки Ф (рис. 3 ). б) В случае осевой симметрии, или С. относительно прямой n -го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n . Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD - осью С. четвёртого порядка (рис. 3 ); вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых. Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB , называется зеркально-поворотной осью С. порядка 2k , является осью С. порядка k (рис. 4 ). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5 ). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток (См. Кристаллическая решётка).

В искусстве С. получила распространение как один из видов гармоничной композиции (См. Композиция). Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей - плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется также в качестве основного приёма построения бордюров и Орнамент ов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6 , 7 ).

Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания. Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8 ) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже). Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы ; обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).

3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований (См. Лоренца преобразования). Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.

Поскольку такой объект можно представить элементами некоторого пространства Р , наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями Р . Т. о. получается представление группы G в группе преобразований Р (или просто в Р ), а исследование С. объекта сводится к исследованию действия G на Р и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства Р , определяется действием G на такие уравнения.

Так, например, если некоторое уравнение линейно на линейном же пространстве Р и остаётся инвариантным при преобразованиях некоторой группы G , то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения. Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.

Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. - Л., 1940; Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966; Вейль Г., Симметрия, пер. с англ., М., 1968; Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

М. И. Войцеховский.

Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD - осью симметрии четвёртого порядка, точку О - центром симметрии. Точки М и M" куба симметричны как относительно осей AB и CD, так и относительно центра О.

II Симметри́я

в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу (См. Группа).

Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.

Непрерывные преобразования

1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование - реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование - параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).

2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).

3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.

4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью. С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (См. Инерциальная система отсчёта) (см. Относительности теория).

5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом (См. Электрический заряд), барионным зарядом (См. Барионный заряд), лептонным зарядом (См. Лептонный заряд), Гиперзаряд ом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции (См. Волновая функция) всех частиц могут быть одновременно умножены на произвольный фазовый множитель:

где ψ j - волновая функция частицы j , z j - соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда е ), β - произвольный числовой множитель.

А А + grad f, , (2)

где f (x , у , z, t ) - произвольная функция координат (х , у , z ) и времени (t ), с - скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной β, являющейся произвольной функцией координат и времени: η - Планка постоянная. Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой - он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.

Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины β являются произвольными функциями координат и времени (и даже операторами (См. Операторы), преобразующими состояния внутренней С.). Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга - Милса теория).

Дискретные преобразования

Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот - тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.

Симметрия и законы сохранения

Согласно Нётер теореме (См. Нётер теорема), каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода - законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности - сохранение изотопического спина (См. Изотопический спин) в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип , из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности (См. Чётность), сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть ψ 1 - волновая функция, описывающая какое-либо состояние системы, а ψ 2 - волновая функция системы, получающаяся в результате пространств. инверсии (символически: ψ 2 = Р ψ 1 , где Р - оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии, ψ 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции ψ 1 и ψ 2: симметричная комбинация ψ s = ψ 1 + ψ 2 и антисимметричная ψ а = ψ 1 - ψ 2 . При преобразованиях инверсии состояние ψ 2 не меняется (т. к. P ψ s = P ψ 1 + P ψ 2 = ψ 2 + ψ 1 = ψ s), а состояние ψ a меняет знак (P ψ a = P ψ 1 - P ψ 2 = ψ 2 - ψ 1 = - ψ a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором - отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).

Симметрия квантово-механических систем и стационарные состояния. Вырождение

Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика , Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (См. Стационарное состояние) (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.

Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению (См. Вырождение). Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг через друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа). Это обусловливает плодотворность применения методов теории групп в квантовой механике.

Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятор а.

Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием «несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия, «включающего» возмущающее поле.

Наличие в системе вырожденных по энергии состояний, в свою очередь, указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C . сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.

Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).

Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.

С. С. Герштейн.

III Симметри́я

в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.

Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 - симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии - группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.

Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций (См. Волновая функция) различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре (См. Молекулярные спектры), либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии; у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спин ом этих состояний.

У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g -фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс), тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса (См. Ядерный магнитный резонанс).

В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (σ) и антисимметричные (π) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются π-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.

Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.

В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда - Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.

Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.

Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.

Н. Ф. Степанов.

IV Симметри́я

в биологии (биосимметрия). На явление С. в живой природе обратили внимание ещё в Древней Греции пифагорейцы (5 в. до н. э.) в связи с развитием ими учения о гармонии. В 19 в. появились единичные работы, посвященные С. растений (французские учёные О. П. Декандоль, О. Браво), животных (немецкий - Э. Геккель), биогенных молекул (французские - А. Вешан, Л. Пастер и др.). В 20 в. биообъекты изучали с позиций общей теории С. (советские учёные Ю. В. Вульф, В. Н. Беклемишев, Б. К. Вайнштейн, голландский физикохимик Ф. М. Егер, английский кристаллографы во главе с Дж. Берналом) и учения о правизне и левизне (советские учёные В. И. Вернадский, В. В. Алпатов, Г. Ф. Гаузе и др.; немецкий учёный В. Людвиг). Эти работы привели к выделению в 1961 особого направления в учении о С. - биосимметрики.

Наиболее интенсивно изучалась структурная С. биообъектов. Исследование С. биоструктур - молекулярных и надмолекулярных - с позиций структурной С. позволяет заранее выявить возможные для них виды С., а тем самым число и вид возможных модификаций, строго описывать внешнюю форму и внутреннее строение любых пространственных биообъектов. Это привело к широкому использованию представлений структурной С. в зоологии, ботанике, молекулярной биологии. Структурная С. проявляется прежде всего в виде того или иного закономерного повторения. В классической теории структурной С., развитой немецким учёным И. Ф. Гесселем, Е. С. Федоровым (См. Фёдоров) и другими, вид С. объекта может быть описан совокупностью элементов его С., т. е. таких геометрических элементов (точек, линий, плоскостей), относительно которых упорядочены одинаковые части объекта (см. Симметрия в математике). Например, вид С. цветка флокса (рис. 1 , в) - одна ось 5-го порядка, проходящая через центр цветка; производимые посредством её операции - 5 поворотов (на 72, 144, 216, 288 и 360°), при каждом из которых цветок совпадает с самим собой. Вид С. фигуры бабочки (рис. 2 , б) - одна плоскость, делящая её на 2 половины - левую и правую; производимая посредством плоскости операция - зеркальное отражение, «делающее» левую половинку правой, правую - левой, а фигуру бабочки совмещающей с самой собой. Вид С. радиолярии Lithocubus geometricus (рис. 3 , б), помимо осей вращения и плоскостей отражения содержит ещё и центр С. Любая проведённая через такую единственную точку внутри радиолярии прямая по обе стороны от неё и на равных расстояниях встречает одинаковые (соответственные) точки фигуры. Операции, производимые посредством центра С., - отражения в точке, после которых фигура радиолярии также совмещается сама с собой.

В живой природе (как и в неживой) из-за различных ограничений обычно встречается значительно меньшее число видов С., чем возможно теоретически. Например, на низших этапах развития живой природы встречаются представители всех классов точечной С. - вплоть до организмов, характеризующихся С. правильных многогранников и шара (см. рис. 3 ). Однако на более высоких ступенях эволюции встречаются растения и животные в основном т. н. аксиальной (вида n ) и актиноморфной (вида n (m ) С . (в обоих случаях n может принимать значения от 1 до ∞). Биообъекты с аксиальной С. (см. рис. 1 ) характеризуются лишь осью С. порядка n . Биообъекты сактиноморфной С. (см. рис. 2 ) характеризуются одной осью порядка n и пересекающимися по этой оси плоскостями m . В живой природе наиболее распространены С. вида n = 1 и 1․m = m , называется соответственно асимметрией (См. Асимметрия) и двусторонней, или билатеральной, С. Асимметрия характерна для листьев большинства видов растений, двусторонняя С. - до известной степени для внешней формы тела человека, позвоночных животных и многих беспозвоночных. У подвижных организмов такая С., по-видимому, связана с различиями их движении вверх-вниз и вперёд-назад, тогда как их движения направо-налево одинаковы. Нарушение у них билатеральной С. неизбежно привело бы к торможению движения одной из сторон и превращению поступательного движения в круговое. В 50-70-х гг. 20 в. интенсивному изучению (прежде всего в СССР) подверглись т. н. диссимметрические биообъекты (рис. 4 ). Последние могут существовать по крайней мере в двух модификациях - в форме оригинала и его зеркального отражения (антипода). При этом одна из этих форм (неважно какая) называется правой или D (от лат. dextro), другая - левой или L (от лат. laevo). При изучении формы и строения D- и L-биообъектов была развита теория диссимметризующих факторов, доказывающая возможность для любого D- или L-объекта двух и более (до бесконечного числа) модификаций (см. также рис. 5 ); одновременно в ней содержались и формулы для определения числа и вида последних. Эта теория привела к открытию т. н. биологической изомерии (См. Изомерия) (разных биообъектов одного состава; на рис. 5 изображены 16 изомеров листа липы).

При изучении встречаемости биообъектов было установлено, что в одних случаях преобладают D-, в других L-формы, в третьих они представлены одинаково часто. Бешаном и Пастером (40-е гг. 19 в.), а в 30-х гг. 20 в. советским учёным Г. Ф. Гаузе и другими было показано, что клетки организмов построены только или преимущественно из L-amинокислот, L-белков, D-дезоксирибонуклеиновых кислот, D-сахаров, L-алкалоидов, D- и L-терпенов и т. д. Столь фундаментальная и характерная черта живых клеток, названная Пастером диссимметрией протоплазмы, обеспечивает клетке, как было установлено в 20 в., более активный обмен веществ и поддерживается посредством сложных биологических и физико-химических механизмов, возникших в процессе эволюции. Сов. учёный В. В. Алпатов в 1952 на 204 видах сосудистых растений установил, что 93,2% видов растений относятся к типу с L-, 1,5% - с D-ходом винтообразных утолщений стенок сосудов, 5,3% видов - к типу рацемическому (число D-сосудов примерно равно числу L-сосудов).

При изучении D- и L-биообъектов было установлено, что равноправие между D-и L-формами в ряде случаев нарушено из-за различия их физиологических, биохимических и др. свойств. Подобная особенность живой природы была названа диссимметрией жизни. Так, возбуждающее влияние L-amинокислот на движение плазмы в растительных клетках в десятки и сотни раз превосходит такое же действие их D-форм. Многие антибиотики (пенициллин, грамицидин и др.), содержащие D-amинокислоты, обладают большей бактерицидностью, чем их формы c L-amинокислотами. Чаще встречающиеся винтообразные L-kopнеплоды сахарной свёклы на 8-44% (в зависимости от сорта) тяжелее и содержат на 0,5-1% больше сахара, чем D-kopнеплоды.

I . Симметрия в математике :

    Основные понятия и определения.

    Осевая симметрия (определения, план построения, примеры)

    Центральная симметрия (определения, план построения, при ­меры)

    Обобщающая таблица (все свойства, особенности)

II . Применения симметрии:

1) в математике

2) в химии

3) в биологии, ботанике и зоологии

4) в искусстве, литературе и архитектуре

    /dict/bse/article/00071/07200.htm

    /html/simmetr/index.html

    /sim/sim.ht

    /index.html

1. Основные понятия симметрии и ее виды.

Понятие симметрии пр оходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого ор­ганизма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие ве­ликие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия по­нятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любо­вался симметричностью творений природы: листьями, цветами, птицами, живот­ными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симмет­рия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким обра­зом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное. Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.

2. Осевая симметрия.

2.1 Основные определения

Определение. Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендику­лярна к нему. Каждая точка прямой а считается симметричной самой себе.

Определение. Фигура называется симметричной относительно прямой а , если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симмет­рии фигуры. Говорят также, что фигура обладает осевой симметрией.

2.2 План построения

И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же рас­стояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и по­лучаем симметричную фигуру данной относительной оси.

2.3 Примеры фигур, обладающих осевой симметрией.


3. Центральная симметрия

3.1 Основные определения

Определение . Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 . Точка О считается симметричной са­мой себе.

Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

3.2 План построения

Построение треугольника симметричного данному относительно цен­тра О.

Чтобы построить точку, симметричную точке А относи­тельно точки О , достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О от­ложить отрезок, равный отрезку ОА . Иными словами, точки А и ; В и ; С и симметричны относительно некоторой точки О. На рис. 46 по­строен треугольник, симметричный треуголь­нику ABC относительно точки О. Эти треугольники равны.

Построение симметричных точек относительно центра.

На рисунке точки М и М 1 , N и N 1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.

Вообще фигуры, симметричные относительно некоторой точки, равны.

3.3 Примеры

Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и паралле­лограмм.

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диаго­налей.

Прямая также обладает центральной симметрией, однако в отличие от окруж­ности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.

На рисунках показан угол симметричный относительно вершины, отрезок сим­метричный другому отрезку относительно центра А и четырехугольник симметрич­ный относительно своей вершины М.

Примером фигуры, не имеющей центра симметрии, является треугольник.

4. Итог урока

Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основ­ными видами симметрии: центральная и осевая. Посмотрим на экран и системати­зируем полученные знания.

Обобщающая таблица

Осевая симметрия

Центральная симметрия

Особенность

Все точки фигуры должны быть симметричны относительно какой-нибудь прямой.

Все точки фигуры должны, сим­метричны относительно точки, вы­бранной в качестве центра симмет­рии.

Свойства

    1. Симметричные точки лежат на перпендикулярах к прямой.

    3. Прямые переходят в прямые, углы в равные углы.

    4. Сохраняются размеры и формы фигур.

    1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры.

    2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.

3. Сохраняются размеры и формы фигур.

II. Применение симметрии

Математика

На уроках алгебры мы изу­чили графики функций y=x и y=x

На рисунках представлены различные картинки, изо­браженные с помощью вет­вей парабол.

(а) Октаэдр,

(б) ромбический додекаэдр, (в) гексагональной октаэдр.

Русский язык

Печатные буквы русского алфавита тоже обладают различными видами сим­метрий.

В русском языке есть «сим­метричные» слова - палин­дромы , которые можно чи­тать одинаково в двух на­правлениях.

А Д Л М П Т Ф Ш – вертикальная ось

В Е З К С Э Ю - горизонтальная ось

Ж Н О Х - и вертикальная и горизонтальная

Б Г И Й Р У Ц Ч Щ Я – ни какой оси

Радар шалаш Алла Анна

Литература

Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром.

Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести ли­нию после второй строчки мы можем заметить эле­менты осевой симметрии

А роза упала на лапу Азора.

Я иду с мечем судия. (Державин)

«Искать такси»

«Аргентина манит негра»,

«Ценит негра аргентинец»,

«Леша на полке клопа нашел».

В гранит оделася Нева;

Мосты повисли над водами;

Темно-зелеными садами

Ее покрылись острова…

Биология

Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в дейст­вительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответст­вии с общей симметрией тела человека каждое по­лушарие представляет со­бой почти точное зеркаль­ное отображение другого

Управление основными движениями тела человека и его сенсорными функ­циями равномерно распре­делено между двумя полу­шариями мозга. Левое по­лушарие контролирует пра­вую сторону мозга, а правое - левую сторону.

Ботаника

Цветок считается симмет­ричным, когда каждый око­лоцветник состоит из рав­ного числа частей. Цветки, имея парные части, счита­ются цветками с двойной симметрией и т.д. Тройная симметрия обычна для од­нодольных растений, пя­терная - для двудольных Характерной чертой строе­ния растений и их развития является спиральность.

Обратите внимание на по­беги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявле­нием самой сокровенной сущности жизни. Спи­рально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спи­рали расположены семечки в подсолнечнике, спираль­ные движения наблюда­ются при росте корней и побегов.

Характерной чертой строения растений и их раз­вития является спиральность.

Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.


Зоология

Под симметрией у живот­ных понимают соответствие в размерах, форме и очерта­ниях, а также относительное расположение частей тела, находящихся на противопо­ложных сторонах разде­ляющей линии. При ради­альной или лучистой сим­метрии тело имеет форму короткого или длинного ци­линдра либо сосуда с цен­тральной осью, от которого отходят в радиальном по­рядке части тела. Это ки­шечнополостные, иглоко­жие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Осевая симметрия


Различные виды симметрии физических явлений: сим­метрия электрического и магнитного полей (рис. 1)

Во взаимно перпендику­лярных плоскостях симмет­рично распространение электромагнитных волн (рис. 2)


рис.1 рис.2

Искусство

В произведениях искусства часто можно наблюдать зеркальную симметрию. Зеркальная" симметрия ши­роко встречается в произве­дениях искусства прими­тивных цивилизаций и в древней живописи. Средне­вековые религиозные кар­тины также характеризу­ются этим видом симмет­рии.

Одно из лучших ранних произведений Рафаэля – «Обручение Марии» - соз­дано в 1504 году. Под сол­нечным голубым небом раскинулась долина, увен­чанная белокаменным хра­мом. На первом плане – об­ряд обручения. Первосвя­щенник сближает руки Ма­рии и Иосифа. За Марией – группа девушек, за Иоси­фом – юношей. Обе части симметричной композиции скреплены встречным дви­жением персонажей. На со­временный вкус компози­ция такой картины скучна, поскольку симметрия слишком очевидна.



Химия

Молекула воды имеет плос­кость симметрии (прямая вертикальная линия).Ис­ключительно важную роль в мире живой природы иг­рают молекулы ДНК (де­зоксирибонуклеиновая ки­слота). Это двуцепочечный высокомолекулярный по­лимер, мономером которого являются нуклеотиды. Мо­лекулы ДНК имеют струк­туру двойной спирали, по­строенной по принципу комплементарности.

Архите ктура

Издавна человек использо­вал симметрию в архитек­туре. Особенно блиста­тельно использовали сим­метрию в архитектурных сооружениях древние зод­чие. Причем древнегрече­ские архитекторы были убеждены, что в своих про­изведениях они руково­дствуются законами, кото­рые управляют природой. Выбирая симметричные формы, художник тем са­мым выражал свое понима­ние природной гармонии как устойчивости и равно­весия.

В городе Осло, столице Норвегии, есть выразитель­ный ансамбль природы и художественных произве­дений. Это Фрогнер – парк – комплекс садово-парко­вой скульптуры, который создавался в течение 40 лет.


Дом Пашкова Лувр (Париж)


© Сухачева Елена Владимировна, 2008-2009гг.

Научно-практическая конференция

МОУ «Средняя общеобразовательная школа № 23»

города Вологды

секция: естественно - научная

проектно-исследовательская работа

ВИДЫ СИММЕТРИИ

Выполнила работу ученица 8 «а» класса

Кренёва Маргарита

Руководитель: учитель математики высшей

2014 год

Структура проекта:

1. Введение.

2. Цели и задачи проекта.

3. Виды симметрии:

3.1. Центральная симметрия;

3.2. Осевая симметрия;

3.3. Зеркальная симметрия (симметрия относительно плоскости);

3.4. Поворотная симметрия;

3.5. Переносная симметрия.

4. Выводы.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Г. Вейль

Введение.

Тема моей работы была выбрана после изучения раздела «Осевая и центральная симметрия» в курсе «Геометрия 8 класса». Меня очень заинтересовала эта тема. Я захотела узнать: какие виды симметрии существуют, чем они отличаются друг от друга, каковы принципы построения симметричных фигур в каждом из видов.

Цель работы : Знакомство с различными видами симметрии.

Задачи:

    Изучить литературу по данному вопросу.

    Обобщить и систематизировать изученный материал.

    Подготовить презентацию.

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота». В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости.

Существуют две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Я остановлюсь на изучении геометрической симметрии .

В свою очередь, геометрической симметрии существует тоже несколько видов: центральная, осевая, зеркальная (симметрия относительно плоскости) радиальная (или поворотная), переносная и другие. Я рассмотрю сегодня 5 видов симметрии.

    Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если они лежат на прямой, проходящей через т О и находятся по разные стороны от неё на одинаковом расстоянии. Точка О называется центром симметрии.

Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры, говорят, что фигура обладает центральной симметрией.

Примерами фигур, обладающими центральной симметрией является окружность и параллелограмм.

Фигуры, изображённые на слайде симметричны, относительно некоторой точки

2. Осевая симметрия

Две точки X и Y называются симметричными относительно прямой t , если эта прямая проходит чрез середину отрезка ХУ и перпендикулярна к нему. Также следует сказать, что каждая точка прямой t считается симметричной сама себе.

Прямая t – ось симметрии.

Фигура называется симметричной относительно прямой t , если для каждой точки фигуры симметричная ей точка относительно прямой t также принадлежит этой фигуре.

Прямая t называется осью симметрии фигуры, говорят, что фигура обладает осевой симметрией.

Осевой симметрией обладают неразвёрнутый угол, равнобедренный и равносторонний треугольники, прямоугольник и ромб, буквы (смотри презентацию).

    Зеркальная симметрия (симметрия относительно плоскости)

Две точки Р 1 и Р называются симметричными относительно плоскости а если они лежат на прямой, перпендикулярной плоскости а, и находятся от неё на одинаковом расстоянии

Зеркальная симметрия хорошо знакома каждому человеку. Она связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура зеркально симметрична другой.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. В пространстве бесчисленное множество плоскостей симметрии имеет шар.

Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым основанием, шар.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична.

4. П оворотная симметрия (или радиальная симметрия)

Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/ n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n -го порядка.

При п=2 все точки фигуры поворачиваются на угол 180 0 ( 360 0 /2 = 180 0 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

На рисунке 2 показана ось третьего порядка, на рисунке 3 – 4 порядка, на рисунке 4 - 5-го порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Для описания симметрии конкретного объекта надо указать все поворотные оси и их порядок, а также все плоскости симметрии.

Рассмотрим, например, геометрическое тело, составленное из двух одинаковых правильных четырехугольных пирамид.

Оно имеет одну поворотную ось 4-го порядка (ось АВ), четыре поворотные оси 2-го порядка (оси СЕ, DF , MP , NQ ), пять плоскостей симметрии (плоскости CDEF , AFBD , ACBE , AMBP , ANBQ ).

5 . Переносная симметрия

Ещё одним видом симметрии является переносная с имметрия.

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние «а» либо расстояние, кратное этой величине, она совмещается сама с собой Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние «а» - элементарным переносом, периодом или шагом симметрии.

а

Периодически повторяющийся рисунок на длинной ленте называется бордюром. На практике бордюры встречаются в различных видах (настенная роспись, чугунное литье, гипсовые барельефы или керамика). Бордюры применяют маляры и художники при оформлении комнаты. Для выполнения этих орнаментов изготавливают трафарет. Передвигаем трафарет, переворачивая или не переворачивая его, обводим контур, повторяя рисунок, и получается орнамент (наглядная демонстрация).

Бордюр легко построить с помощью трафарета (исходного элемента), сдвигая или переворачивая его и повторяя рисунок. На рисунке изображены трафареты пяти видов: а ) несимметричный; б, в ) имеющие одну ось симметрии: горизонтальную или вертикальную; г ) центрально-симметричный; д ) имеющий две оси симметрии: вертикальную и горизонтальную.

Для построения бордюров используют следующие преобразования:

а ) параллельный перенос; б ) симметрию относительно вертикальной оси; в ) центральную симметрию; г ) симметрию относительно горизонтальной оси.

Аналогично можно построить розетки. Для этого круг делят на n равных секторов, в одном из них выполняют образец рисунка и затем последовательно повторяют последний в остальных частях круга, поворачивая рисунок каждый раз на угол 360°/ n .

Наглядным примером применения осевой и переносной симметрии может служить забор, изображённый на фотографии.

Вывод: Таким образом, существуют различные виды симметрии, симметричные точки в каждом из этих видов симметрии строятся по определённым законам. В жизни мы повсюду встречаемся тем или иным видом симметрии, а часто у предметов, которые нас окружают, можно отметить сразу несколько видов симметрии. Это создаёт порядок, красоту и совершенство в окружающем нас мире.

ЛИТЕРАТУРА:

    Справочник по элементарной математике. М.Я. Выгодский. – Издательство « Наука». – Москва 1971г. – 416стр.

    Современный словарь иностранных слов. - М.: Русский язык, 1993г .

    История математики в школе IX - X классы. Г.И. Глейзер. – Издательство «Просвещение». – Москва 1983г. – 351стр.

    Наглядная геометрия 5 – 6 классы. И.Ф. Шарыгин, Л.Н. Ерганжиева. – Издательство «Дрофа», Москва 2005г. – 189стр.

    Энциклопедия для детей. Биология. С. Исмаилова. – Издательство «Аванта+». – Москва 1997г. – 704стр.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль arxitekt / arhkomp 2. htm , , ru.wikipedia.org/wiki/