Химический состав комплекса гольджи. Аппарат (комплекс) Гольджи

Аппарат Гольджи представляет собой стопку уплощенных мембранных мешочков (« ») и систему пузырьков, связанных с ними. При изучении ультратонких срезов было затруднительно выявить его трехмерную структуру, однако ученые предположили, что вокруг центральной сформирована взаимосвязанных трубочек.

Аппарат Гольджи выполняет функцию транспорта веществ и химической модификации клеточных продуктов, попадающих в него. Особенно важной является эта функция в секреторных клетках, например, ацинарные клетки поджелудочной секретируют в выводной проток пищеварительные ферменты панкреатического сока. Ученые изучили функционирование аппарата Гольджи при помощи электронной микрофотографии такой клетки. Отдельные транспорта веществ выявили, используя радиоактивно меченые .

В клетке из аминокислот строятся белки. Установлено, что они концентрируются аппарата Гольджи, а затем транспортируются к плазматической мембране. На конечном этапе секреция неактивных ферментов, подобная форма необходима, чтобы они не смогли разрушить клетки, в которых они образуются. Как правило, поступающие в комплекс Гольджи белки представляют собой гликопротеины. Там они проходят модификацию, которая превращает их в маркеры, позволяющие направить белок строго по своему назначению. Каким именно образом комплекс Гольджи распределяет молекулы, в точности не установлено.

Функция секреции углеводов

В некоторых случаях аппарат Гольджи принимает участие в секреции углеводов, например, у растений - при образовании материала клеточных стенок. Его активность усиливается в области клеточной пластинки, находящейся между двумя вновь образовавшимися дочерними ядрами. Пузырьки Гольджи направляются к этому месту при помощи микротрубочек. Мембраны пузырьков делаются частью плазматических мембран дочерних клеток. Их содержимое становится необходимым для построения клеточных стенок срединной пластинки и новых стенок. Целлюлоза в клетки поставляется отдельно при помощи микротрубочек, минуя аппарат Гольджи.

Аппаратом Гольджи также синтезируется гликопротеин муцин, образующий в растворе слизь. Он вырабатывается бокаловидными клетками, которые находятся в толще эпителия слизистой дыхательных путей и оболочки . У некоторых насекомоядных растений в железах листьев аппарат Гольджи и клейкую слизь. Комплекс Гольджи также принимает участие в секреции воска, слизи, камеди и растительного клея.

Комплекс Гольджи представляет собой стопку мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи.

Практически все секретируемые клеткой вещества (как белковой, так и небелковой природы) проходят через аппарат Гольджи и там упаковываются в секреторные пузырьки. Мембранные элементы АГ участвуют в сегрегации и накоплении продуктов, синтезированных в ЭР, участвуют в их химических перестройках, созревании: это, главным образом перестройка олигосахаридных компонентов гликопротеинов в составе водорастворимых секретов или в составе мембран.

В цистернах АГ происходит синтез полисахаридов, их взаимосвязь с белками, приводящая к образованию мукопротеидов. Но главное, с помощью элементов аппарата Гольджи происходит процесс выведения готовых секретов за пределы клетки. Кроме того, АГ является источником клеточных лизосом.

Участие АГ в процессах выведения секреторных продуктов было очень хорошо изучено на примере экзокринных клеток поджелудочной железы. Для этих клеток характерно наличие большого числа секреторных гранул (зимогеновых гранул), которые представляют собой мембранные пузырьки, заполненные белковым содержимым. В составе белков зимогеновых гранул входят разнообразные ферменты: протеазы, липазы, карбогидразы, нуклеазы. При секреции содержимое этих зимогеновых гранул выбрасывается из клеток в просвет железы, а затем перетекает в полость кишечника. Так как основным продуктом, выводимым клетками поджелудочной железы, является белок, то исследовали последовательность включения радиоактивных аминокислот в различные участки клетки. Для этого животным вводили меченную тритием аминокислоту (3 Н-лейцин) и с помощью электронно-микроскопической радиоавтографии следили во времени за локализацией метки. Оказалось, что через короткий промежуток времени (3-5 мин) метка локализовалась только в базальных участках клеток, в участка, богатых гранулярным ЭР. Так как метка включалась в белковую цепь во время синтеза белка, то было ясно, что ни в зоне АГ, ни в самих зимогеновых гранулах синтез белка не происходит, а он синтезируется исключительно в эргастоплазме на рибосомах. Несколько позднее (через 20-40 мин) метка кроме эргастоплазмы была обнаружена в зоне вакуолей АГ. Следовательно, после синтеза в эргастоплазме белок был транспортирован в зону АГ. Еще позднее (через 60 мин) метка обнаруживалась уже и в зоне зимогеновых гранул. В дальнейшем метку можно было видеть в просвете ацинусов этой железы. Таким образом, стало ясно, что АГ является промежуточным звеном между собственно синтезом секретируемого белка и выведением его из клетки. Также подробно процессы синтеза и выведения белков были изучены на других клетках (молочная железа, бокаловидные клетки кишечника, щитовидная железа и др.), и были исследованы морфологические особенности этого процесса. Синтезированный на рибосомах экспортируемый белок отделяется и накапливается внутри цистерн ЭР, по которым он транспортируется к зоне мембран АГ. Здесь от гладких участков ЭР отщепляются мелкие вакуоли, содержащие синтезированный белок, которые поступают в зону вакуолей в проксимальной части диктиосомы. В этом месте вакуоли могут сливаться друг с другом и с плоскими цис-цистернами диктиосомы. Таким образом происходит перенесение белкового продукта уже внутри полостей цистерн АГ.



По мере модификации белков в цистернах аппарата Гольджи, они с помощью мелких вакуолей переносятся от цистерн к цистерне в дистальную часть диктиосомы, пока не достигают трубчатой мембранной сети в транс-участке диктиосомы. В этом участке происходит отщепление мелких пузырьков, содержащих уже зрелый продукт. Цитоплазматическая поверхность таких пузырьков бывает сходна с поверхностью окаймленных пузырьков, которые наблюдаются при рецепторном пиноцитозе. Отделившиеся мелкие пузырьки сливаются друг с другом, образуя секреторные вакуоли. После этого секреторные вакуоли начинают двигаться к поверхности клетки, соприкасаются с плазматической мембраной, с которой сливаются их мембраны, и, таким образом, содержимое этих вакуолей оказывается за пределами клетки. Морфологически этот процесс экструзии (выбрасывания) напоминает пиноцитоз, только с обратной последовательностью стадий. Он носит название экзоцитоз .



Такое описание событий является только общей схемой участия аппарата Гольджи в секреторных процессах. дело усложняется тем, что одна и та же клетка может участвовать в синтезе многих выделяемых белков, может их друг от друга изолировать и направлять к клеточной поверхности или же в состав лизосом. В аппарате Гольджи происходит не просто "перекачка"продуктов из одной полости в другую, но и постепенно идет их "созревание", модификация белков, которая заканчивается "сортировкой"продуктов, направляющихся или к лизосомам, или к плазматической мембране, или к секреторным вакуолям.

Билет 36.модификация белков в аппарате Гольджи. Сортировка белков в АГ

В цистернах аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их модификации - гликозилирование и фосфорилирование. При О-гликозилировании к белкам присоединяются сложные сахара через атом кислорода. При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты. Разные цистерны аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своеобразного «знака качества». Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм:

· согласно первой, транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭПР, причём резидентные белки не включаются в отпочковывающуюся везикулу;

· согласно второй, происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

Известно, что только белки-предшественники лизосомных гидролаз имеют специфическую олигосахаридную, а именно маннозную группу. В цис-цистернах эти группировки фосфорилируются и дальше вместе с другими белками переносятся от цистерны к цистерне, через среднюю зону в транс-участок. Мембраны транс-сети аппарата Гольджи содержат трансмембранный белок - рецептор (манноза-6-фосфатный рецептор или М-6-Ф-рецептор), который узнает фосфорилированные маннозные группировки олигосахаридной цепи лизосомных ферментов и связывается с ними. Это связывание происходит при нейтральных значениях рН внутри цистерн транс-сети. На мембранах эти М-6-Ф-рецепторные белки образуют кластеры, группы, которые концентрируются в зонах образования мелких пузырьков, покрытых клатрином. В транс-сети аппарата Гольджи происходит их отделение, отпочковывание и дальнейший перенос к эндосомам. Следовательно М-6-Ф-рецепторы, являясь трансмембранными белками, связываясь с лизосомными гидролазами, отделяют их, отсортировывают, от других белков (например, секреторных, нелизосомных) и концентрируют их в окаймленных пузырьках. Оторвавшись от транс-сети эти пузырьки быстро теряют шубу, сливаются с эндосомами, перенося свои лизосомные ферменты, связанные с мембранными рецепторами, в эту вакуоль. Как уже говорилось, внутри эндосом из-за активности протонного переносчика происходит закисление среды. Начиная с рН 6 лизосомные ферменты диссоциируют от М-6-Ф-рецепторов, активируются и начинают работать в полости эндолизосомы. Участки же мембран вместе с М-6-Ф-рецепторами возвращаются путем рециклизации мембранных пузырьков обратно в транс-сеть аппарата Гольджи. Вероятнее всего, что та часть белков, которая накапливается в секреторных вакуолях и выводится из клетки после поступления сигнала (например нервного или гормонального) проходит такую же процедуру отбора, сортировки на рецепторах транс-цистерн аппарата Гольджи. Эти секреторные белки попадают сначала в мелкие вакуоли тоже одетые клатрином, которые затем сливаются друг с другом. В секреторных вакуолях часто происходит агрегация накопленных белков в виде плотных секреторных гранул. Это приводит к повышению концентрации белка в этих вакуолях примерно в 200 раз, по сравнению с его концентрацией в аппарате Гольджи. Затем эти белки по мере накопления в секреторных вакуолях выбрасываются из клетки путем экзоцитоза, поле получения клеткой соответствующего сигнала. От аппарата Гольджи исходит и третий поток вакуолей, связанный с постоянной, конститутивной секрецией. Так фибробласты выделяют большое количество гликопротеидов и муцинов, входящих в основное вещество соединительной ткани. Многие клетки постоянно выделяют белки, способствующие связыванию их с субстратами, постоянно идет поток мембранных пузырьков к поверхности клетки, несущие элементы гликокаликса и мембранных гликопротеидов. Этот поток выделяемых клеткой компонентов не подлежит сортировке в рецепторной транс-системе аппарата Гольджи. Первичные вакуоли этого потока также отщепляются от мембран и относятся по своей структуре к окаймленным вакуолям, содержащим клатрин. Заканчивая рассмотрение строения и работы такой сложной мембранной органеллы, как аппарат Гольджи, необходимо подчеркнуть, что несмотря на кажущуюся морфологическую однородность его компонентов, вакуоли и цистерны, на самом деле, это не просто скопище пузырьков, а стройная, динамичная сложно организованная, поляризованная система. В АГ происходит не только транспорт везикул от ЕР к плазматической мембране. Существует ретроградный перенос везикул. Так от вторичных лизосом отщепляются вакуоли и возвращаются вместе с рецепторными белками в транс-АГ зону. Кроме того существует поток вакуолей от транс-зоны к цис-зоне АГ, а так же от цис-зоны к эндоплазматическому ретикулуму. В этих случаях вакуоли одеты белками COP I-комплекса. Считается, что таким путем возвращаются различные ферменты вторичного гликозилирования и рецепторные белки в составе мембран. Эти особенности поведения транспортных везикул дали основу гипотезе о существовании двух типов транспорта компонентов АГ. По одному из них, наиболее старому, в АГ существуют стабильные мембранные компоненты, к которым от ЭР эстафетно переносятся вещества с помощью транспортных вакуолей. По альтернативной модели АГ является динамическим производным ЭР: отщепившиеся от ЭР мембранные вакуоли сливаются друг с другом в новую цис-цистерну, которая затем продвигается через всю зону АГ и в конце распадается на транспортные везикулы. По этой модели ретроградные COP I везикулы возвращают постоянные белки АГ в более молодые цистерны. Таким образом предполагается, что переходная зона ЭР представляет собой "родильный дом"для аппарата Гольджи.

Вопрос 37. Лизосомы. Образование строение функция. гетерогенность лизосом. Патологии лизосом.

Лизосома - клеточный органоид размером 0,2 - 0,4 мкм, один из видов везикул. Эти одномембранные органоиды - часть вакуома (эндомембранной системы клетки). Разные виды лизосом могут рассматриваться как отдельные клеточные компартменты.

Функциями лизосом являются:

· переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

· аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

· автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Иногда из-за неправильной работы лизосом развиваются болезни накопления, при которых ферменты из-за мутаций не работают или работают плохо. Примером болезней накопления может служить амавротическая идиотия при накоплении гликогена.

· Разрыв лизосомы и выход в гиалоплазму расщепляющих ферментов сопровождается резким повышением их активности. Такого рода повышение активности ферментов наблюдается, например, в очагах некроза при инфаркте миокарда и при действии излучения.

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Лизосомы - гетерогенные органеллы, имеющие разную форму, размеры, ультраструктурные и цитохимические особенности. «Типичные» лизосомы животных клеток обычно имеют размеры 0,1-1 мкм, сферическую или овальную форму. Число лизосом варьирует от одной (крупная вакуоль во многих клетках растений и грибов) до нескольких сотен или тысяч (в клетках животных).

Общепринятой классификации и номенклатуры для разных стадий созревания и типов лизосом нет. Различают первичные и вторичные лизосомы. Первые образуются в области аппарата Гольджи, в них находятся ферменты в неактивном состоянии, вторые же содержат активные ферменты. Обычно ферменты лизосом активируются при понижении рН. Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне - путем фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки). Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:

  1. Ранняя эндосома - в нее поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
  2. Поздняя эндосома - в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
  3. Лизосома - в нее из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
  4. Фагосома - в нее попадают более крупные частицы (бактерии и т. п.), поглощенные путем фагоцитоза. Фагосомы обычно сливаются с лизосомой.
  5. Аутофагосома - окруженный двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.
  6. Мультивезикулярные тельца - обычно окружены одинарной мембраной, содержат внутри более мелкие окруженные одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию (см. ниже), но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме. Описано образование мультивезикулярных телец, окруженных двумя мембранами, путем отпочковывания от ядерной оболочки.
  7. Остаточные тельца (телолизосомы) - пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках сливаются с наружной мембраной и путем экзоцитоза покидают клетку. При старении или патологии накапливаются.

Вопрос 38. Опишите путь секреторного белка от места синтеза белка до выхода из клетки.

В клетках, в которых секреция происходит в ответ на внеклеточный сигнал, секретируемые белки концентрируются и хранятся в секреторных пузырьках (их часто называют секреторными гранулами из-за темной сердцевины). При получении соответствующего сигнала они высвобождаются путем экзоцитоза. Секреторные пузырьки отпочковываются от транс-сети Гольджи. Полагают, что для их образования нужен клатрин и связанные с ним белки, создающие "кайму", потому что часть поверхности формирующихся пузырьков обычно покрыта клатрином. Эта кайма удаляется вскоре после того, как пузырек полностью сформируется (рис.8-76).

Подобно лизосомным гидролазам белки, предназначенные для секреторных пузырьков (их часто называют секреторными белками) должны быть отобраны и упакованы в соответствующие пузырьки в транс-сети Гольджи. По-видимому, в этом случае происходит избирательная агрегация секреторных белков. Образовавшиеся агрегаты в электронном микроскопе выглядят как электроноплотный материал в транс-сети Гольджи. "Сигнал сортировки" , направляющий белок к таким агрегатам, неизвестен, но видимо, это сигнальный участок, общий для многих секреторных белков. Такой вывод подтверждается следующими данными: если ген, кодирующий секреторный белок, перенести в секреторную клетку другого типа, в норме не синтезирующую данный белок, то чужой белок будет также упаковываться в секреторные пузырьки.

Неизвестно, каким образом при образовании секреторных пузырьков отбираются агрегаты, содержащие секреторные белки. Секреторные пузырьки имеют уникальные мембранные белки, часть из которых может служить рецепторами (в транс-сети Гольджи) для связывания агрегированного материала, подлежащего упаковке. Секреторные пузырьки больше транспортных пузырьков, переносящих лизосомные гидролазы, и агрегаты, которые в них содержатся, слишком велики для того, чтобы каждая молекула секретируемого белка могла связаться с рецептором в мембране пузырька, как это происходит при транспорте лизосомных ферментов. Захват этих агрегатов секреторными гранулами скорее напоминает поглощение частиц при фагоцитозе на клеточной поверхности, которое также происходит с участием покрытых клатрином мембран.

После того, как незрелые секреторные пузырьки отпочкуются от транс- сети Гольджи, они утрачивают кайму, и их содержимое сильно концентрируется. Такая конденсация происходит резко и, возможно, вызывается закислением среды в полости пузырька за счет работы ATP- зависимой протонной помпы в его мембране. Агрегация секретируемых белков (или других компонентов) и последующая их конденсация в секреторных пузырьках обусловливает увеличение концентрации этих белков в 200 раз по сравнению с аппаратом Гольджи. Благодаря этому секреторные пузырьки имеют возможность высвобождать по "команде"большие количества материала.

Вопрос №39.Опишите путь гидролаз от места их синтеза до места назначения.

ГИДРОЛАЗЫ , класс ферментов, катализирующих гидролиз. Могут действовать на сложноэфирные и гликозидные связи, на связи С-О в простых эфирах. С-S в сульфидах, С-N в пет идах, и др.

Гидролазы , катализирующие гидролиз сложноэфирных связей (эстеразы), действуют на сложные эфиры карбоновых и тио-карбоновых кислот, моноэфиры фосфорной кислоты и др. К этому подклассу относятся, в частности, ферменты, играющие важную роль в метаболизмелипидов. нуклеиновых кислот и нуклеозидов. например арилсульфатазы, ацетилхолинэстераза, дезоксирибонуклеазы. липазы, фосфатазы, фосфо липазыи эндодезоксирибонуклеазы

Ферменты, катализирующие гидролиз связи С-N в пептидах и белках (пептидгидролазы),- самая многочисленная группа гидролазы К ним относятся ферменты, отщепляющие одну или две аминокислоты с N- или С-конца полипептидной цепи (напр., аминопептидазы, карбоксипептидазы), а также эндопептидазы, или протеиназы, расщепляющие цепь вдали от концевых остатков. Пептидгидролазы играют важную роль не только в катаболизме белков и пептидов, но и в биол. регуляции (гормональной регуляции, активации проферментов, регуляции кровяного давления и солевого обмена и т.д.).

Вопрос 40. Опишите путь макромолекулы от момента поступления её в клетку до момента усвоения.

знаю

Вопрос 41. Роль АГ и ЭР в регенерации и обновлениях поверхностного аппарата клетки (ПАК)

Роль АГ в обновлении ПАК:

Аппарат Гольджи. Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках рас-тений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.
В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.
Аппарат Гольджи выполняет много важных функций. По каналам эндо-плазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сна-чала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мем-браны.

(см. ниже и про АГ и про ЭР, 2-а других источника).

Роль ЭР в обновлении ПАК:

Эндоплазматический ретикулум (эндоплазматическая сеть) представляет собой систему цистерн, канальцев и вакуолей, ограниченных цитомембраной. Различают гранулярный (шероховатый) и агранулярный (гладкий) эндоплазматический ретикулум; в первом преобладают плоские мешочки - цистерны, во втором - канальцы. Мембраны шероховатого ретикулума со стороны гиалоплазмы покрыты рибосомами. Степень развития этого органоида зависит от уровня метаболической активности и дифференцировки К.: он сильнее развит в клетках, активно синтезирующих белки.

(ещё один источник).

ЭР – транспорт белков.

Полость ЭР отделяется от цитозоля одиночной мембраной ( мембраной ЭР), служащей связующим звеном между этими двумя компартментами. Наоборот полости ЭР и каждой цистерны аппарата Гольджи отделены друг от друга двумя мембранами и цитозолем, поэтому транспорт макромолекул между этими органеллами осуществляется при помощи транспортных пузырьков.

Все вновь синтезированные белки, независимо от их места назначения (полость ЭР, аппарат Гольджи, лизосомы или внеклеточное пространство) сначала поступают в полость ЭР.

Некоторые белки переходят из цитозоля в шероховатый ЭР сразу после их синтеза.

Это белки двух типов:

1) трансмембранные, которые лишь частично переносятся через мембрану ЭР и остаются заключенными в нее, и

2) водорастворимые, которые полностью переносятся через мембрану ЭР и освождаются в его полость.

В клетках млекопитающих импорт белков в ЭР начинается еще до того, как полипептидная цепь полностью синтезирована, т. е. он происходит одновременно с трансляцией (котрансляционно).

Таким образом, в цитоплазме имеется две пространственно изолированные популяции рибосом. Одни из них (рибосомы, связанные с мембраной), расположены на обращенной к цитоплазме поверхности мембраны ЭР и заняты синтезом белков, которые сразу же переносятся внутрь ЭР. Другие (рибосомы свободные) не приклеплены ни к какой мембране и производят все остальные белки, кодируемые ядром. Связанные и свободные рибосомы идентичны по строению и функции. Они различаются только по белкам, которые синтезируются на них в каждый данный момент. Если рибосоме достается синтез белка с сигнальным пептидом для ЭР, то такой сигнал направляет рибосому к мембране ЭР.

(ещё один источник).

Мы уже подчеркивали, насколько обширны структуры эндоплазматического ретикулума и аппарата Гольджи в секреторных клетках. В основе этих структур лежат мембраны из липидных бислоев, сходные по строению с мембраной клетки. Стенки мембран содержат ферменты, которые катализируют синтез многих веществ, необходимых клетке.

Большая часть синтетических процессов происходит в эндоплазматическом ретикулуме . Сформированные здесь вещества направляются в аппарат Гольджи, где они перед выходом в цитоплазму подвергаются дальнейшей обработке. Вначале следует остановиться на веществах, которые синтезируются в отдельных областях ретикулума и аппарата Гольджи.

Синтез белков на шероховатом эндоплазматическом ретикулуме . На наружной поверхности шероховатого эндоплазматического ретикулума содержится большое количество прикрепленных к нему рибосом; на них происходит синтез белка, незначительное количество которого попадает в цитозоль, а основная часть - в просвет трубочек и пузырьков ретикулума, т.е. в эндоплазматический матрикс.

Синтез липидов в гладком эндоплазматическом ретикулуме . Эндоплазматический ретикулум способен к синтезу липидов, особенно фосфолипидов и холестерола. Они быстро растворяются в мембранном бислое, что способствует дальнейшему разрастанию структур ретикулума, в основном гладкого.

Небольшие пузырьки , называемые транспортными, или ЭР-вакуолямиу постоянно отделяются от мембран гладкого ретикулума, предотвращая таким образом его избыточный рост. Большая часть этих транспортных вакуолей затем быстро направляется в аппарат Гольджи.

Другие функции эндоплазматического ретикулума . Эндоплазматический ретикулум, особенно гладкий, обладает и другими важными функциями.
1. Обеспечение ферментами, расщепляющими гликоген при необходимости получения из него энергии.
2. Обеспечение большим количеством ферментов, способных нейтрализовать вредные для клетки вещества, например лекарственные препараты. Способы обезвреживания включают коагуляцию, окисление, гидролиз, соединение с глюкуроновой кислотой и т.п.

Строение и функции комплекса Гольджи связаны с завершением модификации веществ, поступающих из ЭПС, и их перераспределением в свои пункты назначения.

В животных клетках чаще всего имеется один крупный комплекс Гольджи, в растительных - несколько более мелких стопок, которые называют диктиосомами.

По своему строению аппарат Гольджи представляет собой стопку мембранных дисков (с полостями внутри). Каждый такой диск называют цистерной. Каждая цистерна расширяется к краям. Кроме дисков в состав аппарата входят и связанные с ними везикулярные пузырьки, а также (предположительно) окружающая мембранная сеть, связывающая вместе отдельные цистерны.

Сторона Гольджи, обращенная к ядру, называется цис-отделом. Сторона, обращенная к плазмалемме, – транс-отделом. Также выделяют срединных отдел. Ферментативный состав разных отделов различен, поэтому в каждом из них происходят свои химические реакции, т. е этапы модификации веществ. Вещество, проходя по цистернам как по конвейеру, постепенно приобретает необходимое химическое строение и функциональность.

Из эндоплазматической сети, синтезируемые там белки, жиры и углеводы, попадают в комплекс Гольджи с помощью визикул (пузырьков, окруженных мембраной). При этом белки имеют сигнальные химические метки (в виде олигосахаридов), которые «сообщают» комплексу Гольджи, что с ними делать.

На данном рисунке-схеме показано как белок, который был синтезирован в ЭПС, пройдя через аппарат Гольджи, становится компонентом клеточной мембраны. Белок здесь обозначен зеленой овалом. Прикрепленный к нему элемент розового цвета обозначает углевод, связанный с белком. По-сути транспортируется и модифицируется не белок, а гликопротеин (углевод+белок).

Наращивание цитоплазматической мембраны - лишь одна из функций комплекса Гольджи. Также за пределы клетки путем экзоцитоза выделяются компоненты межклеточной жидкости, матрикс клеточных стенок (у растений), различные секреты (у секреторных клеток) и др.

Другая функция – это образование лизосом – клеточных органелл, содержащих в основном ферменты для расщепления поступающих в клетку сложных веществ.

Также в Гольджи образуются транспортные везикулы, доставляющие вещества к другим клеточным органеллам.

Комплекс, или аппарат, Гольджи назван так в честь открывшего его ученого. Это клеточная органелла имеет вид комплекса полостей, ограниченных одинарными мембранами. В растительных клетках и у простейших представлен несколькими отдельными более мелкими стопками (диктиосомами).

Комплекс Гольджи по внешнему виду, видимому в электронный микроскоп, напоминает стопку наложенных друг на друга дискообразных мешочков, около которых находится множество пузырьков. Внутри каждого «мешка» находится узкий канал, расширяющийся на концах в так называемые цистерны (иногда цистерной называют весь мешочек). От них отпочковываются пузырьки. Вокруг центральной стопки формируется система взаимосвязанных трубочек.

С наружней, имеющей несколько выпуклую форму, стороны стопки образуются новые цистерны путем слияния пузырьков отпочковывающихся от гладкой эндоплазматической сети. На внутренней стороне цистерны завершают свое созревание и распадаются снова на пузырьки. Таким образом, цистерны (мешочки стопки) Гольджи перемещаются от наружней стороны к внутренней.

Часть комплекса, располагающаяся ближе к ядру, называется «цис».

Та, что ближе к мембране, – «транс».

Функции комплекса Гольджи

Функции аппарат Гольджи разнообразны, в общей сложности сводятся к модификации, перераспределению синтезированных в клетке веществ, а также их выведению за пределы клетки, образованию лизосом и построению цитоплазматической мембраны.

Активность комплекса Гольджи высока в секреторных клетках. Белки, поступающие из ЭПС, концентрируются в аппарате Гольджи, затем переносятся к мембране в пузырьках Гольджи. Ферменты секретируются из клетки путем обратного пиноцитоза.

К приходящим в Гольджи белкам присоединены олигосахаридные цепочки. В аппарате они модифицируются и служат маркерами, с помощью которых белки сортируются и направляются по своему пути.

У растений при формировании клеточной стенки Гольджи секретирует углеводы, служащие матриксом для нее (целлюлоза здесь не синтезируется). Отпочковавшиеся пузырьки Гольджи перемещаются с помощью микротрубочек. Их мембраны сливаются с цитоплазматической мембраной, а содержимое включается в клеточную стенку.

Комплекс Гольджи бокаловидных клеток (находятся в толще эпителия слизистой оболочки кишечника и дыхательных путей) секретирует гликопротеин муцин, который в растворах образует слизь. Подобные вещества синтезируются клетками кончика корня, листьев и др.

В клетках тонкого кишечника аппарат Гольджи выполняет функцию транспорта липидов. В клетки попадают жирные кислоты и глицерол. В гладкой ЭПС происходит синтез своих липидов. Большинство из них покрываются белками и посредством Гольджи транспортируются к клеточной мембране. Пройдя через нее, липиды оказываются в лимфе.

Важной функцией является формирование лизосом.

Комплекс Гольджи – это мембранная структура, присущая любой эукариотической клетке.

Аппарата Гольджи представлен сплющенными цистернами (или мешками), собранными в стопку. Каждая цистерна немного изогнута и имеет выпуклую и вогнутую поверхности.

Средний диаметр цистерн составляет около 1 мкм. В центре цистерны ее мембраны сближены, а на периферии часто формируют расширения, или ампулы, от которых отшнуровываются пузырьки. Пакеты плоских цистерн количеством в среднем около 5-10 формируют диктиосому. Кроме цистерн, в комплексе Гольджи присутствуют транспортные и секреторные пузырьки. В диктиосоме в соответствии с направлением кривизны изогнутых поверхностей цистерн различают две поверхности. Выпуклая поверхность называется незрелой, или цис-поверхностью. Она обращена к ядру или к канальцам гранулярной эндоплазматической сети и связана с последней пузырьками, отшнуровывающимися от гранулярной сети и приносящими молекулы белка в диктиосому на дозревание и оформление в мембрану. Противоположная трансповерхность диктиосомы вогнута. Она обращена к плазмолемме и именуется зрелой потому, что от ее мембран отшнуровываются секреторные пузырьки, содержащие готовые к выведению из клетки продукты секреции.

Комплекс Гольджи участвует:

  • в накоплении продуктов, синтезированных в эндоплазматической сети,
  • в их химической перестройке и созревании.

В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети. Лизосомы представляют собой внутриклеточно формирующиеся секреторные вакуоли, заполненные гидролитическими ферментами, необходимыми для процессов фаго- и аутофагоцитоза. На светооптическом уровне лизосомы можно индентифицировать и судить о степени их развития в клетке по активности гистохимической реакции на кислую фосфатазу - ключевой лизосомальный энзим. При электронной микроскопии лизосомы определяются как пузырьки, ограниченные от гиалоплазмы мембраной. Условно выделяют 4 основных вида лизосом:

  • первичные,
  • вторичные лизосомы,
  • аутофагосомы,
  • остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки (средний диаметр их составляет около 100 нм), заполненные гомогенным мелкодисперсным содержимым, представляющим собой набор гидролитических ферментов. В лизосомах идентифицированы около 40 ферментов (протеазы, нуклеазы, гликозидазы, фосфорилазы, сульфатазы), оптимальный режим действия которых рассчитан на кислую среду (рН 5). Лизосомальные мембраны содержат специальные белки-носители для транспорта из лизосомы в гиалоплазму продуктов гидролитического расщепления - аминокислот, Сахаров и нуклеотидов. Мембрана лизосом устойчива по отношению к гидролитическим ферментам.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Иными словами, вторичные лизосомы - это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания - эндоцитозной (пиноцитозной) вакуолью. Строение вторичных лизосом весьма разнообразно и изменяется в процессе гидролитического расщепления содержимого. Ферменты лизосом расщепляют попавшие в клетку биологические вещества, в результате чего образуются мономеры, которые транспортируются через мембрану лизосомы в гиалоплазму, где утилизируются или включаются в разнообразные синтетические и метаболические реакции.

Если взаимодействию с первичными лизосомами и гидролитическому расщеплению их ферментами подвергаются собственные структуры клетки (стареющие органеллы, включения и пр.), формируется аутофагосома. Аутофагоцитоз является естественным процессом в жизнедеятельности клетки и играет большую роль в обновлении ее структур при внутриклеточной регенерации.

Остаточные тельца это одна из финальных стадий существования фаго- и аутолизосом и обнаруживаются при незавершенном фаго- или аутофагоцитозе и впоследствии выделяются из клетки путем экзоцитоза. Они имеют уплотненное содержимое, часто наблюдается вторичная структуризация непереваренных соединений (например, липиды образуют сложные слоистые образования).

Социальные кнопки для Joomla

Функции комплекса Гольджи

1. Синтез полисахаридов и гликопротеинов (гликокаликс, слизь).

2. Процессинг молекул:

а) терминальное гликозилирование

б) фосфорилирование

в) сульфатирование

г) протеолитическое расщепление (части белковых молекул)

3. Конденсация секреторного продукта.

4. Упаковка секреторного продукта

5. Сортировка белков в зоне сети транс- Гольджи (за счет специфических рецепторных мембранных белков, которые распознают сигнальные участки на макромолекулах и направляют их в соответствующие пузырьки). Транспорт из комплекса Гольджи идет в виде 3-х потоков:

1. Гидролазные пузырьки (или первичные лизосомы)

2. В плазмолемму (в составе окаймленных пузырьков)

3. В секреторные гранулы

Эндосомы — мембранные пузырьки с закисляющимся содержимым и обеспечивающие перенос молекул в клетку. Тип переноса веществ системой эндосом различный:

1. С перевариванием макромолекул (полным)

С частичным их расщеплением

3. Без изменения по ходу транспорта

Процесс транспорта и последующего расшепления веществ в клетке с помощью эндосом состоит из следующих последовательных компонентов:

1. Ранняя (периферическая) эндосома

2. Поздняя (перинуклеарная) эндосома прелизосомальный этап переваривания

3. Лизосома

Ранняя эндосома – лишенный клатрина пузырек на периферии клетки. рН среды 6,0, здесь происходит ограниченный и регулируемый процесс расщепления (лиганд отделяется от рецептора) — возвращение рецепторов в мембрану клетки. Ранняя эндосома еще известна как Curl.

Поздняя (перинуклеарная) эндосома: а) более кислое содержимое рН 5,5

б) диаметр больший до 800 нм

в) более глубокий уровень переваривания

Это переваривание лиганд (периферическая эндосома + перинуклеарная эндосома) — мультивезикулярное тельце.

Лизосомы

1. Фаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с фагосомой. Процесс разрушения этого материала называется гетерофагией.

2.Аутофаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с аутофагосомой.

3. Мультивезикулярное тельце – крупная вакуоль (800 нм) , состоящая из мелких 40-80 нм пузырьков, окруженных умеренно плотным матриксом. Оно образуется в результате слияния ранней и поздней эндосом.

4. Остаточные тельца — это непереваренный материал. Самым известным компонентом этого типа являются липофусциновые гранулы – пузырьки диам. 0,3 – 3 мкм, содержащие пигмент липофусцин.

Цитоскелет – это система микротрубочек, микрофиламентов (промежуточных, микротрабекул). Все они формируют трехмерную сеть, взаимодействуя с сетями из других компонентов.

1. Микротрубочки – полые цилиндры диам. 24-25 нм, стенка толщиной 5 нм, диам. просвета – 14-15 нм. Стенка состоит из спирально уложенных нитей (они называются протофиламенты) толщиной 5 нм. Эти нити образованы димерами и тубулина. Это лабильная система, у которой один конец (обозначаемый “__”) закреплен, а другой (“ + “) свободен и участвует в процессе деполимеризации.

Микротрубочки ассоциированы с рядом белков, имеющих общее название МАР – они связывают микротрубочки с другими элементами цитоскелета и органеллами. Кинезин –(шаг его перемещения по поверхности микротрубочки составляет 8 нм).

Органелла

рис. Микротрубочка

Микрофиламенты – это две переплетенные нити F-актина, составленные из g- актина. Диаметр их составляет 6 нм. Микрофиламенты полярны, присоединение g -актина происходит на (“+”) конце. Они образуют скопления

по периферии клетки и связаны с плазмолеммой посредством промежуточных белков (-актин, винкулин, талин).

Функция: 1. Изменение цитозоля (переход золя в гель и обратно).

2. Эндоцитоз и экзоцитоз.

3. Подвижность немышечных клеток.

4. Стабилизация локальных выпячиваний плазматической мембраны.

Промежуточные нити имеют d 8-11 нм, состоят из белков, характерных для определенных клеточных типов. Они формируют внутриклеточный каркас, обеспечивающий упругость клетки и упорядоченное расположение компонентов цитоплазмы. Промежуточные филаменты образованы нитевидными белковыми молекулами, сплетенными друг с другом наподобие каната.

Функции : 1. Структурная

2. Участие в образовании рогового вещества

3. Поддержание формы, отростков нервных клеток

4. Прикрепление миофибрилл к плазмолемме.

Микротрабекулы – ажурная сеть тонких нитей, существующая в комплексе с микротрубочками и может участвовать в транспорте органелл и влиять на вязкость цитозоля.

ЛЕКЦИЯ

ТЕМА:” ЯДРО. СТРУКТУРА ИНТЕРФАЗНОГО ЯДРА. ОСНОВЫ БИОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КЛЕТКИ”

Ядро является основной частью клетки, кодирующей информацию о структуре и функции органа. Эта информация заложена в генетическом материале, ДНК, представляющей собой в комплексе с основными белками (гистонами) ДНП. За некоторым исключением (митохондрии) ДНК локализуется исключительно в ядре. ДНК способна реплицироваться сама, обеспечивая тем самым передачу генетического кода дочерним клеткам в условиях клеточного деления.

Ядро играет центральную роль в синтезе белка и полипептидов, являясь носителем генетической информации. Все ядра клеток организма содержат те же самые гены, одни клетки различны по своей структуре, функции и характеру продуцируемых клеткой веществ. Ядерный контроль осуществляется путем

репрессии или депрессии (экспрессии) активности различных генов. Трансляция о характере синтеза белка связана с образованием м-РНК. Многие РНК – это комплекс белка и РНК, т.е. РНП. Интерфазное ядро в большинстве клеток – это образование округлой или овальной формы в несколько мм в диаметре. В лейкоцитах и клетках соединительной ткани ядро дольчатое и обозначается термином полиморфное.

Интерфазное ядро имеет несколько различных структур: ядерную оболочку, хроматин, кариолимфу и ядрышко.

Ядерная оболочка

1. Наружная ядерная мембрана – на поверхности расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны. Со стороны цитоплазмы она окружена рыхлой сетью промежуточных (виментиновых) филаментов.

2. Перинуклеарные цистерны – часть околоядерных цистерн связана с гранулярной эндоплазматической сетью (20-50 нм).

3. Внутренняя ядерная мембрана – отделена от содержимого ядра ядерной пластинкой.

4. Ядерная пластинка толщиной 80-300 нм, участвует в организации ядерной оболочки и перинуклеарного хроматина, содержит белки промежуточных филаментов – ламины А, В и С.

5. Ядерная пора – от 3-4 тысяч специализированных коммуникаций, осуществляют транспорт между ядром и цитоплазмой. Ядерная пора d 80 нм, имеет: а) канал поры – 9 нм

б) комплекс ядерной поры, последний содержит белок-рецептор, реагирующий на сигналы ядерного импорта (входной билет в ядро).Диаметр ядерной поры может увеличивать диаметр канала поры и обеспечивать перенос в ядро больших макромолекул (ДНК-РНК – полимераза).

Ядерная пора состоит из 2-х параллельных колец по одному с каждой поверхности кариолеммы. Кольцо диаметром 80 нм, образованы они 8 белковыми гранулами, от каждой гранулы к центру тянется нить (5 нм), которая формирует перегородку (диафрагму). В центре расположена центральная гранула. Совокупность этих структур называется комплекс ядерной поры. Здесь формируется канал диаметром 9 нм, такой канал называют водным, поскольку по нему движутся мелкие водорастворимые молекулы и ионы.

Функции ядерной поры: 1. Избирательный транспорт;

2. Активный перенос в ядро белков с последовательностью, характерной для белков ядерной локализации;

3. Перенос в цитоплазму субьединиц рибосом с изменением конформации порового комплекса.

Внутренняя ядерная мембрана — гладкая и связана с помощью интегральных белков с ядерной пластинкой, которая представляет собой слой, толщиной 80-300 нм. Эта пластинка или ламина – состоит из переплетенных промежуточных филаментов (10 нм), формирующих кариоскелет. Функции ее:

1. Сохранение структурной организации поровых комплексов;

2. Поддержание формы ядра;

3. Упорядоченная укладка хроматина.

Она формируется в результате спонтанной ассоциации 3-х главных полипептидов. Это структурный каркас ядерной оболочки с участками специфического связывания хроматина.

Аппарат Гольджи

Глава 1. Аппарат Гольджи: структура и функции

Аппарат Гольджи

1.1. Гольджи аппарат: структура

Описание структуры аппарата Гольджи тесно связано с описанием егоосновных биохимических функций, поскольку подразделение этогоклеточного компартмента на отделы производится преимущественно на основе локализации ферментов…

Аппарат Гольджи

1.2. Гольджи аппарат: функции

Функцией аппарата Гольджи является транспорт и химическая модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума…

Аппарат Гольджи

Глава 2. Анализ деятельности аппарата Гольджи в клетке

Аппарат Гольджи

2.1. Анализ деятельности аппарата Гольджи в клетке

Лизосомы — это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы…

Аппарат Гольджи

2.3. Аппарат Гольджи: сортировка белков и передача сигнала

Комплекс Гольджи функционирует на пересечении секреторных путей, осуществляя прием вновь синтезированных белков и липидов из ЭР, их ковалентную модификацию, а затем — сортировку продуктов реакций согласно их назначениям (Рис. 1 gg)…

Аппарат Гольджи

2.3. Аппарат Гольджи: молекулярный механизм функционирования

Гептамерный цитозольный белковый комплекс, называемый COPI (мембранный комплекс Гольджи, коатомер) , в соединении с GTP-связывающим белком ARF 1 образует оболочку таким образом, что, будучи ассоциированным в мембраны Гольджи…

Мочеполовой аппарат

1.Мочеполовой аппарат

Мочеполовой аппарат, состоит из мочевых органов,которые обеспечивают образование и выведение из организма мочи и половых органов,осуществляющие функцию размножения. Функционально они никак не связаны между собой…

Особенности строения птиц

Аппарат пищеварения

Строение пищеварительной системы птиц во многом напоминает пищеварительный аппарат млекопитающих. Она включает ротоглотку, пищеводно-желудочный отдел, тонкий и толстый кишечник. Характер переработки твердого корма…

Особенности строения птиц

Аппарат дыхания

Органы дыхания у птиц имеют ряд особенностей: малая величина и несложность строения носовой полости; наличие в бифуркации трахеи приспособления для издания звука — певчей гортани; незначительная величина и положение легких…

Особенности строения птиц

Аппарат мочевыделения

Мочевыделительная система состоит только из почек и мочеточников, открывающихся в уродеум клоаки.

Лоханка, мочевой пузырь, мочеиспускательный канал у птиц отсутствуют…

Особенности строения птиц

Аппарат размножения

Система органов размножения обеспечивает продолжения вида. У сельскохозяйственных птиц она кроме того, определяет яйценоскость. Эта система состоит из половых желез (семенников или яичников), в которых образуются половые клетки…

Роль зрительного анализатора в жизни животных

1.4 Глазодвигательный аппарат

Глаз можно рассматривать как оптическую камеру. Для наведения такой "камеры" на рассматриваемый объект (точку фиксации) ее следует повернуть. Для движений глазного яблока существует глазодвигательный аппарат…

Фотодинамический эффект и фотодинамическая терапия

10. Аппарат Гольджи и эндоплазматический ретикулум

Гидрофобные фотосенсибилизаторы, такие как гиперицин, фталоцианин Pc 4, фталоцианин цинка или Фотофрин, обычно накапливаются в перинуклеарной области, богатой мембранными органеллами — митохондриями, ЭР…

Чешуекрылые европейской части России с дневным образом жизни

3.1.1 Ротовой аппарат

Ротовой аппарат чешуекрылых возник путем специализации обычных конечностей членистоногих. Поглощение и измельчение пищи. Ротовые органы бабочек являются не менее характерным признаком, чем структура крыльев и покрывающих их чешуек…

Клетка — цельная система

Живая клетка — уникальная совершенная мельчайшая единица организма, она устроена так, чтобы максимально эффективно использовать кислород и питательные вещества, выполняя свои функции. Жизненно важными для клетки органеллами являются ядро, рибосомы, митохондрии, эндоплазматический ретикулум, аппарат Гольджи. Вот о последнем и поговорим подробнее.

Что это такое

Эта мембранная органелла является комплексом структур, которые выводят из клетки синтезированные в ней вещества. Чаще всего она располагается вблизи от наружной клеточной мембраны.

Аппарат Гольджи: строение

Он состоит из образованных мембранами “мешочков”, называемых цистернами. Последние имеют вытянутую форму, слегка сплющены посередине и расширены по краям. Также в комплексе имеются круглые пузырьки Гольджи - мелкие мембранные структуры. Цистерны “сложены” стопочками, которые называются диктиосомы. Аппарат Гольджи содержит различные типы “мешочков”, весь комплекс делят на некоторые части по степени удаленности от ядра. Различают их три: цис-отдел (ближе к ядру), срединный, и транс-отдел - самый дальний от ядра. Они характеризуются отличающимся составом ферментов, а следовательно, и выполняемой работой. В строении диктиосом есть одна особенность: они полярны, то есть ближайший к ядру отдел только принимает пузырьки, идущие от эндоплазматического ретикулума. Часть “стопки”, обращенная к мембране клетки, только формирует и отдает их.

Аппарат Гольджи: функции

Основными выполняемыми задачами являются сортировка белков, липидов, слизистых секретов и их выведение. Также через него проходят выделяемые клеткой небелковые вещества, углеводные компоненты наружной мембраны. При этом аппарат Гольджи вовсе не является индифферентным посредником, который просто “передает” вещества, в нем идут процессы активизации и модификации (“созревания”):

  1. Сортировка веществ, транспорт белков. Распределение белковых веществ происходит на три потока: для мембраны самой клетки, экспортные, лизосомальные ферменты. В первый поток помимо белков включаются и жиры. Интересный факт, что любые экспортные вещества переносятся внутри пузырьков. А вот предназначенные для мембраны клетки белки встраиваются в мембрану транспортного пузырька и перемещаются таким образом.
  2. Выделение всех продуктов, произведенных в клетке. Аппарат Гольджи “упаковывает” всю продукцию, как белковую, так и иной природы, в секреторные пузырьки. Все вещества выделяются наружу путем сложного взаимодействия последних с клеточной мембраной.
  3. Синтез полисахаридов (гликозаминогликанов и компонентов гликокаликса клеточной стенки).
  4. Сульфатирование, гликозилирование жиров и белков, частичный протеолиз последних (необходимый для перевода их из неактивной формы в активную), — это всё процессы “созревания” белков, нужные для их будущей полноценной работы.

В заключение

Рассмотрев то, как устроен и работает комплекс Гольджи, убеждаемся, что он является важнейшей и неотъемлемой частью любой клетки (особенно секреторных). Клетка, не продуцирующая веществ на экспорт, также не может обойтись без этой органеллы, поскольку от нее зависит “укомплектованность” клеточной мембраны и другие важные внутренние процессы жизнедеятельности.

В 1898 г. итальянский ученый К. Гольджи выявил в нервных клетках сетчатые образования, которые он назвал “внутренним сетчатым аппаратом” (рис. 174). Сетчатые структуры (аппарат Гольджи) встречаются во всех клетках любых эукариотных организмов. Обычно аппарат Гольджи располагается около ядра, вблизи клеточного центра (центриоли).

Тонкое строение аппарата Гольджи. Аппарат Гольджи состоит из мембранных структур, собранных вместе в небольшой зоне (рис. 176, 177). Отдельная зона скопления этих мембран называется диктиосомой (рис. 178). В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены в виде стопки плоские мембранные мешки, или цистерны, между которыми располагаются тонкие прослойки гиалоплазмы. Каждая отдельная цистерна имеет диаметр около 1 мкм и переменную толщину; в центре ее мембраны могут быть сближены (25 нм), а на периферии иметь расширения, ампулы, ширина которых непостоянна. Количество таких мешков в стопке обычно не превышает 5-10. У некоторых одноклеточных их число может достигать 20 штук. Кроме плотно расположенных плоских цистерн в зоне АГ наблюдается множество вакуолей. Мелкие вакуоли встречаются главным образом в периферических участках зоны АГ; иногда видно, как они отшнуровываются от ампулярных расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный или формирующийся, цис-участок, и дистальный или зрелый, транс-участок (рис. 178). Между ними располагается средний или промежуточный участок АГ.

Во время деления клеток сетчатые формы АГ распадаются до диктиосом, которые пассивно и случайно распределяются по дочерним клеткам. При росте клеток общее количество диктиосом увеличивается.

В секретирующих клетках обычно АГ поляризован: его проксимальная часть обращена к цитоплазме и ядру, а дистальная - к поверхности клетки. В проксимальном участке к стопкам сближенных цистерн примыкает сетевидная или губкообразная система мембранных полостей. Считается, что эта система представляет собой зону перехода элементов ЭР в зону аппарата Гольджи (рис. 179).

В средней части диктиосомы периферия каждой цистерны также сопровождается массой мелких вакуолей около 50 нм в диаметре.

В дистальном или транс-участке диктиосом к последней мембранной плоской цистерне примыкает участок, состоящий из трубчатых элементов и массы мелких вакуолей, часто имеющих фибриллярную опушенность по поверхности со стороны цитоплазмы - это опушенные или окаймленные пузырьки такого же типа, как и окаймленные пузырьки при пиноцитозе. Это - так называемая транс-сеть аппарата Гольджи (TGN), где происходит разделение и сортировка секретируемых продуктов. Еще дистальнее располагается группа более крупных вакуолей - это уже продукт слияния мелких вакуолей и образования секреторных вакуолей.


С помощью мегавольтного электронного микроскопа было установлено, что в клетках отдельные диктиосомы могут быть связаны друг с другом системой вакуолей и цистерн и образовывать рыхлую трехмерную сеть, выявляемую в световом микроскопе. В случае диффузной формы АГ каждый отдельный его участок представлен диктиосомой. У клеток растений преобладает диффузный тип организации АГ, обычно в среднем на клетку приходится около 20 диктиосом. В клетках животных часто с зоной мембран аппарата Гольджи ассоциированы центриоли; между радиально отходящих от них пучков микротрубочек лежат группы стопок мембран и вакуолей, которые концентрически окружают клеточный центр. Эта связь, свидетельствует об участии микротрубочек в движении вакуолей.

Секреторная функция аппарата Гольджи. Основные функции АГ заключаются в накоплении продуктов, синтезированных в ЭР, обеспечение их химических перестроек, созревания.

В цистернах АГ происходит синтез полисахаридов, их взаимосвязь с белками. и образование мукопротеидов. Но главной функцией аппарата Гольджи является выведение готовых секретов за пределы клетки. Кроме того, АГ является источником клеточных лизосом.

Синтезированный на рибосомах экспортируемый белок отделяется и накапливается внутри цистерн ЭР, по которым он транспортируется к зоне мембран АГ. Здесь от гладких участков ЭР отщепляются мелкие вакуоли, содержащие синтезированный белок, которые поступают в зону вакуолей в проксимальной части диктиосомы. В этом месте вакуоли сливаются друг с другом и с плоскими цис-цистернами диктиосомы. Таким образом происходит перенесение белкового продукта уже внутри полостей цистерн АГ.

По мере модификации белки в цистернах аппарата Гольджи, с помощью мелких вакуолей переносятся от цистерн к цистерне в дистальную часть диктиосомы, пока не достигнут трубчатой мембранной сети в транс-участке диктиосомы. В этом участке происходит отщепление мелких пузырьков, содержащих уже зрелый продукт. Цитоплазматическая поверхность таких пузырьков бывает сходна с поверхностью окаймленных пузырьков, которые наблюдаются при рецепторном пиноцитозе. Отделившиеся мелкие пузырьки сливаются друг с другом, образуют секреторные вакуоли. После этого секреторные вакуоли начинают двигаться к поверхности клетки, плазматическая мембрана и мембраны вакуолей сливаются, и, таким образом, содержимое вакуолей оказывается за пределами клетки. Морфологически этот процесс экструзии (выбрасывания) напоминает пиноцитоз, только с обратной последовательностью стадий. Он носит название экзоцитоз.

В аппарате Гольджи происходит не только передвижение продуктов из одной полости в другую, но и происходит модификация белков, которая заканчивается адресацией продуктов, либо к лизосомам, плазматической мембране или к секреторным вакуолям.

Модификация белков в аппарате Гольджи. В цис-зону аппарата Гольджи синтезированные в ЭР белки попадают после первичного гликозилирования и редукции нескольких сахаридных остатков. После чего все белки получают одинаковые олигосахаридные цепи, состоящие из двух молекул N-ацетилглюкозамина, шести молекул маннозы (рис. 182). В цис-цистернах происходит вторичная модификация олигосахаридных цепей и их сортировка на два класса. В результате сортировки получается один класс фосфорилирующихся олигосахаридов (богатые маннозой) для гидролитических ферментов, предназначенных для лизосом, и другой класс олигосахаридов для белков, направляемых в секреторные гранулы или к плазматической мембране

Превращения олигосахаридов осуществляются с помощью ферментов - гликозилтрансфераз, входящих в состав мембран цистерн аппарата Гольджи. Так как каждая зона в диктиосомах имеет свой набор ферментов гликозилирования, то гликопротеиды как бы по эстафете переносятся из одного мембранного отсека (“этажа” в стопке цистерн диктиосомы) в другой и в каждом подвергаются специфическому воздействию ферментов. Так в цис-участке происходит фосфорилирование манноз в лизосомных ферментах и образуется особая маннозо-6-группировка, характерная для всех гидролитических ферментов, которые потом попадут в лизосомы.

В средней части диктиосом протекает вторичное гликозилирование секреторных белков: дополнительное удаление маннозы и присоединение N-ацетилглюкозамина. В транс-участке к олигосахаридной цепи присоединяются галактоза и сиаловые кислоты (рис. 183).

В ряде специализированных клеток в аппарате Гольджи происходит синтез собственно полисахаридов.

В аппарате Гольджи растительных клеток синтезируются полисахариды матрикса клеточной стенки (гемицеллюлозы, пектины). Диктиосомы растительных клеток участвуют в синтезе и выделении слизей и муцинов, в состав которых входят также полисахариды. Синтез же основного каркасного полисахарида растительных клеточных стенок, целлюлозы, происходит на поверхности плазматической мембраны.

В аппарате Гольджи клеток животных синтезируются длинные неразветвленные полисахаридные цепи глюкозаминогликанов. Глюкозаминогликаны ковалентно связываются с белками и образуют протеогликаны (мукопротеины). Такие полисахаридные цепи модифицируются в аппарате Гольджи и связываются с белками, которые в виде протеогликанов секретируются клетками. В аппарате Гольджи происходит также сульфатирование глюкозаминогликанов и некоторых белков.

Сортировка белков в аппарате Гольджи. В конечном итоге через аппарат Гольджи проходит три потока синтезированных клеткой нецитозольных белков: поток гидролитических ферментов для лизосом, поток выделяемых белков, которые накапливаются в секреторных вакуолях, и выделяются из клетки только по получении специальных сигналов, поток постоянно выделяемых секреторных белков. Следовательно, в клетке существует механизм пространственного разделения разных белков и их путей следования.

В цис- и средних зонах диктиосом все эти белки идут вместе без разделения, они только раздельно модифицируются в зависимости от их олигосахаридных маркеров.

Собственно разделение белков, их сортировка, происходит в транс-участке аппарата Гольджи. Принцип отбора лизосомных гидролаз происходит следующим образом (рис. 184).

Белки-предшественники лизосомных гидролаз имеют олигосахаридную, конкретнее маннозную группу. В цис-цистернах эти группировки фосфорилируются и вместе с другими белками переносятся в транс-участок. Мембраны транс-сети аппарата Гольджи содержат трансмембранный белок - рецептор (манноза-6-фосфатный рецептор или М-6-Ф-рецептор), который узнает фосфорилированные маннозные группировки олигосахаридной цепи лизосомных ферментов и связывается с ними. Следовательно М-6-Ф-рецепторы, являясь трансмембранными белками, связываясь с лизосомными гидролазами, отделяют их, отсортировывают, от других белков (например, секреторных, нелизосомных) и концентрируют их в окаймленных пузырьках. Оторвавшись от транс-сети эти пузырьки быстро теряют окаймление, сливаются с эндосомами, перенося таким образом свои лизосомные ферменты, связанные с мембранными рецепторами, в эту вакуоль. Внутри эндосом из-за активности протонного переносчика происходит закисление среды. Начиная с рН 6 лизосомные ферменты диссоциируют от М-6-Ф-рецепторов, активируются и начинают работать в полости эндолизосомы. Участки же мембран вместе с М-6-Ф-рецепторами возвращаются путем рециклизации мембранных пузырьков обратно в транс-сеть аппарата Гольджи.

Возможно, что часть белков, которая накапливается в секреторных вакуолях и выводится из клетки после поступления сигнала (например нервного или гормонального) проходит такую же процедуру отбора, сортировки на рецепторах транс-цистерн аппарата Гольджи. Секреторные белки также сначала попадают в мелкие вакуоли одетые клатрином, а затем сливаются друг с другом. В секреторных вакуолях белки накапливаются в виде плотных секреторных гранул, что приводит к повышению концентрации белка в этих вакуолях примерно в 200 раз, по сравнению с его концентрацией в аппарате Гольджи. По мере накопления белков в секреторных вакуолях и после получения клеткой соответствующего сигнала они путем экзоцитоза выбрасываются из клетки.

От аппарата Гольджи исходит и третий поток вакуолей, связанный с постоянной, конститутивной секрецией. Например, фибробласты выделяют большое количество гликопротеидов и муцинов, входящих в основное вещество соединительной ткани. Многие клетки постоянно выделяют белки, способствующие связыванию их с субстратами, постоянно идет поток мембранных пузырьков к поверхности клетки, несущие элементы гликокаликса и мембранных гликопротеидов. Этот поток выделяемых клеткой компонентов не подлежит сортировке в рецепторной транс-системе аппарата Гольджи. Первичные вакуоли этого потока также отщепляются от мембран и относятся по своей структуре к окаймленным вакуолям, содержащим клатрин (рис. 185).

Заканчивая рассмотрение строения и работы такой сложной мембранной органеллы, как аппарат Гольджи, необходимо подчеркнуть, что несмотря на кажущуюся морфологическую однородность его компонентов, вакуоли и цистерны, на самом деле, это не просто скопище пузырьков, а стройная, динамичная сложно организованная, поляризованная система.

В АГ происходит не только транспорт везикул от ЕР к плазматической мембране. Существует обратный перенос везикул. Так от вторичных лизосом отщепляются вакуоли и возвращаются вместе с рецепторными белками в транс-АГ зону, существует поток вакуолей от транс-зоны к цис-зоне АГ, а так же от цис-зоны к эндоплазматическому ретикулуму. В этих случаях вакуоли одеты белками COP I-комплекса. Считается, что таким путем возвращаются различные ферменты вторичного гликозилирования и рецепторные белки в составе мембран.

Особенности поведения транспортных везикул послужили основанием для гипотезы о существовании двух типов транспорта компонентов АГ (рис. 186).

По первому типу в АГ имеются стабильные мембранные компоненты, к которым от ЭР транспортными вакуолями эстафетно переносятся вещества. По другому типу АГ является производным ЭР: отщепившиеся от переходной зоны ЭР мембранные вакуоли сливаются друг с другом в новую цис-цистерну, которая затем продвигается через всю зону АГ и в конце распадается на транспортные везикулы. По этой модели ретроградные COP I везикулы возвращают постоянные белки АГ в более молодые цистерны.