Факторы влияющие на напряжение солнечной радиации. Гигиеническая характеристика видимой части солнечного спектра

4.1. Характеристика солнечного излучения. Световой климат. Вся органическая жизнь на земле обязана своим существованием солнечной радиации, которая является источником энергии, тепла и света на земном шаре. Солнцем испускаются корпускулярные и электромагнитные излучения. Корпускулярные излучения называются солнечным ветром , они представлены электронами, протонами, ядрами гелия и другими частицами . Электромагнитный спектр солнечного излучения весьма широк, в него входят излучения диапазона радиочастот, инфракрасное, видимое, ультрафиолетовое, гамма - и рентгеновское излучения. Солнечное электромагнитное излучение распространяется со скоростью 300000 км/сек и достигает Земли за 8 минут. Частицы же солнечного ветра имеют меньшую скорость – 300 км/сек, в связи с чем достигают Земли через несколько суток. Скорость и интенсивность излучений резко возрастают в периоды солнечной активности. Проявлениями солнечной активности являются солнечные пятна и солнечные вспышки. Солнечные пятна представляют собой гигантские электромагниты с поперечником в несколько тысяч километров и напряженностью магнитного поля в тысячи раз выше напряженности магнитного поля Земли. Солнечные вспышки являются отражением взрывов, происходящих на Солнце. Мощность вспышек сравнима с мощностью взрыва тысяч термоядерных бомб. Во время вспышек усиливается выброс коротковолнового ионизирующего излучения и высокоэнергетических частиц, скорость которых может достигать 1000-2000 км/сек, вследствие чего до Земли они доходят уже за 2-3 суток.

На пути к Земле солнечный ветер взаимодействует в основном с геомагнитным полем Земли, а электромагнитное излучение – с нижними слоями стратосферы и тропосферой. Магнитное поле действует как броня и не пропускает заряженные частицы близко к Земле. Электромагнитное же излучение вступает в химическое и физическое взаимодействие с компонентами земной атмосферы. При этом происходит ослабление интенсивности солнечного излучения, поглощение озоновым слоем коротковолнового и формирование длинноволнового излучения, за счет неравномерного нагрева земной поверхности и атмосферы осуществляются циркуляция воздушных масс и другие процессы, определяющие погодные и климатические условия. Поверхности Земли достигают лишь средне- и длинноволновое ультрафиолетовое, видимое и коротковолновое инфракрасное излучения.

Количество солнечного излучения, доходящее до земной поверхности в той или иной местности, называется световым климатом . Световой климат обусловливается как природными (географическая широта, местности, сезон года, время суток, рельеф местности, климат, погода, отражательная способность земной поверхности) так и антропогенными факторами (загрязнение атмосферы и др.).

Мощность общего потока солнечного излучения на поверхности Земли зависит от толщины слоя атмосферы, через которую она проходит. Толщина этого слоя определяется высотой солнцестояния над горизонтом и высотой местности над уровнем моря. Чем выше Солнце над горизонтом, тем меньше толщина атмосферы, через которую проходят солнечные лучи. Так, если масса атмосферы (толщина слоя воздуха на уровне моря) при высоте стояния Солнца 60° равна в условных единицах 1,1, то при заходе и восходе Солнца – 35,4, т.е. косые лучи проходят больший путь до земной поверхности, чем прямые. Уменьшением толщины атмосферы объясняется и возрастание интенсивности солнечной радиации по мере увеличения высоты местности.

Высота солнцестояния зависит от географической широты, времени года и суток. С увеличением географической широты, т.е. с удалением от экватора, высота солнцестояния уменьшается. Снижается она и в зимние месяцы. Изменение высоты солнцестояния отражается не только на количестве, но и качественном составе солнечного излучения. Так, с уменьшением высоты солнцестояния снижается доля ультрафиолетового и видимого излучения, увеличивается доля инфракрасного. Если в зените (90º) доля ультрафиолетового излучения составляет 4%, а видимого – 46%, то у горизонта ультрафиолетовое излучение практически отсутствует, а доля видимого снижается до 28%.

В атмосфере постоянно происходят процессы поглощения, рассеивания и отражения солнечного света. Поэтому общее суммарное излучение , достигающее земной поверхности, складывается из прямого, исходящего непосредственного от Солнца, рассеянного небосводом и отраженного от поверхности различных объектов. Чем больше высота солнцестояния, тем больше величина прямого излучения. Облака, отражая прямое солнечное излучение, увеличивают его рассеяние, в связи с чем интенсивность солнечного излучения может снижаться на 47-56%. В загрязненной атмосфере солнечное излучение поглощается пылью, газами, аэрозолями, дымом, поступающими в воздух с промышленными выбросами, выбросами автотранспорта, отопительных установок и др. Значительно снижается суммарное солнечное излучение в туманную и влажную погоду.

Особенно сказываются процессы рассеяния и отражения солнечного излучения на интенсивности ультрафиолетовой составляющей, доля которой в солнечном спектре и так невелика – от 0,6 до 10% на уровне земной поверхности. Причем, большую часть из них – до 70-75% составляет рассеянное, а не прямое, излучение. В высоких широтах (выше 57,5°) наблюдается дефицит ультрафиолетового излучения: в течение ноября - февраля средневолновое ультрафиолетовое излучение практически отсутствует, а в октябре – марте интенсивность его весьма мала. В районах, расположенных между 57,5° и 42,5° южных и северных широт, большей частью наблюдается ультрафиолетовый комфорт, в зонах ниже 42,5° - избыточное ультрафиолетовое излучение. Более высока интенсивность ультрафиолетового излучения и в горах, где на каждые 1000 м высоты над уровнем моря она возрастает на 15%.

4.2.Влияние солнечной радиации на организм человека. Солнечная радиация оказывает выраженное биологическое действие. Под действием энергии солнечного излучения в организме происходят разнообразные биохимические и физиологические превращения, совокупность которых называется фотобиологическими процессами. В основе их лежат фотохимические реакции: фотоионизация, фотовосстановление и окисление, фотодиссоциация и др.

Характер фотобиологических процессов зависит от энергии излучения. Благодаря энергии солнечного излучения стимулируется обмен веществ, синтез углеводов, жиров, белков, витаминов и пигментов, в частности, в растениях – синтез хлорофилла и др. Важную роль играют составляющие солнечного спектра в обеспечении процесса зрения у животных организмов, регуляции роста и развития растений, связанных с такими их свойствами, как фототаксис, фототропизм, и фотопериодизм. Вместе с тем, излучения, обладающие значительной энергией, оказывают повреждающее действие на организм.

Энергия солнечного излучения определяется длиной его волны: чем меньше длина, тем больше энергия. Среди излучений солнечного спектра, достигающих земной поверхности, наибольшей длиной (760-4000 нм) обладает инфракрасное излучение, затем следует видимое излучение - 400-760 нм. Наименьшую длину волны имеет ультрафиолетовое излучение - 290-400 нм, поэтому кванты этого излучения несут наибольший запас энергии. В связи с разным уровнем энергии, передаваемым клеткам, инфракрасное, видимое и ультрафиолетовое излучения оказывают неоднозначное воздействие на организм человека.

Гигиеническое значение инфракрасной радиации . Основная часть электромагнитного спектра солнечной радиации представлена инфракрасным излучением. На земной поверхности при высоте солнцестояния 60° она составляет 53%, у горизонта – 72%. Инфракрасные лучи, обладающие большой длиной волны (4000-15000 нм), задерживаются при прохождении через атмосферу, поверхности же Земли достигают более короткие лучи - с длиной волны 760- 4000нм.

Главный эффект инфракрасного излучения – тепловой. Именно этот эффект определяет важнейшую роль инфракрасного излучения в процессах планетарного масштаба. Благодаря энергии инфракрасного излучения происходит нагревание земной поверхности, неравномерность которого обусловливает движение воздушных и водных масс на Земле и формирование погодных и климатических условий.

Таким образом, влиянием климата и погоды в определенной степени реализуется опосредованное воздействие инфракрасного излучения на организм. При прямом действии инфракрасное солнечное излучение вызывает поверхностное или глубинное прогревание тканей. Глубоко (до 4-5 см) проникает в ткани коротковолновое инфракрасное излучение (760 -1500 нм), тогда как лучи с длиной волны 1500-4000 нм поглощаются преимущественно поверхностными слоями кожи, богатыми терморецепторами, в связи с чем при действии длинноволнового ИК-излучения более выражено ощущение жжения. Несмотря на малую энергию фотонов, ИК-излучение оказывает, хотя и слабое, фотохимическое действие , проявляющееся в некотором усилении обмена веществ, ускорении ферментативных и иммунобиологических процессов, усилении биологического действия ультрафиолетовых лучей. За счет нагрева тканей, действия активных соединений, образующихся при фотохимических реакциях, а также раздражения нервных рецепторов кожи при действии ИК-излучения усиливается кровоток, ослабляется тонус мышц и сосудов, нормализуются вегетативные реакции, вследствие чего проявляется болеутоляющий и противовоспалительный эффект . Эти свойства ИК-излучения широко используются в физиотерапевтической практике, где используются его искусственные источники – лампы соллюкс и Минина.

При длительном и интенсивном воздействии солнечного ИК-излучения может наблюдаться перегревание организма различной степени выраженности, в тяжелых случаях – тепловой или солнечный удар. Однако наиболее мощному воздействию ИК-излучения люди подвергаются в производственных условиях. В горячих цехах интенсивность ИК-излучения может достигать 12,6-25,2 МДж/(м 2 ч), тогда как интенсивность солнечного теплового излучения в умеренных широтах, например, не превышает 3,77 МДж/(м 2 ·ч). Длительное воздействие как производственного, так и солнечного ИК-излучения, помимо перегревания, может привести к развитию тепловой катаракты вследствие поглощения хрусталиком тепловых лучей и затрудненного отвода тепла из-за плохой васкуляризации.

Гигиеническое значение видимого света. Видимые лучи в спектре солнечного электромагнитного излучения составляют от 28% при стоянии солнца над горизонтом до 46% при стоянии солнца в зените, при голубом небе – 65 %. Дневная освещенность на открытой местности зависит от многих факторов: высоты солнцестояния, погодных и климатических условий, чистоты воздуха. Диапазон значений освещенности в связи с этими условиями широк, он колеблется от 65000 до 1000 лк и менее.

Видимое излучение обладает более выраженным, чем инфракрасные лучи, фотохимическим действием, которое проявляется большей частью в присутствии фотосенсибилизаторов. Фотосенсибилизаторами называются вещества, которые, вбирая кванты лучистой энергии, претерпевают кратковременные изменения, а, отдавая окружающим тканям эту энергию в концентрированном виде, вновь восстанавливают свои свойства. Одними из таких фотосенсибилизаторов являются зрительные пигменты сетчатки, при воздействии на которые видимого излучения обеспечивается работа зрительного анализатора . При этом весьма важной является способность видимого излучения обусловливать не монохроматичную зрительную информацию, а представленную в различных цветах, что связано с присутствием в его спектре излучений различного цвета: красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового. Цветовая гамма, создаваемая солнечным светом, оказывает различное воздействие на организм, и, прежде всего, на психоэмоциональную сферу: синий и фиолетовый цвета угнетают, голубой успокаивает, зеленый индифферентен, ярко-желтый раздражает, красный – возбуждает. Наиболее оптимальными для работы зрительного анализатора считаются волны зеленого и желтого диапазонов спектра видимого света.

Действуя рефлекторно через зрительный анализатор и, в некоторой степени, через периферические нервные окончания, солнечный свет оказывает общебиологическое действие . Он стимулирует обменные процессы в организме, повышает активность коры больших полушарий головного мозга, усиливает секрецию гипофиза, в связи с чем повышается жизненный тонус человека, улучшается его самочувствие и эмоциональное состояние. Отмечено, что видимое излучение играет определенную роль и в процессах роста и развития организма.

Свет является главным синхронизатором биологических ритмов у человека: суточных, сезонных, годовых и др. Рассогласование между природным (свет) и техногенными (часы, радио, телевидение, искусственное освещение, график и место работы и др.) регуляторами биоритмов приводит к нарушению режима сна и бодрствования, ухудшению самочувствия, развитию депрессий и т.д.).

Видимое излучение, особенно в диапазоне волн, граничащих с инфракрасным излучением, оказывает тепловое воздействие , доля которого составляет около половины тепловой энергии, передаваемой солнечным излучением. Коротковолновая фиолетовая часть спектра, граничащая с длинноволновым ультрафиолетовым излучением, вызывает те же эффекты, что и последнее – эритемный, загарный и слабо бактерицидный .

Особое гигиеническое значение видимого света для работы органа зрения, за счет которого организм получает до 80 % информации о внешнем мире, требует создания достаточного уровня естественного освещения в помещениях, как за счет прямого солнечного облучения (инсоляции), так и за счет рассеянного и отраженного (см. главу VII).

Гигиеническое значение ультрафиолетового излучения. Ультрафиолетовое излучение обладает значительно большей энергией, чем инфракрасное и видимое. Но и спектр самого излучения неоднороден по энергии фотонов, вследствие чего в нем выделяют 3 области, отличающиеся по длине волны и биологической активности: область А- длинноволновое излучение (ближнее ультрафиолетовое, эритемно-загарное) с длиной волны 400-320нм; область В – средневолновое излучение (витаминообразующее) с длиной волны 320-280 нм; область С – коротковолновое излучение (далекое ультрафиолетовое, бактерицидное) с длиной волны 280-210 нм. До земной поверхности, как отмечалось выше, доходят только длинно- и средневолновые ультрафиолетовые лучи. Коротковолновое ультрафиолетовое излучение обычно получают с помощью искусственных источников.

Ультрафиолетовые излучения могут оказывать полезное (биогенное) действие и повреждающее (абиогенное ). Характер действия зависит от длины волны излучения и его дозы. Биогенный эффект наблюдается при действии малых, не превышающих оптимального уровня, доз длинно- и средневолнового излучения. Абиогенные эффекты характерны, прежде всего, для коротковолнового УФ-излучения, энергия которого намного превышает энергию УФ-лучей других диапазонов. Однако абиогенное действие могут оказывать и длинно-, и средневолновые лучи, если получаемая доза их намного превышает пороговую эритемную.

Биогенное действие проявляется в виде общестимулирующего, эритемно-загарного и антирахитического (вит. Д –образующего) эффектов. В механизме действия ультрафиолетового излучения выделяют несколько компонентов: биофизический, гуморальный и нервно-рефлекторный. Гуморальный компонент обусловлен образованием в результате фотохимических реакций биологически активных соединений (гистамина и гистаминоподобных веществ, ацетилхолина, серотонина и др.), которые стимулируют обменные процессы в организме. Биофизический компонент связан с изменением ионного состава и коллоидного состояния белков клеток вследствие фотоэлектрического действия УФ-излучения. И, наконец, нервно-рефлекторный компонент характеризуется стимуляцией многих функций вследствие раздражения нервных окончаний в коже образующимися гистамином и гистаминоподобными веществами и другими соединениями.

Благодаря сочетанному гуморальному, биофизическому и нервно-рефлекторному воздействиям проявляется выраженный общестимулирующий эффект УФ-излучения. В частности, повышается активность ферментов тканевого дыхания, активируются процессы метаболизма белков, жиров, углеводов, минеральных веществ, стимулируются кроветворение, рост клеток, регенерация тканей. Весьма важным является также повышение резистентности организма к инфекциям, что объясняется усилением фагоцитарной активности лейкоцитов, бактерицидных свойств кожи и крови, стимуляцией синтеза антител. Следует отметить, что под действием УФ-излучения повышается устойчивость не только к инфекциям, но и к действию ионизирующих излучений, токсических и канцерогенных агентов, фиброгенных пылей и др.

Общестимулирующим действием обладают как длинно- , так и средневолновые УФ-лучи, но наиболее выражено оно у средневолнового УФ-излучения. Кроме общебиологического действия для каждого диапазона УФ-излучения характерны и свои специфические эффекты. Так, длинноволновое УФ-излучение оказывает преимущественно эритемно-загарное действие, а средневолновое – стимулирует синтез вит.Д в коже и обладает слабым бактерицидным действием. Ультрафиолетовая эритема развивается через 1-3 часа после облучения, а иногда и раньше. Ее отличают четкие контуры, а также последующее образование пигмента меланина в коже (загар). Загар, а также утолщение эпидермиса, развивающееся под влиянием УФ-лучей, являются защитной реакцией организма на действие солнечной радиации. Быстрое образование загара – один из показателей хорошей реактивности организма.

Средневолновые УФ-лучи обладают антирахитическим действием, так как способствуют образованию в коже витаминов Д 2 , Д 3 . Д 4 путем изомеризации в фотохимических реакциях провитаминов Д. Наибольшим антирахитическим действием отличаются лучи с длиной волны 313 ммк. При недостаточном облучении УФ-лучами процессы образования вит. Д замедляются, вследствие чего нарушается фосфорно-кальциевый обмен и процессы остеобразования. У детей развиваются рахит, тетания, замедляются процессы роста и развития. У взрослых могут наблюдаться явления остеопороза, ослабевает связочный аппарат, плохо срастаются кости при переломах, эмаль зубов становится хрупкой и быстро разрушается.

Таким образом, наиболее ценными в биологическом отношении являются средневолновые УФ-лучи, так как именно они обладают выраженным общестимулирующим, антирахитическим и закаливающим действием, укрепляют иммунный статус организма, способствуют хорошей регенерации тканей, стимулируют процессы роста и развития. Немаловажное значение имеет также вызываемая ими активация процессов высшей нервной деятельности, за счет которой повышается умственная работоспособность, предупреждается раннее развитие утомляемости. Описан положительный эффект УФ-облучения у больных неосложненными формами ишемической болезни сердца и гипертонической болезни.

Современная среда характеризуется повышенным риском развития ультрафиолетовой недостаточности (солнечного голодания) , которая обусловливается не только климатическими особенностями региона, но и условиями быта и трудовой деятельности людей, загрязнением воздуха, нерациональной планировкой жилых и общественных зданий, преобладанием туманных и пасмурных дней, и т.д. Наиболее часто характерные для УФ-недостаточности проявления наблюдаются у проживающих в северных широтах, рабочих горнорудной, угольной промышленности, метростроителей, детей, учащихся школ и вузов, находящихся большую часть дня в помещении. Для профилактики светового голодания планировка и застройка населенных пунктов должна осуществляться так, чтобы обеспечить не менее чем 3-х часовую инсоляцию окон жилых помещений (см. главу VII). Оконные стекла должны быть прозрачными для ультрафиолетового излучения, что не принимается во внимание при современном строительстве, когда окна большинства общественных учреждений застекляются тонированными стеклами. Должны проводиться активные мероприятия по предупреждению загрязнения атмосферного воздуха пылью, дымом, копотью, химическими веществами.

Наряду с указанным для профилактики светового голодания проводится УФ-облучение искусственными селективными и интегральными источниками УФ-излучения. Селективные источники (эритемные люминесцентные лампы - ЭУВ) дают излучения, максимум которых сосредоточен в одной узкой части УФ-спектра. Спектр излучения интегральных источников (прямые ртутно-кварцевые лампы - ПРК) представлен излучениями всех диапазонов УФ-спектра и видимого спектра. Для облучения используются светооблучательные установки длительного и кратковременного действия. В светооблучательных установках длительного действия лампы обычно встроены в светильники помещений вместе с обычными люминесцентными лампами, используемыми для освещения. Профилактическая доза при этом получается в течение 3-6 часов пребывания в помещении. При кратковременном облучении, которое проводится в специальных помещениях – фотариях , профилактическая доза получается за несколько минут. Особенно важным является восполнение светового голодания для детей, так как их организм наиболее чувствителен к недостатку УФ-излучения. При проведении УФ-облучения обязательно его дозирование и четкий контроль за ним. Вначале определяют биологическую (эритемную) дозу облучения с помощью биодозиметра И.Ф.Горбачева. Она равна минимальному времени облучения незагорелой кожи на предплечье или животе, после которого через 8-14 часов появляется минимально выраженная эритема. Ежедневная суточная доза при облучении, проводимом с профилактической целью, составляет 1/8 -3/4 биодозы. Обычно облучение в установках кратковременного действия начинают с 1/4 или 1/8 биодозы в зависимости от состояния человека и, прибавляя ежедневно или через день такими же долями, доводят до облучения в дозе, равной 1,5 биодозам, после чего делают перерывы на 2-3 месяца.

Светооблучательные установки длительного действия устанавливают, прежде всего в детских садах, детдомах, яслях, школах, больницах, санаториях, домах отдыха, общежитиях, производственных помещениях, лишенных естественного света, спортивных залах. В этих помещениях суточная профилактическая доза получается в течение целого дня.

Коротковолновые УФ-лучи обладают выраженным бактерицидным действием, а также оказывают вредное воздействие на организм человека. Абиогенное действие проявляют и длинно- и средневолновые лучи, если интенсивность облучения высока (5 и более минимальных эритемных биодоз). К абиогенным эффектам ультрафиолетового излучения относятся ожоги, фотодерматиты, эрозии, язвы, кератоконъюнктивиты, кератиты, катаракта, птеригий, солнечный эластоз, фотосенсибилизация, обострение хронических заболеваний внутренних органов, канцерогенное и мутагенное действие. Канцерогенное действие в основном характерно для излучения с длиной волны 280-340 нм, но оно реализуется лишь при длительном воздействии очень высоких доз (свыше 40 биодоз) солнечного облучения или излучения от искусственных источников. Вместе с тем, прогнозируется увеличение заболеваемости раком кожи вследствие увеличения количества и размеров озоновых дыр.

Абиогенные эффекты могут быть обусловлены не только солнечным излучением, но и различными искусственными источниками ультрафиолетового излучения: бактерицидными облучателями, электросварочными аппаратами, плазменной горелкой, фотоэлектрическим сканнером, лазерами, флюоресцентными панелями и др. Для профилактики неблагоприятного воздействия солнечного УФ-излучения работы на открытом воздухе не должны проводиться в период с 10 до 14 часов или же работа должна проводиться с ограничением времени пребывания на солнце и в солнцезащитная одежде с использованием солнцезащитных средств. При работе с искусственными источниками обязательно нормирование УФ-излучения, использование защитных средств, соответствующей сигнализации.

5. Природный химический состав воздуха и его гигиеническое значение.

Природный химический состав атмосферного воздуха, как известно, на 20,95% представлен кислородом, 78 % - азотом, 0,03-0,04% - углекислым газом. Лишь 1% приходится на долю вместе взятых инертных газов, озона, метана, закиси азота, йода и водяных паров. Каждый из химических компонентов атмосферы играет свою роль в жизнедеятельности организма. Кислород необходим для дыхания человека и животных, протекания различных процессов окисления, горения. Уровень его в атмосферном воздухе практически стабилен за счет постоянного восполнения убыли кислородом, образующимся в процессах фотосинтеза растений. Лишь с подъемом на высоту парциальное давление кислорода снижается, вызывая развитие гипоксии. Снижение концентрации кислорода до 11-13% приводит к развитию выраженной кислородной недостаточности, а при концентрации 7-8% наступает смерть.

Азот относится к индифферентным газам. Он не усваивается напрямую организмом человека и животных, но поступает в него опосредованно через растения, в которые попадает в виде нитратов, образовавшихся в процессе ассимиляции его и превращений, осуществляемых почвенными бактериями. В результате разложения органических соединений, горения древесины, угля и нефти вновь образуется свободный азот, поступающий в атмосферу.

Азот воздуха в обычных условиях играет роль разбавителя кислорода. Дыхание чистым кислородом губительно для человека, так как, являясь сильным окислителем, он оказывает выраженное токсическое действие, вызывает ожоги слизистых дыхательных путей и отек легких, что приводит к летальному исходу. При поступлении в организм азота под повышенным давлением наблюдается наркотическое действие. Повышение содержания азота в воздухе до 93% приводит к смерти вследствие гипоксии, развивающейся из-за снижения парциального давления кислорода.

Углекислый газ в естественных условиях поступает в воздух при дыхании человека и животных, в результате процессов гниения, брожения, горения, выделения с поверхности морей и океанов и др. Поддержание относительно постоянной концентрации углекислого газа обеспечивается параллельно протекающими процессами поглощения его растениями в процессе фотосинтеза, вымыванием осадками, растворением в воде морей и океанов, отложением в виде минеральных соединений.

Углекислота является одним из конечных продуктов, образующихся в процессах метаболизма в человеческом организме. Поступающий из тканей в кровь углекислый газ оказывает стимулирующее воздействие на дыхательный центр как непосредственно, так и в связи с изменением рН крови. При повышении парциального давления углекислоты в крови увеличивается сродство кислорода к гемоглобину. Однако при вдыхании воздуха, содержащего углекислый газ в больших концентрациях, выделение его организмом нарушается и развивается тканевая аноксия. Так, повышение концентрации углекислоты в воздухе до 4% сопровождается появлением головных болей, сердцебиения, повышением артериального давления, развитием психического возбуждения, а концентрация 8-10% является смертельной. Накопление углекислого газа в воздухе в таких концентрациях возможно в замкнутых пространствах, колодцах, сточных канавах.

При пребывании людей в жилых и общественных помещениях также происходит накопление углекислого газа, но в концентрациях, намного меньших, за счет выделения его при дыхании. В редких случаях содержание его достигает 0,5-1%. Однако даже некоторое, не являющееся токсическим, повышение концентрации углекислого газа в воздухе вызывает дискомфорт у человека, находящегося в помещении. Это связано с тем, что параллельно с углекислым газом в воздух выделяются и токсичные продукты метаболизма человеческого организма (индол, сероводород, аммиак, меркаптан и др.), а также уменьшается количество легких и увеличивается количество тяжелых ионов, повышается содержание пыли и микроорганизмов, ухудшается температурно-влажностный режим помещения. Так как изменения концентрации углекислого газа и других показателей качества воздушной среды нарастают синхронно, а определение углекислого газа отличается простотой, степень чистоты воздуха в общественных и жилых помещениях еще М.Петтенкофером и К.Флюгге было предложено определять по уровню углекислого газа в помещении. Содержание диоксида углерода в воздухе в воздухе жилых помещений и общественных учреждений не должно превышать 0,1%, а в лечебных учреждениях – 0,07%.

В небольшом количестве в атмосферном воздухе находится озон , представляющий собой трехатомные молекулы кислорода и являющийся сильным окислителем. Стратосферный озоновый слой, где сосредоточена основная масса озона, защищает людей и живую природу от коротковолнового ультрафиолетового и мягкого рентгеновского излучений, входящих в спектр солнечной радиации. В тропосфере концентрации озона обычно не превышают 30мкг/м 3 . Озон образуется под влиянием ультрафиолетовой радиации, при электрических разрядах во время грозы, испарении больших масс воды. В тропосферу он поступает также в результате движения воздушных масс и из стратосферы.

Виду высоких окислительных свойств озон, взаимодействуя с малейшими примесями, поступающими в воздух, распадается. Поэтому он практически не обнаруживается при значительной запыленности воздуха, а также в воздухе закрытых помещений. Зато повышенным содержанием озона отличаются мало загрязненные населенные места, высокогорье, берега водоемов, леса, особенно сосновые боры. В связи с этим раньше наличие озона в воздухе расценивали как показатель чистоты воздуха. Однако оказалось, что озон может образовываться и в результате фотохимических реакций при сильном загрязнении воздуха, и в такой ситуации повышенные его концентрации рассматриваются уже не как показатель чистоты воздуха, а как показатель его загрязнения. Озон в повышенных концентрациях (0,005мг/л и более) оказывает раздражающее действие на слизистые оболочки дыхательных путей и глаз, приводит к развитию воспалительных процессов в бронхолегочной ткани, может провоцировать развитие бронхоспатических реакций.

7850 0

Солнечная радиация. Солнечная радиация — важнейший фактор существования жизни на Земле. С физической точки зрения солнечная энергия представляет собой поток электромагнитных излучений с различной длиной волны.

Спектральный состав излучения солнца колеблется в широком диапазоне — от длинных до ультракоротких волн.

В гигиеническом отношении особый интерес представляет оптическая часть солнечного спектра, которая разделяется на три диапазона: инфракрасные лучи с длиной волн от 28 000 до 760 нм, видимую часть спектра — от 760 до 400 нм и ультрафиолетовую часть — от 400 до 10 нм.

Установлено, что солнечная радиация оказывает мощное биологическое действие: стимулирует физиологические процессы в организме, влияет на обмен веществ, общий тонус, улучшает самочувствие человека, повышает его работоспособность

По биологической активности инфракрасные луни делятся на коротковолновые — с диапазоном волн от 760 до 1400 нм и длинноволновые — с диапазоном волн от 1400 до 28 000 нм. Инфракрасное излучение оказывает на организм тепловое воздействие, которое в значительной мере определяется поглощением лучей кожей. Для лечения некоторых воспалительных заболеваний используют коротковолновое инфракрасное излучение, которое обеспечивает прогревание глубоких тканей без субъективного ощущения жжения кожи. Напротив, длинноволновая инфракрасная радиация поглощается поверхностными слоями кожи, где сосредоточены терморецепторы, чувство жжения при этом выраженно.

Наиболее интенсивное неблагоприятное воздействие инфракрасной радиации наблюдается в производственных условиях. У рабочих горячих цехов, стеклодувов и представителей других профессий, имеющих контакт с мощными потоками инфракрасной радиации, понижается электрическая чувствительность глаза, увеличивается скрытый период зрительной реакции, ослабляется условно-рефлекторная реакция сосудов.

Инфракрасные лучи способны проходить через мозговую оболочку и воздействовать на рецепторы мозга. Вследствие нагрева мозговых оболочек коры больших полушарий возможно развитие солнечного удара. У пострадавших отмечают сильное возбуждение, потерю сознания, судороги и ряд других изменений состояния. Под воздействием инфракрасной радиации возможны поражение органов зрения в виде катаракты, изменения иммунологической реактивности организма и др.

Интенсивность видимого спектра солнечной радиации у поверхности Земли зависит от погоды, высоты стояния Солнца над горизонтом, запыленности воздуха и ряда других факторов.

Видимый свет оказывает общебиологическое действие. Это проявляется не только в специфическом влиянии на функции зрения, но и в определенном воздействии на функциональное состояние центральной нервной системы и через нее — на все органы и системы. Организм реагирует не только на ту или иную освещенность, но и на весь спектр солнечного света (табл. 1).

Оптимальные условия для зрительного аппарата создают волны зеленой и желтой зоны спектра, лучи оранжево-красной части спектра могут вызывать возбуждение и усиливать чувство тепла. Угнетающим действием, усиливающим тормозные процессы в ЦНС, обладают сине-фиолетовые лучи солнечного спектра.

Таблица 1. Спектральный состав видимой части солнечной радиации


Поглощение ультрафиолетового излучения клетками ткани приводит к расщеплению молекул белка и нуклеиновых кислот. Образовавшиеся продукты (гистамин, витамин D и др.) являются биологически активными веществами. В нуклеиновых кислотах образуются атипичные молекулярные связи, нарушающие кодирующие свойства ДНК.

Значительные изменения претерпевают ароматические аминокислоты: фенилаланин, тирозин и триптофан. Выраженной деструкции подвергается цистеин. Инактивируются некоторые клеточные энзимы.

По результату конечного действия на организм УФ-излучение делится на три области: УФ-С — от 200 до 280 нм. УФ-В — от 280 до 315 нм и УФ-А — от 315 до 400 нм. Наибольшей биологической активностью обладает УФ-В.

Наиболее характерная реакция организма на воздействие УФ-излучения с длиной волн 315-400 нм — развитие пигментации, которая наступает без предварительного покраснения кожи. Специфической реакцией организма на действие УФ-радиации является развитие эритемы (покраснения). Ультрафиолетовая эритема имеет ряд отличий от инфракрасной.

Так, ультрафиолетовой эритеме свойственны строго очерченные контуры, ограничивающие участки воздействия ультрафиолетовых лучей, она возникает через некоторое время после облучения и, как правило, переходит в загар. Инфракрасная эритема возникает тотчас после теплового воздействия, имеет размытые края и не переходит в загар. В настоящее время имеются факты, свидетельствующие о значительной роли центральной нервной системы в развитии ультрафиолетовой эритемы. Так, при нарушении проводимости периферических нервов или после введения новокаина эритема на данном участке кожи слабая или совсем отсутствует.

Ультрафиолетовая радиация в диапазоне волн от 315 до 280 нм оказывает специфическое антирахитическое действие, что проявляется в фотохимических реакциях ультрафиолетовой радиации этого диапазона в синтезе витамина D. При недостаточном облучении ультрафиолетовыми лучами антирахитического спектра страдают фосфорно-кальциевый обмен, нервная система, паренхиматозные органы, система кроветворения, снижаются окислительно-восстановительные процессы, нарушается стойкость капилляров, снижаются работоспособность и сопротивляемость простудным заболеваниям.

У детей возникает рахит с определенными клиническими симптомами, у взрослых нарушается фосфорно-кальциевый обмен на почве гиповитаминоза D, что проявляется в плохом срастании костей при переломах, ослаблении связочного аппарата суставов, быстром разрушении эмали зубов.

Ультрафиолетовая радиация антирахитического спектра легко поглощается и рассеивается в запыленном атмосферном воздухе. В связи с этим жители промышленных городов, где атмосферный воздух загрязнен различными выбросами, испытывают «ультрафиолетовое голодание». Недостаточность естественного ультрафиолетового излучения испытывают также жители Крайнего Севера, рабочие угольной и горнорудной промышленности, лица, работающие в темных помещениях, и т.д. Для восполнения естественного солнечного облучения этих контингентов людей дополнительно облучают искусственными источниками ультрафиолетовой радиации либо в специальных фотариях, либо путем комбинации осветительных ламп с лампами, дающими излучение в спектре, близком к естественному ультрафиолетовому излучению.

Бактерицидное действие УФ-радиации (лучей с длиной волн от 180 до 275 нм) используется в медицине при санации воздушной среды операционных, асептических блоках аптек, микробиологических блоках и т.д. Бактерицидные лампы с указанным выше спектром применяются для обеззараживания молока, дрожжей, безалкогольных напитков, лекарств и др.

Электрическое состояние воздушной среды. Под собирательным термином «атмосферное электричество» обычно понимают целый комплекс явлений, включающий ионизацию воздуха, электрические и магнитные поля атмосферы.

Под ионизацией воздуха понимают распад молекул и атомов с образованием аэроионов. В результате происходит отрыв электрона от молекулы и она становится положительно заряженной, а оторвавшийся свободный электрон, присоединившись к одной из нейтральных молекул, сообщает ей отрицательный заряд. Именно поэтому в атмосфере образуется пара противоположно заряженных частиц — отрицательные и положительные ионы.

Физическая сущность ионизации воздуха заключается в действии на молекулы воздуха различных ионизирующих факторов (радиоактивных элементов, космического, ультрафиолетового излучения, электрических, грозовых разрядов, баллоэлектрического эффекта, аэроионизаторов).

Молекулярные комплексы (10-15 молекул) с одним элементарным зарядом называют нормальными, или легкими, ионами. Они имеют размеры 10-8 см и обладают сравнительно большой подвижностью. Сталкиваясь с постоянно присутствующими в атмосфере более крупными частицами, легкие ионы оседают на них и сообщают им свой заряд. Возникают вторичные ионы, включающие средние (10-6 см) и тяжелые (10-5см) аэроионы.

Ионный состав воздуха — важный гигиенический показатель. Умеренное повышение концентрации легких ионов (особенно с преобладанием отрицательного знака) может рассматриваться как положительное явление. Воздействие на человека легких отрицательных аэроионов характеризуется благоприятным биологическим действием. Наоборот, чрезмерно высокие концентрации ионов положительного знака, особенно тяжелых, свидетельствуют о низком гигиеническом качестве воздуха.

Отношением числа тяжелых ионов к числу легких ионов определяется ионизационный режим воздушной среды. Для характеристики ионизации воздуха используется коэффициент униполярности, показывающий отношение числа положительных ионов к числу отрицательных. Чем более загрязнен воздух, тем выше этот коэффициент.

Количество легких ионов зависит от географических, геологических условий, погоды, уровня радиоактивности окружающей среды, загрязнения атмосферного воздуха. С увеличением влажности воздуха возрастает количество тяжелых ионов из-за рекомбинации ионов с каплями влаги. Понижение атмосферного давления способствует выходу из почвы эманации радия, что приводит к увеличению количества легких ионов. Ионизирующее действие распыляемой воды проявляется в усилении ионизации воздуха, что особенно заметно у фонтанов, по берегам бурных рек, у водоемов.

В.И. Архангельский, В.Ф. Кириллов

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие -- гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная -- это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см2 в мин. Проходя через атмосферу солнечные лучи значительно ослабевают -- рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 -- 1,53 калории\см2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спекра -- специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим: 1) теплые тона -- желтый, оранжевый, красный. 2) холодные тона -- голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску: зеленый -- вода, красный -- пар, желтый -- газ, оранжевый -- кислоты, фиолетовый -- щелочи, коричневый -- горючие ждкости и масла, синий -- воздух, серый -- прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:

1. световой коэффициет -- характеризует собой отношение площади застекленной поверхности окон к площади пола.

2. Угол падения -- характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270.

3. Угол отверстия-- характеризует освещенность небесным светом (должен быть не менее 50). На первых этажах ленинградских домов - колодцев этот угол фактически отсутсвует.

4. Глубина заложения помещения -- это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены).

Светотехнические показатели -- это показатели определяемые с помощью прибора -- люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость -- это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата.

Солнечная радиация имеет чрезвычайно большое биологическое и гигиеническое значение. Под солнечной радиацией понимают весь испускаемый Солнцем суммарный поток радиации, который представляет собой электромагнитные колебания с различной длиной волны.

В гигиеническом отношении особый интерес представляет оптическая часть солнечного спектра, которая включает электромагнитные поля и излучения с длиной волны выше 100 нм. В этой части солнечного спектра различают три вида излучения:

  • - ультрафиолетовое - с длиной волны 290-400 нм;
  • - видимое - с длиной волны 400-760 нм;
  • - инфракрасное - с длиной волны 760-2800 нм.

Солнечные лучи, прежде чем достигнуть земной поверхности, должны пройти сквозь мощный слой атмосферы. Около 30 % солнечной радиации не достигает земной поверхности благодаря озоновому слою, водяным порам, молекулам газов, частицам пыли и т.д. В результате интенсивность солнечной радиации на поверхности Земли всегда будет меньше напряжения солнечной радиации на границе земной атмосферы.

Интенсивность солнечной радиации зависит от многих факторов: широты местности, сезона года и времени суток, качества атмосферы, особенностей подстилающей поверхности.

Именно широта местности определяет угол падения солнечных лучей на поверхность. При перемещении Солнца из зенита к горизонту путь, который проходит солнечный луч, увеличивается в 30-35 раз, что приводит к увеличению поглощения и рассеивания радиации, к резкому уменьшению ее интенсивности в утренние и вечерние часы по сравнению с полуднем. Почти 50 % суточного УФ-излучения поступает в течение четырех полуденных часов. В полдень, когда Солнце находится высоко над головой, интенсивность УФ-излучения при длине волны 300 нм в 10 раз выше, чем тремя часами раньше (в 9 ч утра) или тремя часами позже (в 3 ч дня). Биологически активное УФ-излучение попадает на горизонтальную поверхность в полуденные часы, причем около 50 % - в течение 4 ч околополуденного времени.

Наличие облачного покрова, загрязнения воздуха, дымки или даже рассеянных облаков играет значительную роль в ослаблении солнечного излучения. При сплошном покрытии неба облаками интенсивность УФ-излучения снижается на 72 %. В экстремальных условиях облачный покров может снижать интенсивность УФ-излучения более чем на 90 %.

Напряжение солнечной радиации зависит от состояния атмосферы, т. е. от ее прозрачности. Например: в Санкт-Петербурге из-за загрязнения атмосферного воздуха напряжение солнечной радиации на 13 % меньше, чем в пригороде. инфракрасный радиация ультрафиолетовый

Интенсивность рассеянной радиации может быть весьма велика и достигает высоких степеней на Крайнем Севере. Так, в районе Печоры весной и летом в рассеянной радиации количество биологически активного УФ в 2-3 раза больше, чем в Харькове (Украина). Эти свойства рассеянной солнечной радиации, а также меньшая запыленность, небольшое количество водяных паров дали возможность Н. Н. Калитину - виднейшему советскому актинологу (актинология - наука о животнорастениях, живорослях) - утверждать, что солнце севера по своим лечебным качествам не хуже, а часто лучше солнца юга, где преобладает прямая солнечная радиация.

На интенсивность солнечной радиации и УФ-излучения существенное влияние оказывает характер подстилающей поверхности.

Так, снежный покров обладает избирательной отражающей способностью и отражает большую часть коротковолновых УФ-лучей и почти полностью тепловую радиацию. Вследствие этого на Севере (особенно весной) возможны световые ожоги глаз.

Солнечная радиация является мощным оздоровительным и профилактическим фактором. Вся совокупность биохимических, физиологических реакций, протекающих при участии энергии света, носит название - фотобиологические процессы. Они в зависимости от их функциональной роли могут быть условно разделены на три группы. Первая группа обеспечивает синтез биологически важных соединений (например, фотосинтез). Ко второй группе относятся фотобиологические процессы, служащие для получения информации и позволяющие ориентироваться в окружающей обстановке (например, зрение). Третья группа - процессы, сопровождающиеся вредными для организма последствиями (например, разрушение белков, витаминов, ферментов, появление вредных мутаций). Известны стимулирующие эффекты фотобиологических процессов (синтез пигментов, витаминов, фотостимуляция клеточного состава). Изучение особенностей взаимодействия света с биологическими структурами создало возможность для использования лазерной техники в офтальмологии, хирургии и т. д.


Общая гигиена. Солнечная радиация и ее гигиеническое значение.
Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес пред­ставляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны - радиоволны, более короткие - гамма-лучи, ионизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое в частности. Озон распространен во всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь, который проходит солнечные лучи, будет значительно короче, чем их путь, если солнце находится у горизонта . За счет увеличения пути интенсивность солнечной радиации меняется. Ин­тенсивность солнечной радиации зависит также от того, под каким углом падают солнечные лучи, от этого зави­сит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесив­ность солнечной радиации зависит от массы воздуха, через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше, чем над уровнем моря, потому что слой воздуха, через который проходят солнечные лучи, будет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы, ее загрязнение. Если атмосфера загрязнена, то интенсивность солнеч­ной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной ра­диации меняется в течение суток , и зависит также от времени года. Наибольшая интенсивность солнечной ра­диации отмечается летом, меньшая - зимой. По своему биологическому действию солнечная радиация неодно­родна: оказывается, каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:


  1. ультрафиолетовые лучи, от 280 до 400 нм

  2. видимый спектр от 400 до 760 нм

  3. инфракрасные лучи от 760 до 2800 нм.
При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из, так называемой, солнечной постоянной. Солнеч­ная постоянная - это количество солнечной энергии поступающей в единицу времени на единицу площади, распо­ложенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см 2 в мин. Проходя че­рез атмосферу солнечные лучи значительно ослабевают - рассеиваются, отражаются, поглощаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 - 1,53 кало­рии\см 2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спектра - специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире . В этом состоит специфическое действие видимого света, но еще общебиологическое действие видимого света: он сти­мулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет на психоэмоциональную сферу, повышает работоспособность. Свет оздоравливает окружающую среду. При недос­татке естественного освещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только ос­вещенность, но и различная цветовая гамма оказывает различное влияние на психоэмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизио­логическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим: 1) теплые тона - желтый, оранжевый, красный. 2) холодные тона - голубой, синий, фиолетовый. Холодные и те­плые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное на­пряжение, повышают кровяное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровяное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой тем­пературой больше всего подходят палаты, окрашенные в лиловый цвет , темная охра улучшает самочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того, эффективность лекарств можно повысить, изменив цвет таблетки. Больным, страдающим депрессивными расстройствами, давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации, например, на производстве для обозначения опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску: зеленый -- вода, крас­ный - пар, желтый - газ, оранжевый - кислоты, фиолетовый - щелочи, коричневый - горючие жидкости и масла, синий - воздух, серый - прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естественное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:


  1. световой коэффициент - характеризует собой отношение площади застекленной поверхности окон к площади пола.

  2. Угол падения - характеризует собой, под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 27 0 .

  3. Угол отверстия - характеризует освещенность небесным светом (должен быть не менее 5 0). На первых эта­жах ленинградских домов - колодцев этот угол фактически отсутствует.

  4. Глубина заложения помещения - это отношение расстояния от верхнего края окна до пола к глубине помеще­ния (расстояние от наружной до внутренней стены).
Светотехнические показатели - это показатели, определяемые с помощью прибора - люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость - это освещаемость на улице . Коэффи­циент освещаемости (КЕО) определяется как отношение относительной освещаемости измеряемой как отноше­ние относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в по­мещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувстви­тельный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентиро­вочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки искусственного освещения помещений имеет значение яркость, отсутствие пульсаций, цветность и др.

ИНФРАКРАСНЫЕ ЛУЧИ. Основное биологическое действие этих лучей - тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинноволновый участок оказывает свое тепловое действие на поверхности. Это ис­пользуется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор - актинометр. Измеряется инфра­красная радиация в калориях на см 2 \мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям - катаракте (помутнение хрусталика). При­чиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог - эритема. Она возникает за счет те­плового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тепловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с пораже­нием ЦНС. Солнечный удар поражает тех, кто проводит много часов подряд под палящими лучами солнца с не­покрытой головой. Происходит разогревание мозговых оболочек.

Тепловой удар возникает из-за перегревания организма. Он может случиться с тем, кто выполняет тяжелую фи­зическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у на­ших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют параметры различных видов. В ос­нове ох действия - поглощение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по-разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства, то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокат­ном цехе норма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения, превышающие 3,7, считаются значитель­ными и требуют проведения профилактических мероприятий - применение защитных экранов, водяные завесы, спецодежда.

УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ (УФ).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длинноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества - гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту - гистамин и другие биологически активные вещества способ­ствуют расширению сосудов. Особенность этой эритемы - она возникает несразу. Эритема имеет четко ограни­ченные границы. Ультрафиолетовая эритема всегда приводит к загару более или менее выраженному, в зависи­мости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается, что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого рас­пада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом, является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загар возникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длинноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере - длинноволновые УФЛ. Коротковолновые лучи наиболее подвержены рассеянию. А рассеивание лучше всего про­исходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере - он бо­лее длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит , у взрослых - остеопороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голода­ния. Для профилактики солнечного голодания используется искусственный загар. Световое голодание - это дли­тельное отсутствие УФ-спектра. При действии УФ в воздухе происходит образование озона, за концентрацией ко­торого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившейся под дей­ствием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсив­ность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеря­ется в биодозах.