Космический лифт: современные идеи и состояние их развития. Космический лифт и космические сложности

Сегодня для того, чтобы выйти в космическое пространство, необходимо проделать опасное путешествие на ракете. Чтобы вас взяли в космос, нужно хорошее здоровье, крепкие нервы и много денег.

Исследователи из NASA и компания LiftPort Inc. предлагают упростить вывод крупных объектов на орбиту, используя систему, названную ими «Космическим лифтом».

Что это вообще такое

Вот как объясняет концепцию космического лифта доктор Брэдли Эдвардс в отчете NIAC:

«Космический лифт – это лента, один конец которой присоединен к поверхности Земли, а другой находится на геосинхронизированной орбите в космосе (на высоте 100 000 км). Гравитационное притяжение нижнего конца ленты компенсируется силой, вызванной центростремительным ускорением верхнего конца. Таким образом лента постоянно находится в натянутом состоянии. Изменяя длину ленты, можно достигать разных орбит. Космическая капсула, содержащая полезный груз, будет передвигаться вдоль ленты. Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к концевой станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы. На конечной станции, если это необходимо, капсула отсоединяется от лифта и выходит в открытый космос. Скорость капсулы при этом будет составлять 11 км/с. Этой скорости будет достаточно для того, чтобы начать путешествие к Марсу и другим планетам. Таким образом, затраты на пуск капсулы будут только в начале ее пути на орбиту. Спуск будет производиться в обратном порядке – в конце спуска капсулу будет ускорять гравитационное поле Земли. Можно использовать космический лифт в качестве "пусковой платформы» для космических кораблей, запускаемых к другим планетам, спутникам и астероидам (Марсу, Венере, Луне). Это поможет сократить расходы, связанные с традиционным запуском химических ракет. Также можно построить лифт грузоподъемностью до 100 тонн, что позволит строить на орбите большие колонии и орбитальные станции".

Рис. 1. Космический лифт от компании LiftPort Inc.

Естественно, что после ознакомления с этим проектом возникает ряд сомнительных вопросов. Компания LiftPort Inc. приводит список наиболее распространенных вопросов и своих ответов на них.

Как вы собираетесь сохранять угловой момент постоянным?

Большей частью мы полагаемся на то, что это сделает Земля. Но мы предусмотрели тяжелые «якоря» на обоих концах лифта для того, чтобы увеличить инерцию системы и, таким образом, держать ее в равновесии.

Что случится, если порвется лента?

Начнем с того, что спроектированная лента будет вдвое жестче, чем это необходимо. Погодные условия в месте, выбранном для расположения космического лифта, будут исключать возможность ураганов и молний. Скорее всего, станция лифта будет расположена в океане. Но все же, что произойдет, если лента порвется? Большая часть ленты улетит в космическое пространство, причем некоторая ее часть сгорит от высокой скорости полета в атмосфере. Нижняя часть ленты упадет в океан. Не загрязнит ли лента и ее не сгоревшие в атмосфере остатки океан? Вряд ли, так как вес километра ленты – 7,5 кг. При падении с высоты лента не разовьет большей скорости, чем раскрытая падающая газета. Посторонний наблюдатель увидит, скорее всего, только яркую полоску через все небо (от сгоревшей ленты) и все. Конечно, куски ленты будут долго находиться во взвешенном состоянии в воздухе. Наибольшую опасность представляют собой транспортируемые грузы, потерявшие связь с лифтом. Грузы, достигшие орбит, останутся на орбитах. Те грузы, которые только начали движение упадут вниз. Некоторые из грузов, достигшие скорости 11 км/с вылетят в открытый космос.

Будут ли влиять на лифт неблагоприятные погодные условия?

Будет ли ветер на больших высотах проблемой? Математическое моделирование показало, что предложенная в конструкции лифта лента разорвется при скорости 72 м/с, т.е. при 5-бальном ветре, или урагане. Предложенное расположение лифта (на платформе в океане) не будет находиться в зоне сильных ветров и ураганов.


Рис. 2. Вид базовых станций (наземной и космической)

Будет ли лента производить электрический ток из-за разности потенциалов? Будет ли лента длиной 100000 км представляет собой электрическую угрозу?

В этой проблеме есть несколько аспектов. Электрический ток по ленте космического лифта может течь только благодаря: 1) электрическим свойствам земной атмосферы; 2) перекачивании через лифт космической плазмы; 3) постоянном пересечении лифтом магнитных полей Земли.

1) Атмосфера Земли содержит регионы разного заряда, которые все время находятся в движении. Они могут дать разность потенциалов, но только на малых дистанциях. Когда идет гроза и перемещение зарядов затрагивает большие дистанции, есть возможность того, что молния повредит ленту лифта, но как было сказано выше, конструкторы постараются так выбрать место расположения базовой станции, чтобы исключить возможность грозы. Базовая станция будет расположена на корабле, поэтому лифт будет обладать «мобильностью» и сможет, при необходимости, передвинуться, избегая шторма.

2) Заряды, связанные с космической плазмой, могут собираться на верхней станции лифта. Но ток, провоцируемый ими, настолько мал, что не сравним с током, полученным от присоединения к противоположным концам ленты обычной батарейки. Малое количество зарядов позволяет не учитывать эту опасность.

3) При пересечении магнитных полей проводником в нем производится электрический ток. В нашем случае лента неподвижна по отношению к магнитному полю Земли, и электрический ток, производимый в ленте, будет очень мал, поэтому этой опасностью тоже можно пренебречь. В современных телевышках электрический ток, производимый магнитными полями земли, практически отсутствует.

Будут ли различные объекты задевать ленту?

Будет ли космический мусор и спутники проблемой? Космические объекты, находящиеся на низкой орбите Земли (Low Earth Orbit – LEO), будут составлять серьезную проблему. Для того, чтобы лифт не сталкивался с различными объектами, будет предусмотрена система активного избегания препятствий. В среднем необходимо будет избегать различных объектов один раз в 14 часов. Для построения системы отклонения необходимо разработать систему трассирования объектов, работающую с точностью до 1 сантиметра. Разработка такой системы входит в план исследований компании LiftPort.

Существует несколько концепций построения космического лифта. В некоторых предлагается свободный конец ленты присоединять к астероиду. Этим решается проблема противовеса и добыча с астероида полезных ископаемых. Некоторые проекты предлагают протянуть кабель толщиной от 10 до 30 метров в диаметре. Как говорят специалисты из LiftPort, это просто невозможно реализовать.

Рис. 3. Один из проектов космического лифта

Причем тут нанотехнологии

Правда, если бы не быстрое развитие нанотехнологий и открытие нанотрубок, концепция космического лифта не продвинулась бы дальше научной фантастики. Надо сказать, что идее космического лифта уже больше ста лет. Впервые о подъемнике такого рода заговорил в 1895 году Константин Циолковский. Основоположник современной космонавтики предложил построить башню высотой в тысячи километров, которая должна была быть укреплена на какой-либо тверди на околоземной орбите. Самым прочным материалом в то время была сталь, но для строительства «башни» она была слишком тяжела.

Однослойные углеродные нанотрубки, изобретенные в 1991 году, достаточно прочны для того, чтобы служить основой ленты лифта. Они прочнее стали в 100 раз. Теоретически, они в 3–5 раз прочнее, чем надо для постройки лифта.

Рис. 4. Диаграмма прочности нанотрубок по сравнению с высокопрочной сталью

Правда, самые длинные нанотрубки, которые удалось изготовить, длиной всего несколько сантиметров. А это даже не километр, не говоря о 100 000 километрах.

Но совсем нет необходимости делать всю ленту длиной 100 000 км из цельных нанотрубок. Отдельные фракции, состоящие из нанотрубок длиной до 2 сантиметров, будут иметь такую же прочность разрыва, как и длинные. Правда, исследователи из LiftPort пытаются найти методы соединения фракций в более длинные полосы без потери прочности. Как они утверждают, лента будет представлять собой полимерную структуру с включениями нанотрубок. Для ленты космического лифта алмазоид был бы универсальным материалом. Он будет характеризоваться большей прочностью, но, опять-таки, пока нет эффективных способов получения и массового производства алмазоидных материалов.

Компания настроена вполне оптимистично, так как недавно стало известно о новых технологиях в производстве нанотрубок. Так, ученые из Кембриджского университета разработали способ формирования пряжи из длинных волокон, которые состоят из нанотрубок. Алан Уиндл (Alan Windle) и его коллеги из Кембриджа для изготовления пряжи использовали свежеприготовленные нанотрубки.

Исходный материал – нанотрубки – обрабатывают этанолом, который в дальнейшем служит источником углерода, затем добавляют катализатор (ферроцен) и еще один реагент – тиофен. Смесь загружают в горячую печь, куда постоянно подают водород. Продукт получают в форме спутанных волокон, по виду похожих на сахарную вату. Затем эти волокна наматывают на вращающиеся стержни, в итоге получались скрученные волокна.

Ученые признают, что создан лишь прототип новой технологии. Да и прочность полученного волокна пока не впечатляет – она не сильно отличается от прочности традиционных волокон. Однако уже видны различные пути увеличения прочности, например, за счет ориентирования углеродных трубок в одном направлении. Если прочность удастся повысить в 10 раз, то это значение приблизится к прочности углеродных волокон, а само производство волокна при этом может оказаться более дешевым за счет использования более дешевых компонентов. Пока не ясно, можно ли этим способом создать такой канат, который по прочности на разрыв будет сопоставим с прочностью самих нанотрубок. Но если это удастся сделать, то компания LiftPort получит шанс на сокращение срока постройки лифта.

Рис. 5. Модельный прототип капсулы лифта

В 2000 году доктор Брэд Эдвардс выпустил отчет, в котором говорилось что предварительные исследования по построению космического лифта проделаны. Далее Мишелем Лэйном в Сиэтле была основана компания HighLift Systems, которой NASA выделила финансирование для разработки и постройки космического лифта. Как планирует компания LiftPort Inc., космический лифт будет построен, опробован и запущен в работу через 15 лет. В первые шесть лет компания будет привлекать инвестиции, с шестого года по десятый разрабатывать конструкцию лифта, и, наконец, в оставшиеся годы будет проходить непосредственно постройка.

Здесь можно найти видеоролик в формате Real Player, презентующий одну из концепций космического лифта (5 Мб): http://wid.ap.org/…/elevator.rm

Select rating Плохо Ниже среднего Нормально Хорошо Отлично

Ваша оценка: None Средняя: 4.5 (37 votes)

потому-что те люди, которые писали про этот лифт (я имею ввиду LiftPort Inc., авторов оригинальной публикации, перевода или компиляции – уж не знаю, чей «вклад» тут больше) не пробовали прикинуть на бумаге эффективность этого лифта, попробовать применить известные формулы, взять парочку несложных интегралов (или построить графиков). В общем хотя бы для себя (не наночайников) перевести текст в цифры, Ведь в заявлениях ошибиться проще, чем в расчетах… Я предполагаю, что где-то может быть нормальная модель лифта, но уж точно не то, что предложно в этой статье. Некоторые заявления в этой заметке просто не проходили элементарную проверку. Будет время, могу написать сомнительные моменты статьи в формулах и графиках. Просто сейчас в комадировке, без русской клавиатуры текст набирать сложно (уже половина есть). А текста будет достаточно, т.к. формат для «чайников» останется, но текст полный, для возможности проверки, возможно я ошибаюсь где-то. Написаный текст с анализом «лифта» из этой заметки выложу где-нибудь в виде файла Word.

Построят, вот только когда?.. доживем до этого события? И кста, модель лифта из одной трубы с противовесом мне не внушает доверия. Боюсь даже представить что произойдет когда верхняя часть трубки столкнется с другим обьектом(астероид). Нужны дополнительные крепления, по типу креплений высоких башень или вышек(3–4 штуки).

Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к концевой станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы.
Какая-то популистская фраза. В принципе верна, но центробежная сила превышает силу тяжести только выше геостационарной орбиты. А вывод на эту высоту потребует более 80% от энергии, требуемой для вывода в бесконечно удаленную точку. И еще у авторов не указано куда они девают силу Кориолиса. Зато уже понятно что будут добывать ископаемые с астероидов, очень «веский» факт за лифт.

Идея космического лифта уже давно захватила сознание научных фантастов и стала предметом реальных технико-экономических исследований, проведенных НАСА и другими агентствами. Среди космических инженеров есть мнение, что это весьма привлекательная идея. Но огромные сложности, связанные с созданием космического лифта, недоступны с технологиями и материалами настоящего времени.

Однако двое исследователей — математик и инженер-механик из Университета Джона Хопкинса, находящегося в США, предполагают, что создание лифта в ближайшем будущем вполне возможно. Если его создатели будут использовать знания из биологии. И если они смогут построить для проекта автономные ремонтные боты.

«Мы предлагаем дизайн мегаструктуры, который не только позволить ее составным частям выходить из строя. Но и будет обладать механизмом самовосстановления для замены сломанных компонентов», — пишут они.

«Это позволит структурам работать при значительно более высоких нагрузках, не ставя под угрозу их целостность, что, в свою очередь, сделает реальностью мегаструктуры, созданные из существующих материалов».

Многим известна библейская история о том, как люди вознамерились стать подобными Богу и решили воздвигнуть башню высотой до небес. Господь, разгневавшись, сделал так, что все люди начали говорить на разных языках, и стройка остановилась.

Правда это или нет, сказать сложно, но спустя тысячи лет человечество снова задумалось над возможностью возведения супербашни. Ведь если удастся соорудить конструкцию высотой в десятки тысяч километров, то можно удешевить доставку грузов в космос почти в тысячу раз! Космос раз и навсегда перестанет быть чем-то далеким и недостижимым.

Дорогой космос

Впервые концепцию космического лифта рассмотрел великий русский ученый Константин Циолковский. Он предполагал, что если построить башню высотой 40 000 километров, то центробежная сила нашей планеты будет держать всю конструкцию, не позволяя ей упасть.

С первого взгляда, от этой идеи за версту пахнет маниловщиной, но давайте рассуждать логически. Сегодня большую часть веса ракет составляет топливо, которое тратится на преодоление земной гравитации. Разумеется, это сказывается и на цене запуска. Стоимость доставки одного килограмма полезного груза на околоземную орбиту составляет около 20 000 долларов.

Так что когда родные передают космонавтам, находящимся на МКС, варенье, можете не сомневаться: это самое дорогое лакомство на свете. Даже английская королева не может себе такого позволить!

Запуск одного шаттла обходился NASA в сумму от 500 до 700 миллионов долларов. Ввиду проблем в американской экономике руководство NASA было вынуждено закрыть программу космических челноков и отдать функцию по доставке грузов на МКС на аутсорсинг частным компаниям.

К проблемам экономическим добавляются еще и политические. Из-за разногласий по украинскому вопросу страны Запада ввели ряд санкций и ограничений против России. К сожалению, они коснулись и сотрудничества в космонавтике. NASA получило от правительства США приказ о заморозке всех совместных проектов, за исключением МКС. В ответ вице-премьер-министр Дмитрий Рогозин заявил, что Россия не заинтересована в участии в проекте МКС после 2020 года и намерена переключиться на осуществление других целей и задач, таких как основание на Луне постоянной научной базы и пилотируемый полет к Марсу.

Скорее всего, Россия будет заниматься этим вместе с Китаем, Индией и, возможно, Бразилией. Следует отметить: Россия и так собиралась завершить работу в проекте, а западные санкции просто ускорили этот процесс.

Несмотря на столь грандиозные планы, все может остаться на бумаге, если не будет разработан более эффективный и дешевый способ доставки грузов за пределы земной атмосферы. На постройку все той же МКС было затрачено в общей сложности свыше 100 миллиардов долларов! Сколько «зеленых» потребуется для создания станции на Луне, даже страшно представить.

Космический лифт мог бы стать идеальным решением проблемы. Когда лифт заработает, стоимость доставки может упасть до двух долларов за килограмм. Но прежде придется основательно поломать голову над тем, как его построить.

Запас прочности

В 1959 году ленинградский инженер Юрий Николаевич Арцутанов разработал первый рабочий вариант космического лифта. Поскольку строить лифт снизу вверх невозможно из-за гравитации нашей планеты, он предложил сделать наоборот - строить сверху вниз. Для этого следовало запустить специальный спутник на геостационарную орбиту (около 36 000 километров), где он должен был занять позицию над определенной точкой на экваторе Земли. Затем начать на спутнике сборку тросов и постепенно опускать их по направлению к поверхности планеты. Сам спутник также играл роль противовеса, постоянно поддерживая тросы в натянутом состоянии.

Широкая общественность смогла подробно познакомиться с этой идеей, когда в 1960 году «Комсомольская правда» опубликовала интервью с Арцутановым. Интервью опубликовали и западные СМИ, после чего уже весь мир подвергся «лифтовой лихорадке». Особенно усердствовали писатели-фантасты, рисовавшие радужные картины будущего, непременным атрибутом которых являлся космический лифт.

Все специалисты, изучающие возможность создания лифта, сходятся во мнении, что главным препятствием к реализации этого замысла является отсутствие достаточно прочного материала для тросов. По расчетам, этот гипотетический материал должен выдерживать напряжение 120 гигапаскалей, т.е. свыше 100 000 килограммов на квадратный метр!

Прочность стали - приблизительно 2 гигапаскаля, у особо прочных вариантов - максимум 5 гигапаскалей, у кварцевого волокна - немногим выше 20. Этого просто чудовищно мало. Встает извечный вопрос: что делать? Развивать нанотехнологии. Самым перспективным кандидатом на роль троса для лифта могут стать углеродные нанотрубки. Согласно расчетам, их прочность должна быть гораздо выше минимальных 120 гигапаскалей.

На данный момент наиболее прочный образец смог выдержать напряжение в 52 гигапаскаля, но в большинстве других случаев они разрывались в диапазоне от 30 до 50 гигапаскалей. В ходе продолжительных исследований и экспериментов специалистам из Университета Южной Калифорнии удалось добиться неслыханного результата: их трубка сумела выдержать напряжение в 98,9 гигапаскаля!

К сожалению, это был единичный успех, к тому же с углеродными нано-трубками есть еще одна существенная проблема. Николас Пуньо, ученый из Туринского политехнического университета, пришел к неутешительному выводу. Оказывается, даже из-за смещения одного атома в структуре углеродных трубок прочность определенного участка может резко снизиться на 30%. И это все при том, что самый длинный полученный образец нанотрубки пока составляет всего два сантиметра. А если принять во внимание тот факт, что длина троса должна составлять почти 40 ООО километров, задача кажется просто невыполнимой.

Мусор и бури

Другая весьма серьезная проблема связана с космическим мусором. Когда человечество обосновалось на околоземной орбите, оно принялось за одно из своих самых любимых занятий - засорение окружающего пространства продуктами своей жизнедеятельности. В самом начале мы как-то не особо беспокоились по этому поводу. «Ведь космос бесконечен! - рассуждали мы. - Выбросишь бумажку, а она отправится дальше, бороздить просторы Вселенной!»

Тут-то мы и дали маху. Весь мусор и остатки летательных аппаратов обречены навечно наматывать круги вокруг Земли, захваченные ее мощным гравитационным полем. Не нужно быть инженером, чтобы догадаться, что произойдет, если один из таких мусорных «кусочков» столкнется с тросом. Поэтому тысячи исследователей со всего мира ломают свои умные головы над вопросом ликвидации околоземной свалки.

Также не совсем ясна ситуация с основанием лифта на поверхности планеты. Вначале предполагалось создать стационарное основание на экваторе для обеспечения синхронности с геостационарным спутником. Однако тогда не избежать пагубного воздействия на лифт ураганных ветров и прочих природных катаклизмов.

Потом появилась идея закрепить основание на плавучей платформе, которая могла бы совершать маневры и «обходить» бури стороной. Но в таком случае операторы на орбите и платформе будут вынуждены выполнять все передвижения с хирургической точностью и абсолютной синхронностью, иначе вся конструкции полетит в тартарары.

Не вешать нос!

Несмотря на все трудности и препятствия, лежащие на нашем тернистом пути к звездам, мы не должны вешать нос и забрасывать этот, вне всяких сомнений, уникальный проект в долгий ящик. Космический лифт - это не роскошь, а жизненно необходимая вещь.

Без него колонизация ближнего космоса станет занятием в высшей степени трудоемким, дорогостоящим и может растянуться на долгие годы. Есть, конечно, предложения разрабатывать антигравитационные технологии, но это уж слишком далекая перспектива, а лифт нужен в ближайшие 20-30 лет.

Лифт необходим не только для поднятия и спуска грузов, но и в качестве «мега-пращи». С его помощью можно запускать космические корабли в межпланетное пространство без затрат огромных объемов столь драгоценного топлива, которое в противном случае может быть пущено на разгон судна. Особый интерес вызывает идея использования лифта для очистки Земли от опасных отходов.

Допустим, отработанное ядерное топливо с АЭС можно помещать в герметичные капсулы, а затем прямой наводкой отправлять в сторону Солнца, для которого сжечь такую козявку - раз плюнуть.

Но, как ни странно, реализация такой затеи - вопрос, скорее, не экономики или науки, а политики. Нужно посмотреть правде в глаза - ни одна страна в мире не сможет самостоятельно осилить столь грандиозный проект. Без международного сотрудничества никак не обойтись.

В первую очередь, важно участие США, Евросоюза, Китая, Японии, Индии, Бразилии и, разумеется, России. Так что, как ни крути, придется сесть за стол переговоров и выкурить трубку мира. Поэтому, ребята, давайте жить дружно, и все у нас получится!

Адилет УРАИМОВ

Несмотря на кризис и войну санкций в цивилизованных экономически развитых странах наблюдается большой интерес к космонавтике. Этому способствуют успехи в развитие ракетостроение и в изучении с помощью космических аппаратов околоземного пространства, планет Солнечной системы и ее периферии. Все новые и новые государства включаются в космическую гонку. Китай и Индия громко заявляют о своих амбициях в деле освоения Вселенной. Уходит в прошлое монополия государственных структур России, США и Европы на полеты за пределы земной атмосферы. Все больший интерес к транспортировке на космическую орбиту людей и грузов проявляет бизнес. Появились фирмы, которые возглавляют энтузиасты, влюбленные в космос. Они занимаются разработкой, как новых ракетоносителей, так и новых технологий, которые позволят сделать скачок в освоении Вселенной. Всерьез рассматриваются идеи, которые еще вчера считались неосуществимыми. И то, что считалось плодом, воспаленного воображения писателей-фантастов, теперь является одним из возможных проектов, подлежащих реализации в ближайшем будущем.

Одним из таких проектов может стать космический лифт.

Насколько это реально? На этот вопрос попытался ответить журналист ВВС Ник Флеминг в своей статье «Лифт на орбите: научная фантастика или вопрос времени?», которая выносится на внимание интересующихся космосом.


Лифт на орбиту: научная фантастика или вопрос времени?

Благодаря космическим лифтам, способным доставлять людей и грузы с поверхности Земли на орбиту, человечество смогло бы отказаться от использования экологически вредных ракет. Но создать подобное устройство непросто, как выяснил корреспондент BBC Future .

Когда речь заходит о прогнозах по поводу развития новых технологий, многие считают авторитетом миллионера Элона Маска - одного из лидеров сектора негосударственных научно-исследовательских работ, которому пришла в голову идея "Гиперпетли" - проекта высокоскоростного трубопроводного пассажирского сообщения между Лос-Анджелесом и Сан-Франциско (время в пути займет всего 35 минут). Но есть проекты, которые даже Маск считает практически не осуществимыми. Например, проект космического лифта.

"Это слишком технически сложная задача. Вряд ли космический лифт можно создать в реальности", - заявил Маск на конференции в Массачусетском технологическом институте прошлой осенью. По его мнению, проще соорудить мост между Лос-Анджелесом и Токио, чем построить лифт на орбиту.

Идея отправлять людей и грузы в космос внутри капсул, скользящих вверх вдоль гигантского троса, который удерживается на месте благодаря вращению Земли, не нова. Подобные описания можно встретить в работах таких писателей-фантастов, как Артур Кларк. Однако осуществимой на практике эту концепцию до сих пор не считали. Может быть, уверенность в том, что нам по силам решить эту чрезвычайно сложную техническую задачу, - на самом деле лишь самообман?

Энтузиасты космического лифта считают, что построить его вполне возможно. По их мнению, ракеты, работающие на токсичном топливе, представляют собой устаревший, опасный для человека и природы и чрезмерно дорогостоящий вид космического транспорта. Предлагаемая альтернатива по сути является железнодорожной веткой, проложенной на орбиту - суперпрочный трос, один конец которого закреплен на поверхности Земли, а другой - к противовесу, находящемуся на геосинхронной орбите и потому постоянно висящему над одной точкой земной поверхности. В качестве лифтовых кабинок использовались бы электрические аппараты, движущиеся вверх и вниз вдоль троса. Благодаря космическим лифтам стоимость отправки грузов в космос удалось бы снизить до 500 долларов за килограмм - согласно недавнему отчету Международной академии астронавтики (IAA), сейчас эта цифра составляет приблизительно 20000 долларов за килограмм.

Энтузиасты космических лифтов указывают на вредность технологий запуска ракет на орбиту

"Данная технология открывает феноменальные возможности, она обеспечит человечеству доступ к Солнечной системе, - говорит Питер Суон, президент Международного консорциума по созданию космического лифта ISEC и соавтор отчета IAA. - Я думаю, что первые лифты будут работать в автоматическом режиме, а спустя 10-15 лет в нашем распоряжении уже будет от шести до восьми таких устройств, достаточно безопасных, чтобы транспортировать людей".

Истоки идеи

Сложность в том, что высота подобного сооружения должна составлять до 100 000 км - это больше, чем два земных экватора. Соответственно, конструкция должна быть достаточно прочной, чтобы выдержать собственный вес. На Земле просто нет материала с необходимыми прочностными характеристиками.

Но некоторые ученые думают, что эту проблему можно будет решить уже в текущем столетии. Крупная японская строительная компания объявила о том, что собирается соорудить космический лифт к 2050 г. А американские исследователи недавно создали новый алмазоподобный материал на основе нанонитей из сжатого бензола, расчетная прочность которого может сделать космический лифт реальностью еще при жизни многих из нас.

Впервые концепция космического лифта была рассмотрена в 1895 г. Константином Циолковским. Российский ученый, вдохновленный примером недавно построенной Эйфелевой башни в Париже, занялся исследованием физических аспектов строительства гигантской башни, при помощи которой можно было бы доставлять космические корабли на орбиту без использования ракет. Позднее, в 1979 г., эту тему упомянул писатель-фантаст Артур Кларк в романе "Фонтаны рая" - его главный герой строит космический лифт, схожий по конструкции с обсуждаемыми сейчас проектами.

Вопрос в том, как воплотить идею в жизнь. “Мне нравится дерзость концепции космического лифта, - говорит Кевин Фонг, основатель Центра высотной, космической и экстремальной медицины при Университетском колледже Лондона. - Я могу понять, почему она кажется людям такой привлекательной: возможность добираться до низких орбит Земли недорого и безопасно открывает для нас всю внутреннюю область Солнечной системы".

Проблемы безопасности

Однако построить космический лифт будет непросто. "Начать с того, что трос необходимо изготовить из суперпрочного, но гибкого материала, обладающего необходимыми весовыми и плотностными характеристиками, чтобы поддерживать вес движущихся по нему аппаратов, и одновременно способного выдерживать постоянные поперечные воздействия. Сейчас такого материала просто не существует, - говорит Фонг. - Кроме того, строительство такого лифта потребует самого интенсивного использования космических кораблей и самого большого количества выходов в открытый космос за всю историю человечества".

По его словам, нельзя сбрасывать со счетов и проблемы безопасности: "Даже если нам удастся преодолеть огромные технические сложности, связанные с постройкой лифта, получившаяся конструкция будет представлять собой гигантскую натянутую струну, сводящую космические аппараты с орбит и постоянно подвергающуюся бомбардировке космическим мусором".

Смогут ли когда-нибудь туристы воспользоваться лифтом, чтобы отправиться в космос?

За последние 12 лет в мире опубликованы три подробных проекта космического лифта. Первый описан Брэдом Эдвардсом и Эриком Уэстлингом в книге "Космические лифты", вышедшей в 2003 г. Этот лифт предназначен для транспортировки 20-тонных грузов за счет энергии расположенных на Земле лазерных установок. Расчетная себестоимость перевозки - 150 долларов за килограмм, а стоимость проекта оценивается в 6 млрд долларов.

В 2013 г. академия IAA развила эту концепцию в собственном проекте, обеспечивающем повышенную защиту лифтовых кабинок от атмосферных явлений до высоты в 40 км., при достижении которой движение кабинок на орбиту должно происходить уже за счет солнечной энергии. Себестоимость транспортировки - 500 долларов за килограмм, а стоимость постройки первых двух таких лифтов - 13 млрд долларов.

В ранних концепциях космического лифта приводились разнообразные возможные решения проблемы космического противовеса, призванного удерживать трос в натянутом положении - в том числе предлагалось использовать в этих целях захваченный и доставленный на нужную орбиту астероид. В отчете IAA отмечается, что когда-нибудь такое решение, может быть, и удастся реализовать, но в ближайшем будущем это невозможно.

Плавучий "якорь"

Чтобы удерживать трос массой в 6300 тонн, противовес должен весить 1900 тонн. Частично его можно сформировать из космических кораблей и других вспомогательных аппаратов, которые будут использоваться для постройки лифта. Возможно также использование находящихся неподалеку отработавших спутников, отбуксировав их на новую орбиту.

Они также предлагают выполнить "якорь", крепящий трос к Земле, в виде плавучей платформы размером с крупный нефтеналивной танкер или авианосец, и разместить его неподалеку от экватора, с целью увеличения его несущей способности. В качестве оптимальной точки размещения "якоря" предлагается район в 1000 км на запад от Галапагосских островов, редко подверженный ураганам, торнадо и тайфунам.

Космический мусор можно было бы использовать в противовесе на верхнем конце троса космического лифта

Корпорация Obayashi - одна из пяти крупнейших строительных фирм Японии - в прошлом году объявила о планах по созданию космического лифта более прочной конструкции, по которому перемещались бы автоматические кабинки на магнитной подвеске. Подобная технология применяется на высокоскоростных железных дорогах. Более прочный трос необходим потому, что японский лифт предполагается использовать и для транспортировки людей. Стоимость проекта оценивается в 100 млрд долларов, при этом себестоимость транспортировки грузов на орбиту может составить 50-100 долларов за килограмм.

Хотя технических трудностей при строительстве подобного лифта, несомненно, будет предостаточно, на самом деле единственный элемент конструкции, который пока невозможно создать, - это сам трос, говорит Суон: "Единственная технологическая проблема, которую предстоит решить - подбор подходящего материала для изготовления троса. Все остальное мы можем построить уже сейчас".

Алмазные нити

На данный момент самым подходящим материалом для троса можно считать углеродные нанотрубки, созданные в лабораторных условиях в 1991 г. Эти цилиндрические структуры имеют предел прочности на разрыв в 63 гигапаскаля, то есть они примерно в 13 раз прочнее самой прочной стали.


Максимально достижимая длина таких нанотрубок постоянно увеличивается - в 2013 г. китайским ученым удалось довести ее до полуметра. Авторы доклада IAA прогнозируют, что к 2022 г. будет достигнута длина в километр, а к 2030 гг. можно будет создавать нанотрубки подходящей длины для использования в космическом лифте.

Тем временем в сентябре прошлого года появился новый сверхпрочный материал: в статье, опубликованной в научном журнале по материаловедению Nature Materials, группа ученых под руководством профессора химии Джона Бэддинга из Университета штата Пенсильвания сообщила о получении в лаборатории супертонких "алмазных нанонитей", которые могут оказаться даже прочнее, чем углеродные нанотрубки.

Ученые сжали жидкий бензол под давлением, превышающим атмосферное в 200 000 раз. Затем давление медленно понизили, и оказалось, что атомы бензола перегруппировались, создав высокоупорядоченную структуру из пирамидальных тетраэдров.

В результате образовались супертонкие нити, очень напоминающие по структуре алмаз. Хотя напрямую измерить их прочность невозможно из-за сверхмалых размеров, теоретические расчеты указывают на то, что эти нити могут оказаться более прочными, чем самые прочные из существующих синтетических материалов.

Снижение рисков

"Если мы научимся создавать алмазные нанонити или углеродные нанотрубки необходимой длины и с необходимыми качествами, можно быть практически уверенным в том, что они окажутся достаточно прочными для использования в космическом лифте", - говорит Бэддинг.


Впрочем, даже если удастся найти подходящий материал для троса, собрать конструкцию будет весьма непросто. Вероятнее всего, возникнут и трудности, связанные с обеспечением безопасности проекта, необходимого финансирования и грамотного разведения конкурирующих интересов. Однако Суона это не останавливает.

Так или иначе, человечество стремится в космос и готово тратить на это большие деньги

"Разумеется, мы столкнемся с большими сложностями, но проблемы приходилось решать и при строительстве первой трансконтинентальной железной дороги [в США], и при прокладке Панамского и Суэцкого каналов, - говорит он. - Потребуется много времени и денег, но, как и в случае с любым крупным проектом, просто нужно решать проблемы по мере их возникновения, одновременно с этим постепенно снижая возможные риски".

Даже Элон Маск не готов категорически отмести возможность создания космического лифта. "Не думаю, что на сегодня эта идея реализуема, но если кто-то сможет доказать обратное, будет здорово", - сказал он на прошлогодней конференции в Массачусеттском технологическом институте.


IV Межрегиональная конференция школьников

«Дорога к звездам»

Космический лифт – фантастика или реальность?

Выполнил:

____________________

Руководитель:

___________________

Ярославль

    Введение

    Идеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова, Г.Г. Полякова

    Конструкция космического лифта

    Описание современных проектов

    Заключение

Введение

В 1978 году выходит в свет научно – фантастический роман Артура Кларка «Фонтаны рая» (The Fountains of Paradise), посвященный идее строительства космического лифта. Действия происходят в XXII веке на несуществующем острове Тапробан, который, как указывает автор в предисловии, на 90% соответствует острову Цейлон (Шри-Ланка).

Нередко фантасты предсказывают появление изобретения не своего века, а намного более позднего времени.

Что же такое космический лифт?

Космический лифт - концепция инженерного сооружения для безракетного запуска грузов в космос. Данная гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции, находящейся на ГСО. Впервые подобную мысль высказал Константин Циолковский в 1895 году, детальную разработку идея получила в трудах Юрия Арцутанова.

Целью данной работы является изучение возможности построения космического лифта.

Идеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова и Г.Г. Полякова

Константин Циолковский - русский и советский ученый-самоучка, и изобретатель, школьный учитель. Основоположник теоретической космонавтики. Обосновал использование ракет для полётов в космос, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Основные научные труды относятся к аэронавтике, ракетодинамике и космонавтике.

Представитель русского космизма, член Русского общества любителей мироведения. Автор научно-фантастических произведений, сторонник и пропагандист идей освоения космического пространства. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций. Считал, что развитие жизни на одной из планет Вселенной достигнет такого могущества и совершенства, что это позволит преодолевать силы тяготения и распространять жизнь по Вселенной.

В 1895 году русский ученый Константин Эдуардович Циолковский первым сформулировал понятие и концепцию космического лифта. Он описал отдельно стоящее сооружение, уходящее от уровня земли до геостационарной орбиты. Возвышаясь на 36 тысяч километров над экватором и следуя в направлении вращения Земли, в конечной точке с орбитальным периодом ровно в один день эта конструкция сохранялась бы в фиксированном положении.

Ю
рий Николаевич Арцутанов - русский инженер, родившийся в Ленинграде. Выпускник Ленинградского

технологического института, известен как один из пионеров идеи космического лифта. В 1960 году он написал статью «В Космос - на электровозе», где он обсудил концепцию космического лифта как экономически выгодный, безопасный и удобный способ доступа к орбите для облегчения освоения космоса.

Юрий Николаевич развил идею Константина Циолковского. Концепция Арцутанова была основана на связывании геосинхронных спутников кабелем с Землей. Он предложил использовать спутник в качестве базы, с которой можно построить башню, так как геосинхронный спутник останется над неподвижной точкой на экваторе. С помощью противовеса кабель будет спущен с геосинхронной орбиты на поверхность Земли, в то время как противовес будет отдаляться от Земли, удерживая центр масс кабеля неподвижно относительно Земли.

Арцутанов предложил закрепить один конец такой «веревки» на земном экваторе, а ко второму концу, находящемуся далеко за пределами планетной атмосферы, - подвесить уравновешивающий груз. При достаточной длине «веревки» центробежная сила превысила бы силу притяжения и не позволила грузу упасть на Землю. Из приведенных Арцутановым расчетов, следует, что сила притяжения и центробежная сила оказываются равны на высоте около 42 000 километров. Равная нулю равнодействующая этих сил надежно закрепляет «камень» в зените.

Теперь герметичные электровозы побегут вертикально вверх – к орбите. Плавное наращивание скорости и плавное же торможение помогут избежать перегрузок, характерных для отрыва ракеты. После нескольких часов путешествия со скоростью 10 – 20 километров в секунду, последует первая остановка – в точке равноденствия сил, где раскинувшаяся в невесомости перевалочная станция откроет гостям двери баров, ресторанчиков, комнат отдыха – и замечательный вид на Землю из иллюминаторов.

После остановки кабина не только сможет двигаться без затрат энергии, так как её будет отбрасывать от Земли центробежная сила, - но и, вдобавок, генерировать двигателем, переключенным в режим динамо-машины, необходимое для возвращения электричество.

Вторую – и конечную остановку предлагалось сделать на расстоянии 60 000 километров от Земли, где равнодействующая сил сравняется с силой тяжести на земной поверхности, и позволит создать на «конечной станции» искусственную гравитацию. Здесь же, на краю длиннейшей канатной дороги будет располагаться настоящий орбитальный космодром. Он, как и полагается, станет запускать по Солнечной системе космические корабли, придавая им солидную скорость и назначая траекторию.

Не желая ограничиваться примитивным канатом, Юрий Арцутанов навешал на него гелиоэлектростанций, перерабатывающих солнечную энергию в электрический ток, и соленоидов, генерирующих электромагнитное поле. В этом поле должен двигаться «электровоз».

Если оценить вес такого магнитодорожного полотна, учитывая протяженность в 60 000 километров, то получается - сотни миллионов тонн? Гораздо больше. Не одна тысяча ракет потребуется, чтобы отбуксировать эту тяжесть к орбите! В то время это казалось невозможным.

Однако ученый и на этот раз подкинул верную идею: лифт не обязательно строить снизу вверх, как огромную циклопическую башню – достаточно запустить на геостационарную орбиту искусственный спутник, с которого будет спущена первая нить. В сечении эта нить окажется тоньше человеческого волоса, так чтобы вес ее не превосходил тысячу тонн. После того, как свободный конец нити закрепят на земной поверхности, сверху вниз по нити побежит «паук» – легкое устройство, плетущее вторую, параллельную нить. Он будет работать до тех пор, пока канат не станет достаточно толстым, чтобы выдержать «электровоз», электромагнитное полотно, гелиоэлектростанции, комнаты отдыха и рестораны.

Вполне объяснимо, почему в эпоху космических гонок идея Юрия Валерьевича Арцутанова осталась никем не замеченной. Тогда не было ни одного материала способного выдержать столь высокое давление разрыва троса.

В развитие идей Арцутанова свой проект космического лифта в 1977 году предложил Георгий Поляков из Астраханского педагогического института.

Принципиально этот лифт почти ничем не отличается от вышеописанного. Поляков лишь указывает: реальный космический лифт будет устроен куда сложнее, чем описанный Арцутановым. Фактически он будет состоять из ряда простых лифтов с последовательно уменьшающимися длинами. Каждый представляет собой самоуравновешенную систему, но лишь благодаря одному из них, что достигает Земли, обеспечивается устойчивость всей конструкции.

Длина лифта (примерно 4 диаметра Земли) выбрана с таким расчетом, чтобы аппарат, отделившийся от его верхушки, сумел бы уйти по инерции в открытый космос. В верхней точке будет смонтирован стартовый пункт для межпланетных кораблей. А возвращающиеся из полета корабли, предварительно выйдя на стационарную орбиту, «прилифтуются» в районе базы.

С конструкторской точки зрения космический лифт представляет собой две параллельные трубы или шахты прямоугольного сечения, толщина стенок которых изменяется по определенному закону. По одной из них кабины движутся вверх, а по другой - вниз. Конечно, ничто не мешает соорудить несколько таких пар. Труба может быть не сплошной, а состоящей из множества параллельных тросов, положение которых фиксируется серией поперечных прямоугольных рамок. Это облегчает монтаж и ремонт лифта.

Кабины лифта - просто площадки, приводимые в движение индивидуальными электродвигателями. На них крепятся грузы или жилые модули - ведь путешествие в лифте может продолжаться неделю, а то и больше.

В целях экономии энергии можно создать систему, напоминающую канатную дорогу. Она состоит из ряда шкивов, через которые перекинуты замкнутые тросы с подвешенными на них кабинами. Оси шкивов, где смонтированы электродвигатели, закреплены на несущей лифта. Здесь вес поднимающихся и опускающихся кабин взаимно уравновешен, и, следовательно, энергия расходуется лишь на преодоление трения.

Для соединительных «нитей», из которых собственно и образуется лифт, необходимо использовать материал, у которого отношение разрывного напряжения к плотности в 50 раз больше, чем у стали. Это могут быть разнообразные «композиты», пеностали, бериллиевые сплавы или кристаллические усы...

Впрочем, Георгий Поляков не останавливается на уточнении характеристик космического лифта. Он указывает на то обстоятельство, что уже до конца XX века геосинхронная орбита будет густо «усеяна» космическими аппаратами самых различных типов и назначений. А поскольку все они будут практически неподвижны относительно нашей планеты, представляется весьма заманчивым связать их с Землей и между собой с помощью космических лифтов и кольцевой транспортной магистрали.

На основании этого соображения Поляков выдвигает идею космического «ожерелья» Земли. Ожерелье послужит своеобразной канатной (или рельсовой) дорогой между орбитальными станциями, а также обеспечит им устойчивое равновесие на геосинхронной орбите.

Так как длина «ожерелья» весьма велика (260 000 километров), на нем можно разместить очень много станций. Если, скажем, поселения отстоят друг от друга на 100 километров, то их число составит 2600. При населении каждой станции в 10 тысяч на кольце будут обитать 26 миллионов человек. Если же размеры и количество таких «астрогородов» увеличить, эта цифра резко возрастет.

Конструкция космического лифта

Основание

Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне. Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту. Дополнительно к основанию может быть размещена площадка на стратостатах, для уменьшения веса нижней части троса с возможностью изменения высоты для избегания наиболее бурных потоков воздуха, а также гашения излишних колебаний по всей длине троса.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65-120 гигапаскалей. Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты.

В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 - кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм. По заявлениям некоторых учёных, даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику в качестве контактной шины.

В июне 2013 года инженеры из Колумбийского университета США сообщили о новом прорыве: благодаря новой технологии получения графена удается получать листы, с размером по диагонали в несколько десятков сантиметров и прочностью лишь на 10% меньше теоретической.

Утолщение троса

Космический лифт должен выдерживать, по крайней мере, свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а, следовательно, и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

Можно показать, что с учётом гравитации Земли и центробежной силы, НО, не учитывая меньшее влияние Луны и Солнца, сечение троса в зависимости от высоты будет описываться следующей формулой:

Где - площадь сечения троса как функция расстояния r от центра Земли.

В формуле используются следующие константы:

- площадь сечения троса на уровне поверхности Земли.

- плотность материала троса.

- предел прочности материала троса.

- круговая частота вращения Земли вокруг своей оси, 7,292·10−5 радиан в секунду.

- расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.

- ускорение свободного падения у основания троса, 9,780 м/с².

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув, в конце концов, геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:

П
одставив сюда плотность и прочность стали, и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

    Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.

    Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО. Тот же расчет, выполненный из предположения, что плотность троса равна плотности углеволокна ρ = 1,9 г/см3 (1900 кг/м3), с предельной прочностью σ = 90 ГПА (90·109 Па) и диаметром троса у основания 1 см (0.01 м), позволяет получить диаметр троса на ГСО всего 9 см.

    Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км, которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.

    Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.

    Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20-25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха). Также есть идея вместо троса из нанотрубок использовать условные силовые линии магнитного поля Земли.

Противовес

Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант интересен тем, что с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Угловой момент, скорость и наклон

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость). Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину, и противовес на большую величину, в результате замедления вращения противовеса трос начнет наматываться на землю. В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт. К моменту достижения грузом геостационарной орбиты (ГСО) его угловой момент достаточен для вывода груза на орбиту. Если груз не высвободить с троса, то остановившись вертикально на уровне ГСО, он будет находиться в состоянии неустойчивого равновесия, а при бесконечно малом толчке вниз, сойдет с ГСО и начнет опускаться на Землю с вертикальным ускорением, при этом замедляясь в горизонтальном направлении. Потеря кинетической энергии от горизонтальной составляющей при спуске будет передаваться через трос, угловому моменту вращения Земли, ускоряя её вращение. При толчке вверх груз также сойдет с ГСО, но в противоположном направлении, то есть начнет подниматься по тросу с ускорением от Земли, достигнув конечной скорости на конце троса. Поскольку конечная скорость зависит от длины троса, её величина, таким образом, может быть задана произвольно. Следует отметить, что ускорение и прирост кинетической энергии груза при подъеме, то есть его раскручивание по спирали, будут происходить за счет вращения Земли, которое при этом замедлится. Данный процесс полностью обратим, то есть если на конец троса надеть груз и начать его опускать, сжимая по спирали, то угловой момент вращения Земли соответственно увеличится. При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта. Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.

Описание современных проектов

В середине и в конце 20-го века появились более подробные предложения. Возлагались надежды, что космический лифт сделает революцию в доступе к околоземному космическому пространству, к Луне, Марсу и даже далее. Данное сооружение смогло бы раз и навсегда решить проблему, связанную с отправкой человека в космос. Лифт очень помог бы многим космическим агентствам в доставке астронавтов на орбиту нашей планеты. Его создание может означать конец загрязняющим пространство ракетам. Однако стартовые инвестиции и уровень необходимых технологий ясно давали понять, что такой проект нецелесообразен и отводили ему место в области научной фантастики.

Возможно ли решить проблему такого строительства в данный момент? Сторонники космических лифтов считают, что в настоящее время достаточно возможностей для решения данной технической задачи. Они считают, что космические ракеты устарели и наносят непоправимый вред природе и слишком дороги для современного общества.

Камень преткновения лежит в том, как построить такую систему. «Для начала она должна быть создана из пока не существующего, но прочного и гибкого материала с нужной массой и характеристиками плотности, чтобы поддерживать транспорт и выдержать невероятное воздействие внешних сил, - говорит Фонг. - Думаю, все это потребует серии самых амбициозных орбитальных миссий и космических прогулок на низкой и высокой околоземной орбитах в истории нашего вида».

Есть также проблемы безопасности, добавляет он. «Даже если бы мы могли решить существенные технические трудности, связанные со строительством такой штуки, вырисовывается страшная картина гигантского сыра с дырками, пробитыми всем этим космическим мусором и обломками наверху».

Учёные всего мира разрабатывают идею космического лифта. Японцы в начале 2012 года объявили о том, что они планируют построить космический лифт. Американцы об этом же сообщили в конце 2012-го. В 2013-м СМИ вспомнили о русских корнях "космического лифта". Так, когда же данные идеи станут реальностью?

Концепция Японской корпорации Obayashi

Корпорация предлагает следующий способ постройки: один конец троса очень высокой прочности удерживается массивной платформой в океане, а второй - закрепляется на орбитальной станции. По канату перемещается специально спроектированная кабинка, которая может доставлять грузы, астронавтов или, скажем, космических туристов.

В качестве материала для троса Obayashi рассматривает углеродные нанотрубки, которые в десятки раз прочнее стали. Но проблема заключается в том, что в настоящее время длина таких нанотрубок ограничивается примерно 3 см, в то время как для космического лифта потребуется трос общей протяжённостью в 96 000 км. Ожидается, что преодолеть существующие трудности станет возможно ориентировочно в 2030-х годах, после чего начнётся практическая реализация концепции космического лифта.

Obayashi уже рассматривает возможность создания особых туристических кабинок, рассчитанных на перевозку до 30 пассажиров. Кстати, путь на орбиту по тросу из углеродных нанотрубок будет занимать семь дней, поэтому придётся предусмотреть необходимые системы обеспечения жизнедеятельности, запас еды и воды.

Запустить космический лифт Obayashi рассчитывает только к 2050 году.

Космический лифт компании LiftPort Group

Не только Земля станет объектом, где будет сооружен такой лифт. По мнению группы экспертов из компании LiftPort Group в качестве такого объекта вполне может выступить и Луна.

Основой лунного космического лифта является плоский ленточный кабель, изготовленный из высокопрочного материала. По этому кабелю на поверхность Луны и назад будут ходить транспортные гондолы, доставляющие людей, различные материалы, механизмы и роботов.

«Космический» конец кабеля будет удерживаться космической станцией PicoGravity Laboratory (PGL), находящейся в точке Лагранжа L1 системы Луна-Земля, в точке, где гравитация Луны и Земли взаимно уравновешивают друг друга. На Луне конец кабеля будет присоединен к якорной станции Anchor Station, находящейся в районе Sinus Medi (приблизительно в середине «лица» Луны, смотрящего на Землю) и входящей в состав инфраструктуры космического лифта Lunar Space Elevator Infrastructure.

Натяжение кабеля космического лифта будет осуществляться противовесом, который будет удерживаться более тонким кабелем длиной в 250 тысяч километров, и который будет находиться уже во власти земной гравитации. Космическая станция PicoGravity Laboratory будет иметь модульную структуру, наподобие структуры существующей Международной космической станции, что позволит без особого труда производить ее расширение и добавлять стыковочные узлы, позволяющие стыковаться со станцией космическим кораблям различных типов.

Основной целью данного проекта является отнюдь не строительство самого космического лифта. Этот лифт станет лишь средством доставки на Луну автоматических аппаратов, которые в автономном режиме будут вести добычу различных полезных ископаемых, в том числе редкоземельных металлов и гелия-3, который является перспективным топливом для будущих реакторов термоядерного синтеза и, возможно, топливом для космических кораблей будущего.

«К сожалению, данный проект пока практически невыполним в связи с отсутствием у людей множества ключевых технологий. Но исследования большинства таких технологий уже ведутся некоторое время, и обязательно наступит тот момент, когда строительство космического лифта перейдет из разряда научной фантастики в область практически выполнимых вещей».

Специалисты компании LiftPort Group обещают сделать рабочий детализированный проект сооружения к концу 2019 года.

«Общепланетное транспортное средство»

Рассмотрим проект, получивший название «Общепланетное транспортное средство» (ОТС). Его выдвинул и обосновал инженер Анатолий Юницкий из Гомеля.

В 1982 году в журнале «Техника молодежи» была опубликована статья, в которой автор утверждает, что у человечества в скором времени появится потребность в принципиально новом транспортном средстве, способном обеспечивать перевозки на трассе «Земля – космос – Земля».

По мнению А. Юницкого ОТС представляет собой замкнутое колесо поперечным диаметром порядка 10 метров, которое покоится на специальной эстакаде, установленной вдоль экватора. Высота эстакады в зависимости от рельефа колеблется в пределах от нескольких десятков до нескольких сотен метров. Эстакада размещена на плавучих опорах в океанских просторах.

В герметичном канале, расположенном по оси корпуса ОТС, находится бесконечная лента, имеющая магнитную подвеску и являющаяся своеобразным ротором двигателя. В нее наводится ток, который будет взаимодействовать с породившим его магнитным полем, и лента, не испытывающая никакого сопротивления (она размещена в вакууме), придет в движение. Точнее, во вращение вокруг Земли. При достижении первой космической скорости лента станет невесомой. При дальнейшем разгоне ее центробежная сила через магнитную подвеску станет оказывать на корпус ОТС всевозрастающую вертикальную подъемную силу, пока не уравновесит каждый его погонный метр (транспортное средство как бы станет невесомым - чем не антигравитационный корабль?).

В удерживаемое на эстакаде транспортное средство с предварительно раскрученной до скорости 16 км/с верхней лентой, имеющей массу 9 тонн на метр, и точно такой же, но лежащей неподвижно нижней лентой размещают груз и пассажиров. Это делается в основном внутри, а частично и снаружи корпуса ОТС, но так, чтобы нагрузка в целом была равномерно распределена. После освобождения от захватов, удерживающих ОТС на эстакаде, его диаметр под действием подъемной силы начнет медленно расти, а каждый его погонный метр - подниматься над Землей. Поскольку форма окружности отвечает минимуму энергии, то транспортное средство, до этого копировавшее профиль эстакады, примет после подъема форму идеального кольца.

Скорость подъема ОТС на любом из участков пути может быть задана в широких пределах: от скорости пешехода до скорости самолета. Атмосферный участок транспортное средство проходит на минимальных скоростях.

По оценке Анатолия Юницкого, общая масса ОТС составит 1,6 миллиона тонн, грузоподъемность - 200 миллионов тонн, пассажировместимость - 200 миллионов человек. Расчетное число выходов ОТС в космос за пятидесятилетний срок службы - 10 тысяч рейсов.

Заключение

Существует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны.

Космический лифт изменит космическую индустрию: люди и груз будут доставляться на орбиту со значительно более низкими затратами по сравнению с традиционными запусками ракет-носителей.

Будем надеяться, что во второй половине 21 – го века космические лифты станут функционировать за пределами Земли: на Луне, Марсе и других уголках Солнечной Системы. С развитием технологий стоимость строительства будет постепенно снижаться.

Несмотря на то, что это время кажется далеким и недосягаемым, именно от нас зависит, каким будет будущее и как быстро оно наступит.