Какое открытие положило начало изобретению электродвигателя. История создания электродвигателя

Давайте подвесим между полюсами неподвижного магнита проволочную петлю, через которую пропустим электрический ток. Мы увидим, что петля начнет отклоняться в сторону, чтобы выйти из магнитного поля. Именно это явление положено в основу всех электродвигателей . Главными частями электродвигателя являются: ротор и статор. Статор является неподвижной частью электродвигателя, служит магнитопроводом, в котором образуется магнитное поле. Подвижной вращающейся частью электродвигателя является ротор, на нем помещены витки провода, по которому пропускают электрический ток. Двигатели, работающие от сети постоянного тока, являются двигателями постоянного тока. Двигатели, работающие от источника переменного тока, называются двигателями переменного тока. В результате проведенных экспериментов выдающийся английский физик Майкл Фарадей доказал, что при перемещении проводника в магнитном поле, можно создавать электрический ток индукционным методом. Так, в 1831 году было открыто явление электромагнитной индукции. Сразу же ученые и изобретатели нескольких стран взялись за разработку электродвигателя, пригодного для практики.

Первыми были созданы электродвигатели постоянного тока, так как источники постоянного тока (батарея и гальванические элементы) были изобретены раньше. В 1834 году русским ученым Б. С. Якоби был создан первый электродвигатель, который состоял из двух частей — неподвижной и вращающейся. Благодаря изобретению был открыт принцип непрерывного вращательного движения. Мощность электродвигателя равнялась 15 Вт, источником тока были гальванические батареи. Однако практического применения электродвигатель не имел. В 1838 году Б. С. Якоби создал первый электродвигатель постоянного тока пригодный для практических целей. Мощность была увеличена за счет соединенных на одной плоскости 40 двигателей. Двигатель использовали для привода гребного вала лодки. 13 сентября 1838 года двигатель был установлен на лодке, в которой находилось 12 пассажиров. Испытания прошли весьма успешно. За 7 часов лодка проделала путь в 7 км со скоростью 2 км/ч. В сентябре 1839 года на катер с 14 пассажирами был установлен двигатель усовершенствованной конструкции, большей мощности, скорость которого составляла 4 км/ч. Двигатель Якоби стал самым надежным и мощным из всех конструкций, созданных на тот момент. К 70-м годам XIX столетия электродвигатель был полностью усовершенствован и сохранился в таком виде до наших дней.

Со временем в электродвигателях стали использовать электромагниты вместо постоянных магнитов, что позволило существенно увеличить мощность. Принцип работы электродвигателя постоянного тока заключается в следующем: к обмотке электромагнита подводят электрический ток, в результате между его полюсами возникает магнитное поле. Виток провода размещен на роторе. Когда к витку провода через коллектор подводится электрический ток, он начинает вращаться вместе с ротором. Особенностью таких электродвигателей является возможность регулировать частоту вращения ротора. Микроэлектродвигатели используют в электробритвах, системах автоматического регулирования, кофемолках и других приборах быта. Мощные электродвигатели используют для привода подъемных кранов, прокатных станков, на электрофицированном транспорте.

В 1889 году замечательный русский инженер-электротехник М. О. Доливо-Добровольский создал систему трехфазного тока и создал первый трехфазный двигатель переменного тока. Основными частями двигателя переменного тока также являются ротор и статор. В отличие от двигателей постоянного тока они не имеют коллектора, ток на обмотки ротора поступает через контактные кольца. В некоторых двигателях отсутствуют выводы на обмотках для подключения к току, а замкнуты между собой. Внешне ротор был похож на колесо в беличьей клетке и получил название беличьего колеса. Конструкция такого ротора дала возможность уменьшить магнитное и электрическое сопротивление и повысить эффективность работы, без принципиальных изменений она сохранилась до сегодняшних дней. Двигатели переменного тока существуют синхронные и асинхронные. У синхронного двигателя частота вращения магнитного поля, производимая обмотками статора, синхронна с частотой вращения ротора. В асинхронных двигателях частота вращения ротора отстает от частоты вращения магнитного поля статора. Наиболее просты и надежны асинхронные двигатели. Они получили широкое распространение.

Майкл Фарадей (1791-1867) – известный британский ученый, прославившийся в области экспериментальной физики. Известен своим открытием электромагнитной индукции, которая позднее легла в основу промышленного производства электричества. Фарадей был членом многочисленных научных организаций, в том числе Лондонского королевского общества и Петербургской академии наук. Его по праву считают крупнейшим в истории науки ученым-экспериментатором.

Майкл Фарадей появился на свет 22 сентября 1791 года в рабочей семье. Его отец и старший брат занимались кузнечным делом. Они жили очень скромно в одном из бедных кварталов британской столицы. Хроническая нищета не позволила мальчику получить полноценного образования и с 13 лет вместо занятий в школе он работает разносчиком газет, а затем устраивается в книжную лавку. Тяжелая жизнь только усилила его тягу к знаниям, и юный Майкл с упоением читал любую книгу, которая попадалась ему под руки.

Особое удовлетворение он испытывал от знакомства с научной литературой, прежде всего по физике и химии, а также статьями об электричестве. Работа переплетчиком книг позволила познакомиться с различными опытами, которые пытливый юноша с завидной регулярностью пытался повторить у себя дома. В результате за 7 лет работы в лавке Фарадей научился больше, чем многие сверстники в стенах учебных заведений. Используя свой небольшой заработок, молодой человек приобретал химические препараты, с которыми проводил различные опыты. Семья разделяла увлечения Майкла и старший брат платил по 1 шиллингу за посещение им лекций в философском обществе.

На пути к мечте

Во время этих занятий будущий ученый проявил недюжинный интерес к науке, о чем узнал один из клиентов мастерской. Он помог попасть увлеченному юноше на лекции известнейшего в то время английского химика Гемфи Дэви, чьи высказывания Фарадей тщательно законспектировал. Впоследствии он переплел эти записи и направил их Дэви вместе с письмом. Это был смелый и отчаянный шаг Майкла, который Дэви не оценил. Однако через несколько дней во время проведения очередного эксперимента Гемфи травмировал глаз и ему срочно понадобился помощник. Тут как раз к месту оказалась просьба Фарадея о принятии на работу. Тем более что в это время он уволился из мастерской, так как работа в ней стала отвлекать от научной деятельности.

Ученый пригласил молодого человека ассистентом в Королевский институт. Вскоре Фарадей вместе со своим наставником отправился в поездку по научным центрам Старого Света. Двухгодичное путешествие было очень полезным – начинающий ученый познакомился со многими светилами науки, среди которых были М. Шеврель, Ж.Л. Гей-Люссак и другие. Они отметили большой талант молодого англичанина.

После возвращения на родину Майкл некоторое время поработал вместе с Дэви, а затем занялся самостоятельными исследованиями. К тому времени он успел стать полноценным ученым, опубликовавшим около 40 работ в области химии. В ходе проведенных экспериментов ему удалось провести сжижение хлора, а также получить бензол и аммиак. Фарадей открыл снотворный эффект паров эфира. В то же время он проводит эксперимент по выплавке стали с добавлением никеля, в результате чего были открыты свойства нержавеющей стали.

В 1820 году датский физик Г. Эрстед описал магнитное действие тока и это вызвало большой интерес Фарадея к изучению связи между электрическими и магнитными полями. Через год он создал прототип электродвигателя, наблюдая за вращением магнита вокруг проводника с током. Вскоре вышла его работа «История успехов электромагнетизма», в которой автор констатировал, что электрический ток способен превращаться в магнетизм.

Отношения с Дэви стали портиться и хотя оба за глаза говорили друг другу комплименты, а Гемфри вообще назвал своим лучшим достижением «открытие Фарадея», отчуждение нарастало. В 1824 году Майкла избрали членом Королевского общества, но против этого высказался именно Дэви.

Научные достижения

Изучая взаимосвязь различных видов энергии, Фарадей решил превратить магнетизм в электричество. И эту задачу он выполнил с блеском. Майкл пытался использовать свойства электромагнита в обратном направлении, чтобы с помощью магнита произвести электрический ток. В августе 1831 года ученому удалось обнаружить явление электромагнитной индукции, что помогло ему создать первый на планете электрогенератор. Современные устройства бытового и промышленного назначения стали сложнее на несколько порядков, но они продолжают работать на основании принципов, заложенных гениальным английским физиком. Так функционируют локомотивы и вырабатывают энергию генераторы на электростанциях.

В поддержку открытого закона электромагнитной индукции ученый создал наглядное устройство для трансформации механической энергии в электрическую, названное диск Фарадея. В силу ряда особенностей оно не получило широкого применения, но сыграло важную роль в дальнейших научных изысканиях.

Диск Фарадея — первый электромагнитный генератор. При вращении диска вырабатывается постоянное напряжение

До Фарадея человечеству были известны два проявления электрической энергии – статическое электричество и гальванический ток. Оба из-за своих особенностей не смогли найти широкое практическое применение, чего не скажешь об индукционном электричестве. Оно имеет значительное напряжение, действует постоянно и проявляется в больших количествах.

В отличие от , Майкла совершенно не интересовали прикладные возможности его открытий – главное для него было как можно глубже изучить природу. Он принципиально не патентовал свои изобретения и отказывался от выгодных коммерческих предложений.

Переворот в электрохимии

В период 1833-1834 годов Майкл провел серию экспериментов, связанных с электрохимией, в рамках которых изучал прохождение электротока через растворы оснований и кислот. В результате были сформулированы законы электролиза (законы Фарадея), сыгравшие ключевую роль в развитии теории дискретных носителей электрического заряда. В последующие годы Майкл провел серию масштабных исследований электрических явлений в диэлектриках. Сегодня без электролиза невозможно представить работу химической и металлургической промышленности.

Согласно первому закону электролиза количество электрохимического действия определяется количеством электричества в цепи. Второй закон гласит, что количество электричества является обратно пропорциональной величиной относительно атомного веса вещества. Это означает, что для разложения одной молекулы необходимо одинаковое количество электрического тока. Ученый внес существенные коррективы в понятийный аппарат электрохимических явлений – вместо полюсов гальванической пары был утвержден новый термин электрод. Вещество, разлагаемое током, было названо электролитом, а сам процесс – электролизом.

Клетка Фарадея

В 1836 году Майкл опубликовал работу, в которой доказал, что заряд электричества способен оказывать воздействие лишь на саму поверхность полностью замкнутой оболочки-проводника, не причиняя вреда всем, кто находится внутри нее. Ему удалось создать устройство, способное экранировать аппаратуру от электромагнитных излучений, названное клеткой Фарадея. Оно было выполнено из металла, имеющего высокую электропроводность, а сама конструкция заземлялась. Принцип действия устройства довольно прост – при внешнем воздействии электрического поля электроны металла начинают приводиться в движение, в результате чегозаряд противоположных сторон клетки полностью компенсирует влияние внешнего электрического поля.

Чтобы доказать наличие описанного эффекта сам Фарадей публично садился внутрь конструкции и после разрядов тока выходил оттуда живым и невредимым. Еще имя великого англичанина носит цилиндр, с помощью которого можно определить полноту электрического заряда и интенсивность пучка частиц.

В видео показан опыт с клеткой Фарадея (НИЯУ МИФИ).

Болезнь и новые открытия

Долгое умственное напряжение сказалось на самочувствии ученого, который в 1840 году даже вынужден был сделать паузу в научной работе. Его преследовали провалы в памяти, болезнь долго не отступала и перерыв продлился долгих 5 лет. По другой версии ухудшение здоровья могло быть связано с отравлением парами ртути, которая часто использовалась во время экспериментов. В этот период Фарадей некоторое время жил в приморских районах Англии, а затем по совету друзей переехал в Швейцарию. Это способствовало улучшению здоровья и возвращению к активному труду.

В 1845 году он открыл явление, получившее название «эффект Фарадея». Оно относится к обширному классу магнитооптических явлений, которые возникают вследствие распространения линейно поляризованного света через среду, не обладающую естественной оптической активностью и находящуюся в магнитном поле. Это была первая попытка показать объективную связь между оптикой и электромагнетизмом. Ученый был глубоко убежден в наличии тесного единства многих физических и химических явлений, что стало фундаментальной основой его научного мировоззрения.

В 1862 году он выдвинул предположение, утверждавшее наличие влияния магнитного поля на спектральные линии. Но тогда доказать его на практике с помощью специального оборудования не получилось. Гипотеза ученого была доказана только через 35 лет, за что Питер Зееман получил Нобелевскую премию. Британские власти, зная о покладистом характере ученого, часто привлекали его к решению различных технических вопросов. В частности, Фарадей занимался усовершенствованием маяков, пытался найти лучшие способы защиты морских судов от коррозии, а также исследовал и описывал микрочастицы разнообразных металлов. Проведенные опыты заложили основы современных нанотехнологий.

В почтенном возрасте память стала серьезно подводить Фарадея, здоровье также оставляло желать лучшего. В марте 1862 года в своем лабораторном журнале Майкл сделал последнюю запись описанного им опыта, получившего номер 16041. Оставшиеся пять лет жизни ученый провел в личном имении Хэмптон Корт, которое ему предоставила королева Виктория в пожизненное владение. Незадолго до смерти его посетил один из друзей и поинтересовался самочувствием. Фарадей в ответ остроумно ответил: «Я жду». Великий ученый умер 25 августа 1867 года в своем рабочем кресле и захоронен на Хайгейтском кладбище Лондона.

Характер ученого

Прожив большую часть жизни в бедности, Фарадей остался бессребреником. Он никогда не гнался за высокими гонорарами и званиями, отличаясь человеческой добротой и отзывчивостью. Ученый был всегда доброжелательным и выделялся своим природным обаянием. В работе Майкл был чрезвычайно методичен и, обнаружив признаки нового явления, пытался вникнуть в его суть максимально глубоко. Все проведенные эксперименты тщательно продумывались и детально описывались. Фарадей нередко проявлял внутреннюю гордость и самоуважение, не позволяя манипулировать собой, но эти качества никогда не перерастали в апломб, свойственный многим людям.

  • В 1827 году ученый получил профессорскую кафедру в Королевском институте, но по-прежнему ощущал сильную нехватку средств. Друзья помогли Фарадею добиться пожизненного содержания, но министр казначейства назвал расточительством трату денег на него. В ответ Майкл гордо отказался от правительственной пенсии, заставив впоследствии чиновника публично извиняться.
  • Альберт Эйнштейн назвал учение об электромагнитном поле Фарадея самым важным достижением науки со времен И. Ньютона.
  • Многие биографы ученого отмечали его феноменальную работоспособность и постоянную нацеленность на результат – он буквально жил в лаборатории, будучи готовым в любой момент начать очередной эксперимент.
  • За свои заслуги Фарадей был избран почетным членом более 70 научных обществ и академий различных стран мира.
  • Британское химическое общество назвало именем Фарадея одну из самых престижных научных наград.
  • Широко известна скромность ученого – он отклонил предложение стать президентом Королевского общества и не стал принимать рыцарское достоинство.
  • Фарадей ввел в научный оборот ряд широко известных терминов – катод, анод, электролит, ион и другие.
  • Майкл Фарадей был одним из самых известных популяризаторов науки. Широко известны его рождественские лекции, которые он регулярно читал, начиная с 1826 года. Одна из наиболее известных под названием «История свечи» впоследствии была издана отдельной книгой, ставшей одной из первых научно-популярных изданий.
  • Ученый всю жизнь был глубоко верующим христианином и не изменил вере даже после опубликования теории Дарвина. Он лично проповедовал в одной из лондонских церквей и на его службы собиралось немало почитателей.
  • В честь Майкла Фарадея получила название внесистемная единица измерения электроразряда, применяемая в электрохимии.

Изучая диск Фарадея и т.н. "парадокс Фарадея", провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, "на пальцах".

Все нижеизложенное - попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах - это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так - 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку - ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера - частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи ("рамке") в поле магнита типа "бублик" для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . - для случая когда вся цепь вращается внешним механическим усилием ("генератор").
2 рис . - для случая, когда через цепь подается постоянный ток от внешнего источника ("двигатель").

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается - не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное - в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима "двигатель".

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и "разорвать" цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео - опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек - первые опыты

7 мин 08 сек - на что обращать главное внимание и продолжение опытов

16 мин 43 сек - ключевое объяснение

22 мин 53 сек - ГЛАВНЫЙ ОПЫТ

28 мин 51 сек - 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек - ошибочный вывод одного из опытов

41 мин 01 сек - о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова "отталкивается ".
Мысль, с которой я согласен - если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита - см. раздел ниже.

На рисунках (можно кликнуть для увеличения) - варианты для режима "двигатель".
Для режима "генератор" работают те же принципы.

Здесь действие-противодействие происходит между двумя главными "участниками":

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи - это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе "отталкивания" почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита - не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во "вращении" электронов и той самой "геометрии ". Но это уже другая история...

Вращение "голого" магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит "бублик" вокруг оси намагниченности - не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару - две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником - замкнута электрическая цепь , в случае с магнитом - "замкнуты" силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца "разворачивается" в обратном направлении, "отпустив" разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать "цепь" силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля "не мешали" друг другу - видимо невозможно (?). Никаких подобий "скользящих контактов" для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита - его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть - как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно - в каких местах?).


Все вышеизложенное - попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит - его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита - центральную часть диска (над "дыркой бублика" магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) - будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя - в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?


Мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения.

После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Первый электродвигатель с возможностью практического применения

Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве даже и речи не могло быть. Первый электродвигатель с непосредственным вращением рабочего вала был создан в 1834 году физиком и академиком Борисом Якоби. Но стоит отметить, что впервые идею о создании более с вращательным движением высказал английский ученый В. Риччи еще в 1833 году. Был ли знаком Якоби с работой Риччи, неизвестно.

Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Принцип этого устройства используется в некоторых современных электродвигателях. Мощность двигателя составляла всего 15 Вт, при частоте вращения ротора 80-120 об/мин.

В 1837 году Якоби обратился к Министру народного просвещения графу С. Уварову с предложением о практическом применении своего электродвигателя. О предложении русского академика было доложено Николаю I. Император дал добро на создание «Комиссии для производства опытов относительно приспособления электромагнитной силы к движению машин по способу Якоби».

Величайшим техническим достижением конца XIX века стало изобретение промышленного электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток. появились еще во второй четверти XIX столетия, но прошло несколько десятилетий, прежде чем создались благоприятные условия для их повсеместного внедрения в производство.

Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 году русский электротехник Якоби. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа располагалась на неподвижной раме. Их полюсные наконечники были устроены асимметрично - удлинены в одну сторону. Вал двигателя представлял собой два параллельных латунных диска, соединенных четырьмя электромагнитами, поставленными на равном расстоянии один от другого. При вращении вала подвижные электромагниты проходили против полюсов неподвижных. У последних полярности шли попеременно: то положительная, то отрицательная. К электромагнитам вращающегося диска отходили проводники, укрепленные на валу машины. На вал двигателя был насажен коммутатор, который менял направление тока в движущихся электромагнитах в течение каждой четверти оборота вала. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них изменялось восемь раз за один оборот вала. Следовательно, полярность этих электромагнитов также менялась восемь раз за один оборот вала, и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы.

Двигатель Якоби для своего времени был самым совершенным электротехническим устройством. В том же 1834 году подробное сообщение о принципах его работы было представлено Парижской Академии наук.

В 1838 году Якоби усовершенствовал свой электромотор и, установив его на гребном боте, с десятью спутниками совершил небольшое плавание по Неве со скоростью 4,5 км/ч. Источником тока ему служила мощная батарея гальванических элементов.

До тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, так как питать их от батареи было слишком дорого и невыгодно. Кроме того, в силу разных причин двигатели постоянного тока получили лишь ограниченное применение. Гораздо более важную роль играют в производстве электромоторы, работающие на переменном токе, к рассмотрению которых мы теперь переходим.

Для переменного тока необходима особая конструкция двигателя. Изобретатели не сразу смогли найти ее. Прежде всего была разработана модель так называемого синхронного двигателя переменного тока. Один из первых таких двигателей построил в 1841 году Чарльз Уитстон.

Его система обладала большими недостатками: кроме того, что синхронный двигатель требовал для своего запуска дополнительный разгонный двигатель, он имел и другой изъян - при перегрузке синхронность его хода нарушалась, магниты начинали тормозить вращение вала, и двигатель останавливался. Поэтому синхронные двигатели не получили широкого распространения. Подлинная революция в электротехнике произошла только после изобретения асинхронного двигателя. Подобное устройство в 1879 году изобрел Бейли.

В 1888 г. итальянский физик Феррарис и югославский изобретатель Тесла (работавший в США) открыли явление вращающегося электромагнитного поля.

Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 году фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей.

Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Доливо-Добровольским. Первым важным новшеством, которое внес Доливо-Добровольский в асинхронный двигатель, было создание ротора с обмоткой «в виде беличьей клетки». Во всех ранних моделях асинхронных двигателей роторы были очень неудачными, и поэтому КПД этих моторов был ниже, чем у других типов электрических двигателей. Большое значение играл здесь материал, из которого изготавливался ротор, поскольку тот должен был удовлетворять сразу двум условиям: иметь малое электрическое сопротивление и иметь хорошую магнитную проницаемость. С точки зрения уменьшения электрического сопротивления лучшим конструктивным решением мог бы стать ротор в виде медного цилиндра. Но медь плохой проводник для магнитного потока статора и, КПД такого двигателя был очень низким. Если медный цилиндр заменяли стальным, то магнитный поток резко возрастал, но, поскольку электрическая проводимость стали меньше, чем меди, КПД опять был невысоким.

Доливо-Добровольский нашел выход из этого противоречия: он выполнил ротор в виде стального цилиндра, а в просверленные по периферии последнего каналы стал закладывать медные стержни. На лобовых частях ротора эти стержни электрически соединялись друг с другом. Решение Доливо-Добровольского оказалось наилучшим. После того как он получил в 1889 году патент на свой ротор, его устройство принципиально не менялось вплоть до настоящего времени.

Вслед за тем Доливо-Добровольский стал думать над конструкцией статора - неподвижной части двигателя. Доливо-Добровольский видел перед собой две задачи: повысить КПД двигателя и добиться большей равномерности его работы.

Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 года. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами.

Учитывая ошибки Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля. Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, так как обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор так, как это было описано выше.

Впечатление, произведенное первым запуском двигателя на руководство АЭГ, было огромным. Для многих стало очевидно, что долгий тернистый путь создания промышленного наконец пройден до конца. По своим техническим показателям двигатели Доливо-Добровольского превосходили все существовавшие тогда электромоторы — обладая очень высоким КПД, они безотказно работали в любых режимах, были надежны и просты в обращении. Поэтому они сразу получили широкое распространение по всему миру. С этого времени началось быстрое внедрение электродвигателей во все сферы производства и повсеместная электрификация промышленности.