Нахождение первообразной. Первообразная и неопределенный интеграл — Гипермаркет знаний

Цель:

  1. Знать определение первообразной, основное свойство первообразной, правила нахождения первообразной;
  2. Уметь находить общий вид первообразной;
  3. Развивать навыки самоконтроля, интерес к предмету;
  4. Воспитывать волю и настойчивость для достижения конечных результатов при выполнении заданий.

Ход урока

I. Организационный момент.

II. Проверка усвоения изученного материала.

1. Опрос по карточкам:

А) Сформулируйте определение первообразной?
Б) Сформулируйте признак постоянства функции?
В) Сформулируйте основное свойство первообразных?
Г) Продолжи фразу «Дифференцирование – это ….»
Д) Интегрирование – это …..
Е) Графики любых двух первообразных для функции f получаются друг из друга …….
Ж) В этом заключается?…

2. Найти общий вид первообразных для функции:

А) f(x) = 1
Б) g(x) = x +1
В) f (x) = сos (3x + 4)
Г) g (x) = 2 cosx + 4
Д) g (x) =sin x + cos x
Е) F (x) = (x + 1)³

3. Среди заданных функций выберите первообразную для функций у = - 7х ³

III. Работа в группах

1-я группа – играет в пасьянс. На столах разрезные карточки. Составьте все формулы, которые вам известны. Сколько раз вам выпала удача?

2-я и 3-я группы - работают с лото. Записать получившееся ключевое слово.

f (x) = (x + 1)4

f (x) = 2x5- 3x2

f(x) = cos (3x +4)

f(x) = (7x – 2)8

f(x) = x4-x2+x-1

f(x) = 1 – cos3x

(ключевое слово – первообразная)

4-я группа – работает с кроссвордом.

Кроссворд.

Вопросы:

2. Что является графиком функции у = ах + b.

4. Какой урок обычно проходит перед зачетом.

5. Синоним слова дюжина.

6. Есть в каждом слове, у уравнений и может быть у уравнений.

7. Что можно вычислить по формуле a b.

8. Одно из важнейших понятий математики.

9. Форма урока, на котором проводится проверка знаний.

10. Немецкий ученый, который ввел интегральное исчисление.

11. Множество точек плоскости с координатами (х; у), где х пробегает область определения функции f.

12. Соответствия между множествами Х и У, при котором каждому значению множества Х поставлено в соответствие единственное значение из множества У, носит название…

При правильном разгадывании кроссворда под цифрой 1 по вертикали прочитайте ключевое слово.

IV. Разбор задания из ЕГЭ по данной теме из прошлых лет.

Укажите первообразную F функции f(x) = 3sin x, если известно, что F(П) = 1.

V. Самостоятельная работа.

1-я и 2-я группа – выполняют тест.

Часть А

А1. Среди данных функций выберите ту, производная которой равна f(x) = 20x4.

1). F(x) = 4x5
2). F(x) =5x5
3).F(x) = x5
4). F(x) = 80x3

A2. Найдите общий вид первообразных для функции f(x) = 4x3 – 6

1). F(x) = x4 -6x + 5
2).F(x) = x4 - 6x + C
3).F(x) = 12x2 + C
4). F(x) = 12x2 – 6

A3.Для функции f(x) =8x – 3 найдите первообразную, график которой проходит через точку М (1; 4).

1) F(x) = 4x2 – 3x
2) F(x) = 4x2 – 3x -51
3) F(x) = 4x2 – 3x + 4
4) F(x) = 4x2 - 3x +3

A4. Найдите общий вид первообразных для функции f(x) = 2/x3

1) F(x) = 1/x +C
2) F(x) = - 2/x + C
3) F(x) = - 1/x2 + C
4) F(x) = 2/x2+ C

A5. Первообразной для функции f(x) = sin x + 3x2 является функция

1) F(x) = sin x +x3 – 5
2) F(x) = -cos x – x2 -1
3) F(x) = -cos x + x3 -2
4) F(x) = -x3cos x -3

A6. Первообразной для функции f(x) = 3sin x является функция

1) F(x) = - 3xcos 3x
2) F(x) = - cos 3x
3) F(x) = - 3cos 3x
4) F(x) = - 3cos x

A7. Первообразной для функции f(x) = cos 2x является функция

1) F(x) = 0,5sin 2x
2) F(x) = 0,5sin x
3) F(x) = 2 sin 2x
4) F(x) = 2sin x

A8. Первообразная для функции f(x) = 2 sinx cosx для функции

1) F(x) = 0,5 sin2x
2) F(x) = 0,5sinx
3) F(x) = 2 sin2x
4) F(x) = 2 sin x

A9. Для функции f(x) = 6/cos23x + 1найддите первообразную, график которой проходит через точку М (П/3; П/3).

1) F(x) = 2 tg 3x + x +П/3
2) F(x) = 2 tg 3x + x
3) F(x) = - 6tg 3x + x + П/3
4) F(x) = 6 tg 3x + x

Часть В

В1. Функция F(x) является первообразной для функции f(x) = x5 – 3x2 – 2. Найдите F(1), если F(- 1) = 0.

3-я и 4-я группы – исправить ошибку.

а) F(x) = x5, a f(x) = 1/6x6
б) F(x) = 4x – х3 , a f(x) = 1/6x6
в) F(x) = sin x, a f(x) = - cos x
г) F(x) = 15 cos x, a f(x) = - 15 cos x
д) F(x) = x/3 + 6/x – 1, a f(x) = 1/3 – 6/x2 на (0 ; +)
ж) Для функции f(x) = 10 sin 2x найдите первообразную, график которой проходит через точку М (-3/2П; 0)

VI. Итог урока.

Д/З.№ 348, индивидуальное задание: Составить презентацию по теме.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Тема: Интегрирование функций одной переменной

ЛЕКЦИЯ № 1

План:

1. Первообразная функция.

2. Определения и простейшие свойства.

Определение. Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞).
Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Пример 1. Рассмотрим функцию на всей числовой оси -- на интервале. Тогда функция -- это первообразная для на.

Для доказательства найдём производную от:

Поскольку равенство верно при всех, то -- первообразная для на.

Пример 2. Функция F(х)=х есть первообразная для всех f(х)= 1/х на промежутке (0; +), т.к. для всех х из этого промежутка, выполняется равенство.
F`(х)= (х 1/2)`=1/2х -1/2 =1/2х

Пример 3. Функция F(х)=tg3х есть первообразная для f(х)=3/cos3х на промежутке (-п/2; п/2),
т.к. F`(х)=(tg3х)`= 3/cos 2 3х

Пример 4. Функция F(х)=3sin4х+1/х-2 первообразная для f(х)=12cos4х-1/х 2 на промежутке (0;∞)
т.к. F`(х)=(3sin4х)+1/х-2)`= 4cos4х-1/х 2

1. Пусть - первообразные для функций и соответственно, a , b , k – постоянные, . Тогда: - первообразная для функции; - первообразная для функции; -первообразная для функции.

2. Постоянный коэффициент можно выносить за знак интегрирования:

функции соответствует первообразная.

3. Первообразная суммы функций равна сумме первообразных этих функций:

сумме функций соответствует сумма первообразных.

Теорема: (Основное свойство первообразной функции)

Если F(х) одна из первообразных для функции f(х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.

Доказательство:

Пусть F`(х) = f (х), тогда (F(х)+С)`= F`(х)+С`= f (х), для х Є J.
Допустим существует Φ(х)- другая первообразная для f (х) на промежутке J, т.е. Φ`(х) = f (х),
тогда (Φ(х)- F(х))` = f (х) – f (х) = 0, для х Є J.
Это означает, что Φ(х)- F(х) постоянна на промежутке J.
Следовательно, Φ(х)- F(х) = С.
Откуда Φ(х)= F(х)+С.
Это значит, что если F(х) - первообразная для функции f (х) на промежутке J, то множество всех первообразных этой функции имеет вид: F(х)+С, где С - любое действительное число.
Следовательно, любые две первообразные данной функции отличаются друг от друга постоянным слагаемым.



Пример 6: Найти множество первообразных функции f (х) = cos х. Изобразить графики первых трех.

Решение: Sin х - одна из первообразных для функции f (х) = cos х
F(х) = Sinх+С–множество всех первообразных.

F 1 (х) = Sin х-1
F 2 (х) = Sin х
F 3 (х) = Sin х+1

Геометрическая иллюстрация: График любой первообразной F(х)+С можно получить из графика первообразной F(х) при помощи параллельного переноса r (0;с).

Пример 7: Для функции f (х) = 2х найти первообразную, график которой проходит через т.М (1;4)

Решение: F(х)=х 2 +С – множество всех первообразных, F(1)=4 - по условию задачи.
Следовательно, 4 = 1 2 +С
С = 3
F(х) = х 2 +3

Теорема 1. Пусть -- некоторая первообразная для на интервале и -- произвольная постоянная. Тогда функция также является первообразной для на.

Доказательство . Покажем, что производная от даёт:

при всех. Таким образом, -- первообразная для.

Итак, если -- первообразная для на, то множество всех первообразных для, во всяком случае, содержит все функции вида. Покажем, что никаких других функций множество всех первообразных не содержит, то есть что все первообразные для фиксированной функции отличаются от лишь постоянным на слагаемым.

Теорема 2 Пусть -- первообразная для на и -- некоторая другая первообразная. Тогда

при некоторой постоянной.

Доказательство . Рассмотрим разность. Поскольку и, то. Покажем, что функция, такая что при всех, -- это постоянная. Для этого рассмотрим две произвольные точки и, принадлежащие, и к отрезку между и (пусть это) применим формулу конечных приращений

где. (Напомним, что эта формула -- следствие из теоремы Лагранжа , которую мы рассматривали в первом семестре). Поскольку во всех точках, в том числе и, то. Следовательно, в произвольной точке функция принимает то же значение, что в точке, то есть.

Для первообразной это означает, что при любом, то есть

Конспект урока по алгебре и началам анализа для учащихся 11 класса средних общеобразовательных учреждений

На тему: «Правила нахождения первообразных»

Цель урока:

Образовательная: ввести правила нахождения первообразных с помощью их табличных значений и использовать их при решении задач.

Задачи:

    ввести определение операции интегрирования;

    познакомить учащихся с таблицей первообразных;

    познакомить учащихся с правилами интегрирования;

    научить учащихся применять таблицу первообразных и правила интегрирования при решении задач.

Развивающая: способствовать развитию у учащихся умения анализировать, сопоставлять данные, делать выводы.

Воспитательная: способствовать формированию навыков коллективной и самостоятельной работы, формировать умения аккуратно и грамотно выполнять математические записи.

Методы обучения: индуктивно-репродуктивный, дедуктивно-репродук-

тивный.

Тип урока: усвоение новых знаний.

Требования к ЗУН:

Учащиеся должны знать:

- определение операции интегрирования;

Таблицу первообразных;

учащиеся должны уметь:

Применять таблицу первообразных при решении задач;

Решать задачи, в которых необходимо находить первообразные.

Оборудование: компьютер, экран, мультимедиа проектор, презентация.

Литература:

1. А.Г. Мордкович и др. «Алгебра и начала анализа. Задачник для 10-11 класса» М.: Мнемозина, 2001.

2. Ш.А. Алимов «Алгебра и начала анализа. 10-11 класс. Учебник» М.: Просвещение, 2004. - 384с.

3. Методика и технология обучения математике. М.: Дрофа, 2005. – 416 с.

Структура урока:

I . Организационный момент (2 мин.)

II . Актуализация знаний (7 мин.)

III . Изучение нового материала (15 мин.)

VI . Закрепление изученного материала (17 мин.)

V . Подведение итогов и Д/З (4 мин.)

Ход урока

I . Организационный момент

Приветствие учащихся, проверка отсутствующих и готовности помещения к уроку.

II . Актуализация знаний

Запись на доске (в тетрадях)

Дата.

Классная работа

Правила нахождения первообразных.

Учитель: Тема сегодняшнего урока: «Правила нахождения первообразных» (слайд 1). Но прежде, чем перейти к изучению новой темы вспомним пройденный материал.

К доске вызываются двое учеников, каждому дается индивидуальное задание (если ученик справился с заданием без ошибок, то он получает отметку «5»).

Карточки с заданиями

№ 1

у = 6х – 2х 3 .

f ( x )=3 x 2 +4 x –1 в точке x =3.

№ 2

2) Найдите значение производной функции f ( x )=5 x 2 +5 x 5 в точке x =1.

Решение

Карточка № 1

1) Найти интервалы возрастания и убывания функции у = 6х – 2х 3 .

; Пусть , тогда , сдедовательно ; х 1 и х 2 стационарные точки;

2. Стационарные точки разбивают координатную прямую на три интервала. В тех интервалах, где производная функции положительна сама функция возрастает, где отрицательна – убывает.

- + -

у -1 1

Следовательно у убывает при х (- ;-1) (1; ) и возрастает при х (-1;1).

2) f ( x )=3 x 2 +4 x –1 ; ; .

Карточка № 2

1) Найти точки экстремума функции .

1. Найдем стационарные точки, для этого найдем производную данной функции, затем приравняем её к нулю и решим полученное уравнение, корнями которого и будут являться стационарные точки.

; Пусть , тогда , следовательно, , и .

2. Стационарные точки разбивают координатную прямую на четыре интервала. Те точки, при переходе через которые производная функции меняет знак, являются точками экстремума.

+ - - +

у -3 0 3

Значит - точки экстремума, причем - точка максимума, а - точка минимума.

2) f ( x )=5 x 2 +5 x 5; ; .

Пока, вызванные к доске ученики решают примеры остальному классу задаются теоретические вопросы. В процессе опроса учитель следит, справились ученики с заданием или нет.

Учитель: Итак, давайте ответим на несколько вопросов. Вспомним, какая функция называется первообразной? (слайд 2)

Ученик: Функция F ( x ) называется первообразной функции f ( x ) на некотором промежутке, если для всех x из этого промежутка .

(слайд 2).

Учитель: Верно. А как называется процесс нахождения производной функции? (слайд 3)

Ученик: Дифференцированием.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 3).

Учитель: Каким образом показать, что функция F ( x ) является первообразной для функции f ( x ) ? (слайд 4).

Ученик: Найти производную функции F ( x ) .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 4).

Учитель: Хорошо. Тогда скажите, является ли функция F ( x )=3 x 2 +11 x первообразной для функции f ( x )=6х+10 ? (слайд 5)

Ученик: Нет, т.к. производная функции F ( x )=3 x 2 +11 x равна 6х+11 , а не 6х+10 .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 5).

Учитель: Какое количество первообразных можно найти для некоторой функции f ( x ) ? Ответ обоснуйте. (слайд 6)

Ученик: Бесконечно много, т.к. к полученной функции мы всегда прибавляем константу, которая может быть любым вещественным числом.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 6).

Учитель: Верно. Сейчас давайте вместе проверим решение учеников работавших у доски.

Ученики совместно с учителем проверяют решение.

III . Изучение нового материала

Учитель: Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова integrare – восстанавливать). Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что , получаем , откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Запись на доске (в тетрадях)

получаем ,

откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Учитель: Откройте учебники на странице 290. Здесь приведена таблица первообразных. Также она представлена на слайде. (слайд 7)

Учитель: Правила интегрирования можно получить с помощью правил дифференцирования. Рассмотрим следующие правила интегрирования: пусть F ( x ) и G ( x ) – первообразные соответственно функций f ( x ) и g ( x ) на некотором промежутке. Тогда:

1) Функция ;

2) Функция является первообразной функции . (слайд 8)

Запись на доске (в тетрадях)

1) Функция является первообразной функции ;

2) Функция является первообразной функции .

VI . Закрепление изученного материала

Учитель: Переходим к практической части урока. Найти одну из первообразных функции Решаем у доски.

Ученик: Чтобы найти первообразную данной функции нужно использовать правило интегрирования: функция является первообразной функции .

Учитель: Верно, что еще необходимо знать для нахождения первообразной данной функции?

Ученик: Также будем использовать таблицу первообразных для функций , при p =2 и для является функция ;

2) Функция является первообразной функции .

Учитель: Все правильно.

Домашнее задание

§55, № 988 (2, 4, 6), № 989 (2, 4, 6, 8), № 990 (2, 4, 6), № 991 (2, 4, 6, 8). (слайд 9)

Выставление отметок.

Учитель: Урок окончен. Можете быть свободны.

Операция, обратная дифференцированию, называется интегрированием, а процессом, обратным нахождению производной, является процесс нахождения первообразной.

Определение: Функция F(x) называется первообразной для функции f(x) на промежутке I ,если для любого х из промежутка I выполняется равенство:

Или Первообразной для функции F(x) называется функция, производная которой равна данной.

Зад

ача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. Важную роль в решении этой задачи играет признак постоянства функции:
Если

На некотором промежутке I, то функция F - постоянная на этом промежутке.

Все первообразные функции а можно записать с помощью одной формулы, которую называют общим видом первообразных для функции f.

Основное свойство первообразных:
Любая первообразная для функции f на промежутке I может быть записана в виде

Где F(x) – одна из первообразных для функции f(х) на промежутке I, а С – произвольная постоянная.

В этом утверждении сформулированы два свойства первообразной
1) какое бы число ни подставить вместо С, получим первообразную для f на промежутке I;
2) какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С , что для всех х из промежутка I будет выполнено равенство Ф(х) = F(x) + C.

Основная задача интегрирования : записать все первообразные для данной функции. Решить её - значит представить первообразную в таком общем виде: F(x)+C


Таблица первообразных некоторых функций


Геометрический смысл первообразной


Графики первообразных -это кривые, получаемые из одной из них путём параллельного переноса вдоль оси ОУ