Подключение дистанционного управления освещением. Контрольные измерения параметров сис- темы ОДК на элементах трубопроводов

Система централизованного авто­матического контроля типа КМ-1 фирмы «Аутроника» (Норвегия) работает по принципу совместного использования датчиков в устройствах сигнализации, индикации, регистрации и является системой не­прерывного контроля параметров (рис. 4.32) . Она включает в себя индивидуальную и обобщенную АПС параметров, цифровую и шкальную индикацию, регистрацию отклонений параметров за допустимые параметры, а также исполнительную сигнализацию о работе механизмов.

Конструктивно система состоит из расположенных на горизон­тальной панели пульта контроля 14 кассет, содержащих отдель­ные модули, которые включают сигнальные лампы, кнопки вы­зова параметров на индикацию и кнопки квитирования сигналов. На верхней панели пульта в центральном пульте управления находится мнемосхема энергетических установок, на которой имеются лампы сигнальной и исполнительной сигнали­зации, а также табло цифровой индикации. Система централизованного авто­матического контроля охва­тывает 271 точку контроля и сигнализации главного двигателя и основных ВМ, а также осуществляет контроль 20 параметров (температуры и давления) по дистанционным приборам.

Система централизованного авто­матического контроля должна быть постоянно включена и подавать оп­тические и акустические предупредительные сигналы при возни­кновении следующих неполадок:

Неисправности системы безопасности (общий предупреди­тельный сигнал уменьшения частоты вращения, остановки), системы дистанционного управления (общий предупредительный сигнал), датчика темпера­туры рамового подшипника, детектора масляного тумана;

Большого перепада давления масла и топлива на фильт­рах;

Недостаточного давления масла и охлаждающей воды перед дизелем, топлива, морской воды, пускового воздуха, управляю­щего воздуха (устройство аварийного выключения);

Повышенной температуры смазочного масла и охлаждающей воды перед дизелем, охлаждающей воды после цилиндров, охлаж­дающей воды форсунок, наддувочного воздуха, рамового под­шипника;

Пониженной температуры смазочного масла перед дизелем, а также наддувочного воздуха;

Высокой концентрации масляного тумана (по показаниям детектора масляного тумана), недостатка охлаждающей воды форсунок, закрытия выходного запорного клапана охлаждающей воды, слишком высокой (слишком низкой) вязкости топлива, боль­шого отклонения среднего значения температуры выпускных га­зов.

Сигнал по пониженной температуре наддувочного воздуха сра­батывает с задержкой времени до 30 мин, в диапазоне низких ча­стот вращения он отключается (при наполнении топливом ниже 50 %). Сигнал тревоги «Отклонение среднего значения отработав­ших газов» также отключается при температуре ниже 200 °С.

На ПУ установлены указатели: давления смазочного масла и охлаждающей пресной воды перед дизелем, масла перед коро­мыслами клапанов и ТК, охлаждающей воды форсунок перед ди­зелем, топлива, морской охлаждающей воды, наддувочного воз­духа, пускового и управляющего воздуха; температуры смазочного масла перед дизелем, охлаждающей воды после дизеля, надду­вочного воздуха после ВО.

В состав системы аварийной безопасности энергетических установок с двумя среднеоборотным дизелем, работающими на один винта регулируемого шага, входят ручное аварийное выключе­ние для каждого дизеля и автоматическое выключение муфт сцеп­ления с пультом управления и с мостика по четырем критериям остановки с авто­матическим выключением муфт сцепления на каждый дизель, по двум критериям уменьшения нагрузки на каждый дизель и по одному критерию остановки с автоматическим выключением муфты сцепления на обоих дизелях.

После выключения обоих дизелей шаг ГВ должен автоматиче­ски перейти в нулевое положение, а также должны включиться блокировка дистанционного пуска и блокировка сцепления на каждый дизель.

Остановка главного двигателя с последующим выключением муфт сцепления (выход общего сигнала остановки) происходит из-за превышений номинальной частоты вращения или допускаемой температуры рамового подшипника (без временной задержки), недостаточного давления смазочного масла перед дизелем (с задержкой 4 с), перед ТК (с задержкой 4 с) и в редукторе (с задержкой 15 с).

Выключение муфт сцепления главного двигателя происходит из-за неисправ­ности системы распределения нагрузки между дизелями (с задерж­кой 30 с), повышенной концентрации масляных паров в картере (без временной задержки с последующим уменьшением частоты вращения), недостаточного давления масла в редукторе (с задерж­кой времени 15 с с последующим уменьшением частоты вращения). Уменьшение нагрузки главного двигателя путем автоматического снижения шага ГВ (с выходом общего сигнала уменьшения) происходит в случае недостаточного давления охлаждающей воды перед дизелем (с за­держкой 4 с) и превышения температуры охлаждающей воды по­сле цилиндра (без временной задержки). Общий сигнал тревоги «Неисправность в системе безопасности» включается при отказе датчика частоты вращения коленчатого вала, а также при обрыве провода.

Сигнализационно-контрольное устройство типа КМ-1 фирмы «Аутроника» (см. табл. 4.9) включает в себя контактные датчики (с разомкнутыми контактами), платиновые термосопротивления типа Pt-100 для измерения температуры, термисторные датчики типа Т-802 для измерения температуры, термопары типа NiCr-Ni вместе с усилителями типа GA-3 для измерения температуры, манометрические датчики типа GT-1, датчики разницы давлений типа GT-2. Устройство КМ-1 снабжено магнитоэлектрическим из­мерителем аналоговых величин или цифровым измерителем с дат­чиками разных типов в любой необходимой комбинации. Устрой­ство КМ-1 содержит одну или более кассет, каждая из которых включает определенное количество контактных элементов, каналовый модуль и прочие элементы. Питание модулей - посто­янный ток 8-40 мА напряжением 24 В, измеряемые датчиками температуры 0-100, 0-160, 0-300, 0-600 °С, давления 0-0,1; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-16; 0-4; 0-6 МПа, разности давлений 0-0,1; 0-0,6 МПа.

Отсчет показаний производится во всем рабочем интервале из­мерительных приборов. Точность измерения и точность сигнали­зации тревоги составляют ±2 % полного интервала, гистерезис каналового пакета - около 0,5 %, задержка сигнализации тре­воги: аналоговые каналовые модули в стандартном исполнении - около 0,5 с; каналовые модули с контактным датчиком в стандарт­ном исполнении - около 2 с. В каждой кассете, входящей в со­став устройства КМ-1, имеются обычный плавкий предохранитель и стабилизатор напряжения 24/16 В постоянного тока. Стабили­затор напряжения является типичным стабилизатором с ограни­чителем тока, он предусмотрен для питания постоянным током напряжением 24 В от аккумулятора или выпрямителя. На выходе получается стабилизированное напряжение 16 В.

Измерительный прибор КВМ-1 предназначен для измерения величины сигналов, подаваемых от аналоговых датчиков, под­ключенных к устройству КМ-1.

Модуль сигнализации помех КМЕ-1 служит для обнаружения разрывов и коротких замыканий в кабелях аналоговых датчиков, а также перебоя в питании устройства. Каналовые модули типов КМС-2, КМС-16 и КМС-17 используют при совместной работе с аналоговым датчиком в случае, когда требуется отдельная уста­новка предельных значений тревоги. Модули отсчета для сигнали­зации отклонения от среднего значения и тревоги при высокой тем­пературе типа KMR-1/т предназначены для температур 0-600 °С, измеряемых при помощи термоэлементов и усилителя GA-3, при­меняются вместе с каналовыми модулями типа КМС 2/т2, выраба­тывающими для них предельные значения тревоги.

Каналовый модуль типа КМС-3 применяют для контактных датчиков, имеющих в нормальном состоянии сомкнутые контакты без напряжения (например, датчики давления или уровня). Модуль типа КМХ-1 предназначен для коммутации входного аналогового сигнала в каналовые модули типов КМС-1 и КМС-2, чтобы контролировать вызов тревоги при установленных предель­ных значениях сигнала.

Все устройства КМ-1 приспособлены для группирования тревог. Поэтому вверху каждой кассеты находится специальная группи­рующая плата, которую можно подключить к 20 каналовым па­кетам. Все сирены и зуммеры выключаются при отключении из центральном пульте управления. При отключении из каюты старшего механика или вах­тенного механика все зуммеры утихают, за исключением сирены в машинном отделении зуммера в центральном пульте управления. При помощи других отключений зати­хают только зуммеры соответствующей панели.

Детектор масляного тумана (конт­рольная система картера) «Визатрон ВН-115» позволяет определять концентрацию масляных паров в картере дизеля, повышающуюся, например в результате нагрева подшипников коленча­того вала, и тем самым предупредить отказ главного двигателя его свое­временной аварийной остановкой.

Рассмотрим принцип действия детектора. Если циркуляцион­ное масло, применяемое для смазки подшипников дизеля, перегре­ется, то образуется избыточное количество смеси масляных паров и масляного дыма (масляного тумана). Некоторая часть масляного тумана поглощается разбрызгиваемым маслом, а остальная часть повышает концентрацию масляного тумана в атмосфере картера. Масляный туман поглощает свет. В зависимости от концентрации степень поглощения различна (световая абсорбция пропорциональна степени концентрации масляного тумана, что и используется для контроля). Образующийся в картере масляный туман всасывается специальным устройством. Поток масляного тумана проходит камеру, в которой создается световой пучок. С помощью полупро­водника и фотодиода измеряется плотность света, прошедшего через пробу масляного тумана. Степень изменения его плотности имеет свое предельное значение, при достижении которого пода­ется сигнал тревоги в системе предупредительной сигнализации дизеля. Непрозрачность (величина абсорбции) масляных паров незначительно зависит от температуры и с увеличением концен­трации масляных паров стремится к точке насыщения по экспо­ненте. При уменьшении концентрации на 1/2 непрозрачность па­дает на 1/4 (рис. 4.33).

Пробы масляного тумана отбираются от отдельных картерных секций и направляются в общую собирательную трубу, где они перемешиваются. Установка не имеет никаких подвижных меха­нических частей. Разрежение (100-150 Па, но не более 250 Па), создаваемое воздушным эжекторным насосом, вызывает отсос паров масла из картера. Пары из картера по собирательным труб­кам (рис. 4.34) попадают в общую камеру прибора, затем проходят сепаратор, в котором под влиянием центробежной силы отделя­ются крупные частицы масла.

Отсепарированное масло поступает по каналам непосредствен­но в воздушный насос (эжектор) и выводится из прибора, что пре­дохраняет его от загрязнения маслом. Из сепаратора контроль­ный масляный туман направляется по каналу в оптическую из­мерительную щель. Загрязнения, образующиеся на окошечке, могут ухудшить точность подачи сигнала тревоги, в связи с чем яркость источника света имеет систему регулировки.

Технические характеристики прибора следующие: питание постоянным током напряжением 18-30 В (блок электропитания держит эксплуатационное напряжение стабильным); максимальное потребление тока 0,25 А, допустимая остаточная неравномерность выпрямленного тока 1 В; защита от перенапряжения: до 60 В за 1 с, до 250 В за 5 мс; защита от неправильной полярности через диод до 400 В; давление рабочего воздуха около 0,06 МПа, по­требление воздуха 0,5 м 3 /ч (при? = 0,08 МПа); чувствительность прибора регулируется по величине абсорбции от 5 до 30 %, что соответствует концентрации масляного тумана от 0,453 до 3 мг/л (нижняя граница для взрывоопасной смеси - около 50 мг масла на 1 л воздуха); масса прибора около 7 кг; габариты 175?435?122 мм; испытан при вибрации частотой 6 Гц; отно­сительная влажность воздуха до 90 % при t = 70 °С; допустимая эксплуатационная температура от 0 до 75 °С. Демпферная плат­форма выполнена из стали, кожух измерительной приставки - из легкого металла.

Возможности устройств для дистанционного управления отоплением с каждым годом (да что там с годом - практически ежемесячно!) становятся все более совершенными. Разработчики приложений для смартфонов стараются делать их удобными для использования и простыми для понимания даже неподготовленными людьми. Вкратце же перечислим лишь основные возможности таких систем, которые поддерживают:

  • обычный режим работы, когда заданная температура поддерживается по всему дому;
  • зональный режим, когда в различных помещениях может быть индивидуальная температура;
  • предотвращение разморозки системы отопления (промерзание труб) в холодное время года, когда Вы находитесь вдали от своего загородного дома или дачи;
  • возможность заблаговременного включения котла, например, нужно прогреть загородный дом, когда Вы соберётесь посетить его в выходные или праздники;
  • всегда быть в курсе работы вашего автономного отопления и при необходимости осуществлять его диагностику;
  • временной режим, при котором в разное время в течение суток в доме может поддерживаться свой тепловой режим со значительным снижением материальных затрат на топливо, например, можно настраивать котел на малую мощность (соответственно и на малое потребление топлива), отправляясь на работу или по делам, и включать нормальный режим перед своим возвращением.

Удаленное управление отоплением подразумевает, что любой из этих режимов, а также конкретные значения температуры в помещениях изменяются при помощи мобильной связи, или осуществляется управление отоплением через Интернет.
Такой подход является частью идеологии создания “умного дома”, что влечет за собой дальнейшее развитие всех инженерных систем дома с целью обеспечения удобства пользования и создание наиболее комфортных условий проживания.

Какой системой отопления можно управлять дистанционно?

В загородных домах и коттеджах в настоящее время чаще всего используются двухтрубные системы с принудительной циркуляцией теплоносителя: циркуляционный насос прокачивает по всей отопительной системе теплоноситель, который, благодаря гребенке - распределителю, может подаваться к каждому отопительному прибору.
В таких системах, как правило применяется блок безопасности системы отопления для ее защиты от разрушения при непредвиденных ситуациях, например, в случае повышения давления сверх допустимого.
Также необходимо наличие дополнительного оборудования для управления работой системы отопления: датчики, специальные клапаны и устройства для регулировки расхода теплоносителя, а также необходимо объединение различных устройств в информационную сеть

Погодозависимое управление отоплением

На сегодняшний день считается наиболее перспективным. В таких системах в дополнение к датчику комнатной температуры применяется еще и измеритель внешней температуры воздуха. В принципе, погодозависимый регулятор отопления будет работать и с одним внешним датчиком, но использование двух позволяет добиться более точного поддержания режима и даже реализовать самоадаптацию системы под конкретные изменения температуры: если на улице становится холодней, то температура теплоносителя в системе заранее повышается, если теплей – то заранее уменьшается. Кроме экономии топлива это уменьшает инерционность работы системы, что повышает ее эффективность и обеспечивает также дополнительное снижение затрат. Одной из базовых точек погодозависимое управление отоплением может использовать температуру плюс двадцать градусов – при ней температура теплоносителя берется равной окружающей, при этом фактически обогрев отключается. Также необходимо учитывать и зональное регулирование температуры, т.е. если, например, в одном из помещений собралось большое количество людей, за счет чего в нем стало более жарко, то система фиксирует локальное увеличение температуры относительно той, что установил погодный регулятор отопления, и осуществляет коррекцию в этой зоне.
Вообще в интернете разгорелись нешуточные баталии по поводу - стоит ли вообще использовать погодозависимую автоматику или это деньги, выброшенные на ветер? Если коротко, то мнение наших специалистов, подтвержденное, кстати, отзывами многочисленных клиентов, однозначное - да, стоит, но не во всех случаях. А в каких? Ответ

Виды систем дистанционного управления отоплением

В настоящее время используются две системы для дистанционного управления отоплением:

  • с использованием комплекта оборудования с интернет-шлюзом. Наличие Wi-Fi роутера и сети интернет в этом случае обязательно.
  • с использованием GSM модуля управления отоплением. Требуется специальный GSM модуль с сим-картой оператора сотовой связи.

Дистанционное управление котельной с помощью мобильного GSM

А что делать, если проводного интернета в загородном доме нет? Как можно управлять отоплением в этом случае?

Да очень просто - при помощи специального модуля GSM и, естественно, мобильного телефона. Фактически модуль GSM выполняет роль вашего личного помощника - Вы позвонили ему, дали команду, например, заранее натопить пожарче к определенному времени - и вся семья приедет в теплый и уютный дом. Или наоборот, забыли утром, уезжая на работу, убавить мощность котла - не вопрос, можно это сделать прямо с работы, через интернет или прямо со смартфона, пока еще добираетесь до работы. GSM модуль - это компактный прибор с собственной SIM-картой любого оператора (важно, чтобы он обеспечивал уверенный прием сигнала в данной местности), позволяющий управлять климатом в помещении с любого телефона (спутниковой, мобильной или фиксированной связи), планшета или ПК.

На ваш телефон, в зависимости от сделанных настроек, будут приходить или короткие СМС–уведомления с различной информацией и указаниями по изменению настроек отопительного котла, или поступать телефонные звонки с различной информацией о работе системы отопления. На телефон устанавливается специальное мобильное приложение (есть версии и для Android, и для iOs, и для Windows Phone), позволяющее напрямую дистанционно управлять практически всеми параметрами работы отопительного котла.
GSM модуль управления отоплением - это по сути компьютер, состыкованный с внешними датчиками и имеющий возможность для изменения режимов работы системы отопления. Естественно, модуль должен находиться в зоне уверенного приема операторов мобильной связи.

GSM модуль управления отоплением может работать в нескольких режимах:

  • автоматическом, когда по сигналам от установленных датчиков контроллер поддерживает заданные режимы по заданной программе;
  • СМС управление отоплением, когда система отопления управляется посредством отправки СМС. В этом случае при поступлении новых данных, например о температуре в помещении, контроллер принимает их к исполнению и начинает поддерживать в автоматическом режиме уже их;
  • предупреждающем, посредством отправки тревожных сообщений о текущем состоянии дома (утечка газа, прорыв системы водоснабжения и т.д.);
  • дистанционного управления другими устройствами, подключенными к модулю GSM (полив, освещение, сигнализация и т.д.).

GSM – контроль отопления позволяет удаленно:

  • принимать отчеты о температуре в помещении;
  • получать оповещения о текущем состоянии отопительного оборудования;
  • изменять режим работы системы, повышая или понижая температуру, в том числе и отдельно в каждом помещении.

Данными функциями управление отоплением не ограничивается. В принципе, любая система обогрева может быть превращена в дистанционную. Для этого она должна иметь автоматический режим работы, и к ней должен быть подключен специальный GSM контроллер для управления отоплением и связи с абонентом.

Дистанционное управление котлом с использованием комплекта оборудования с интернет-шлюзом

Теперь рассмотрим вариант удаленного управления отоплением, если в загородном доме или даче есть интернет и, естественно, Wi-Fi роутер (он же маршрутизатор).
Тут все гораздо проще - можно посмотреть возможности устройств, предложенных ниже и навсегда забыть о переживаниях по поводу состояния системы отопления Вашего жилища.

Салус ИТ500 обеспечивает контроль и настройку параметров работы максимум в двух зонах отопления, например, в 1-й комнате на первом этаже коттеджа и душевой на втором этаже.
В комплект входит актуатор (приемник котла), комнатный 2-х канальный термостат (недельный программатор котла, пульт управления котлом) и интернет-шлюз, подключаемый к интернет - маршрутизатору (роутеру).

Возможности управления системой отопления с использованием комплекта оборудования с интернет-шлюзом Salus iT500:

  • управление режимами только отопления (котлом и, при необходимости, насосом);
  • управление несколькими зонами отопления;
  • управление отоплением и горячим водоснабжением загородного дома.
  • поддержание разной температуры в разных помещениях, расписание температурных режимов по дням, часам и минутам
  • 6 предустановленных режимов отопления при поставке
  • управление нагревом горячей воды, автоматические режимы управления, в том числе энергосберегающий и режим "отпуска".
  • уникальная система связи устройств через интернет, обеспечивающая надежные подключение и контроль системы отопления: смартфон (или персональный компьютер) -> интернет - сервер -> роутер (маршрутизатор) -> термостат -> ресивер -> котел

Все оборудование беспроводное и связывается между собой по радиоканалу, т.е. отпадает необходимость прокладки электрической проводки. Комнатный термостат для котла отопления программируется на посуточный, недельный или режимы работы 5+2. На экране термостата и в приложениях для удаленного управления отоплением отображается текущее состояния котла, текущая температура и установленная. Настройку графика работы можно делать с панели термостата, через интернет-браузер или с помощью мобильного приложения.
Термостат имеет современный дизайн, отличается высокой надежностью и безопасностью при его использовании.
С использованием дополнительного оборудования Salus Controls возможно управление, в том числе дистанционное, теплыми полами, газовыми и электрическими котлами, масляными системами обогрева, а также практически любыми другими отопительными системами и приборами.
Для удаленного управления не требуется выделенный внешний IP-адрес, вся система отлично работает на любом мобильном интернете (Yota, Мегафон, Билайн и т.п.), также возможно управление с компьютеров и мобильных устройств на операционных системах Android и iOS.

Что делать, если в доме нет проводного интернета, а уже приобретен Wi-Fi интернет термостат?

Скорее всего на даче имеется покрытие мобильных операторов, не правда ли? Значит и интернет у Вас есть! Просто покупаете Wi-Fi маршрутизатор с USB портом и дополнительно к нему 3G или 4G модем. Устанавливаете в модем SIM-карту любого мобильного оператора, обеспечивающего уверенный сигнал в зоне нахождения вашего жилища. Сам модем вставляете в USB-разъем роутера и всё - теперь у Вас есть возможность управлять отоплением дачи удаленно!

Если для кого-то iT500 покажется дороговатым, то компания предлагает более бюджетное решение - интернет термостат Salus RT310i
Терморегулятор обладает несколько урезанными возможностями по сравнению со "cтаршим братом", но может оказаться ему достойной заменой, благодаря более низкой цене комплекта. Внешне RT310i выглядит скромнее по сравнению с первоклассным high-tech дизайном iT500, у него отсутствует сенсорное управление, однако по функциональным возможностям модели практически идентичны. За исключением того, что если iT 500 способен управлять 2-мя зонами отопления или охлаждения, то RT310i может управлять только одной зоной.

Не хватает возможностей iT500? Нет проблем - Salus iT600 может всё и даже больше!

Если Вам не хватает функционала iT500 по управлению только двумя зонами отопления, то на нашем сайте представлена более функциональная многозональная (есть проводная и беспроводная версии) система Salus iT 600 Smart Home . Уж чего-чего, а ее возможностей по удаленному управлению отоплением (и не только!) хватит даже самому взыскательному потребителю!

iT 600 Smart Home объединяет в себе возможности управления тёплыми водяными полами, дистанционного управления отоплением при помощи термостатов, единую коммутацию на уровне «система умный дом», изменение температуры в каждой комнате при помощи смартфона с выходом в интернет, контроль и управление любыми электрическими приборами в доме, подключение датчиков открытия окон и дверей и множество других функциональных возможностей. Система намного опередила не только своих конкурентов в области удаленного управления отоплением, но и задала тренд в области автоматизации и диспетчеризации инженерных систем на многие годы вперёд!

Подробнее с возможностями системы можно ознакомиться в статье:
Умный дом. Система управления отoплением SALUS iT600

Внимание! Новая линейка продуктов Salus iT600 Smart Home (Умный дом) уже в продаже!

Теперь можно не только дистанционно управлять отоплением, а и охранять дом и управлять электроприборами!

Теперь у Вас появилась возможность купить Salus iT600 Smart Home - новую линейку автоматики для Умного дома!

Это та самая полноценная система для удаленного управления отоплением через интернет iT600 плюс дополнительные возможности:

  • применение универсального интернет шлюза Smart Home UGE600, который теперь поддерживает до 100 беспроводных устройств сети ZigBee и используется взамен прошлогодней версии шлюза Salus G30.
  • контроль и управление различными электроприборами , подключенными к умным розеткам Salus SPE600 с возможностью учета потребленной электроэнергии
  • подключение и контроль охранной сигнализации при помощи беспроводных датчиков открытия дверей или окон Salus OS600 Door Sensor
  • управление вашей системой стало еще удобнее , благодаря новому приложению Salus Smart Home для смартфонов на iOS и Android, интерфейс которого и регистрация устройств стали намного проще и понятнее!

Все компоненты системы - это беспроводные устройства, работающие в современном стандарте домашней сети ZigBee, теперь Вы можете создавать отдельные группы устройств, работающие в одной связке и которым можно назначать индивидуальные задачи.

В будущем инженеры компании намерены расширять возможности системы управления умным домом, но уже сейчас Вы можете купить Salus iT600 Smart Home, начав с самого необходимого, и построить свой Умный дом по весьма привлекательной цене!

А что делать владельцам устаревших систем отопления?

Tech WiFi 8S может управлять температурой в 8-ми помещениях, в каждом из которых может быть до 6-ти термоприводов!
Кроме управления термоэлектрическими приводами, контроллер также может управлять котлом: при достижении во всех помещениях заданной температуры, он с помощью «сухого контакта» отключит котел.
Купить систему управления отоплением TECH WiFi-8S

Удаленное управление сложными отопительными системами

Все большую долю в этом сегменте рынка отвоевывает себе польская компания Tech Controllers, производящая широкий спектр контроллеров с возможностью удаленного управления.
Сами по себе контроллеры Tech - это многофункциональные устройства, являющиеся основной, базовой частью системы, которые могут удаленно управлять практически любыми по сложности отопительными системами при помощи дополнительных модулей. Возможностей масса, поэтому на примере рассмотрим лишь возможности по удаленному управлению.

Пример монтажа оборудования Tech Controllers

На фото для монтажа использованы:
1. Контроллер Tech ST-409n - многофункциональный прибор, предназначенный для управления центральной отопительной системой, обеспечивающий:
взаимодействие с тремя проводными комнатными регуляторами
взаимодействие с беспроводным комнатным терморегулятором
плавное управление тремя смешивающими клапанами
управление насосом ГВС
защиту температуры возврата
погодозависимое управление и недельное программирование
возможность подключения модуля ST-65 GSM для дистанционного управления отоплением со смартфона GSM
возможность подключения модуля ST-505, которое позволяет осуществлять дистанционное управление котлом через интернет.
возможность управления двумя добавочными клапанами с помощью дополнительных модулей ST-61v4 или ST-431 N
Возможность управления дополнительным оборудованием, например гаражными воротами, освещением или оросителем и т.п.

Для дистанционного управления могут использоваться различные модули Tech, все зависит от конкретных потребностей владельца. Например:

Что делать, если система отопления настолько индивидуальна, что ни одно из приведенных выше решений не может в полной мере обеспечить потребности ее владельца по ее управлению?
Безвыходных ситуаций не бывает! Чаще всего заказчик сам просто не понимает (да и не должен!) всех возможностей современных систем дистанционного управления отоплением. Действительно сложно разобраться неподготовленному человеку во всем этом изобилии предлагаемых на рынке устройств, которые совершенно отличаются друг от друга по функционалу, цене, и, конечно же, качеству. Да и монтажники, зачастую, просто не имеют представления о возможностях по управлению отопительными системами - их задача смонтировать систему, а вот как часто вы будете бегать по дому (или в котельную) и крутить различные вентили, чтобы обеспечить себе постоянный тепловой комфорт их не волнует. Нашим специалистам не раз приходилось практически полностью переделывать "творения" таких умельцев, а это, поверьте, стоит немалых денег. Скупой платит дважды... Обращайтесь, мы бесплатно проконсультируем, а при необходимости и смонтируем систему дистанционного управления отоплением, поможем с подбором качественного оборудования по приемлемой цене.

Специалисты компании "Термогород" Москва помогут Вам правильно подобрать, купить, а также смонтировать систему удаленного управления отоплением, найдут приемлемое решение по цене. Задавайте любые интересующие Вас вопросы, консультация по телефону абсолютно бесплатна!
Вы останетесь довольны, сотрудничая с нами!

А.А. Александров, технический директор, ООО «Российские мониторинговые системы»,
В.Л. Переверзев, генеральный директор, ЗАО «Санкт-Петербургский Институт Теплоэнергетики», г. Санкт-Петербург

В настоящее время в России при создании новых тепловых сетей бесканальной прокладки (т.е. укладываемых непосредственно в грунт) нормативными документами предписано использовать стальные трубы с индустриальной тепловой изоляцией из пенополиуретана (ППУ) в полиэтиленовой оболочке, оснащенных проводниками системы оперативного дистанционного контроля (СОДК) увлажнения изоляции. Их применение направлено на повышение экономичности и надежности тепловых сетей и основывается на технологиях зарубежных фирм. Технология включает в себя диагностирование, состоящее в определении изменения электрического сопротивления при появлении влаги в ППУ-изоляции между трубой и сигнальным проводником, проложенным вдоль всего трубопровода, и локализацию места увлажнения методом локации.

Такое диагностирование теплопроводов позволяет обнаруживать возникающие в процессе строительства и эксплуатации дефекты, производить локализацию мест их возникновения.

Обнаружение и локализация дефектов может производиться при помощи специальных приборов тремя способами.

1. Переносным детектором для определения наличия и типа дефекта (периодичность - 1 раз в 2 недели). Переносным локатором для локализации места возникновения дефекта (периодичность - по результатам измерений детектором).

2. Стационарным детектором для определения наличия и типа дефекта (периодичность -постоянно 24 часа в сутки). Переносным локатором для локализации места возникновения дефекта (периодичность - по результатам срабатывания детектора с учетом регламентного времени прибытия оператора с локатором).

3. Стационарным локатором для определения наличия и типа дефекта с одновременной локализацией и фиксацией места его возникновения (периодичность - зондирующие импульсы один раз в 4 минуты (постоянно 24 часа в сутки)).

В настоящее время в России, согласно СП 41-105-2002, применяются только два первых

способа определения дефектов тепловых сетей в ППУ-изоляции, оснащенных проводниками ОДК. Эффективность этих способов вызывает много вопросов у специалистов, обслуживающих теплосети, а локализация мест возникновения дефектов при помощи переносных локаторов превращается в трудоемкую операцию, не всегда приводящую к корректным результатам. Чтобы определить причину низкой эффективности существующих в России систем ОДК, был проделан сравнительный анализ принципов построения импортных и отечественных СОДК, из которого можно выделить основные отличия принципиального характера:

Отсутствие в требованиях нормативных документов соблюдения параметра - комплексного сопротивления (импеданса) трубы ППУ с ОДК как электрического элемента;

Несоблюдение расстояния от металлической поверхности элемента до проводников ОДК в трубах и фасонных изделиях (более того в нормах установлен переменный параметр расстояния - от 10 до 25 мм );

Отсутствие устройств согласования линии опроса проводников ОДК с локаторами (рефлектометрами);

Применение кабелей типа NYM с высоким коэффициентом затухания зондирующего импульса для соединения проводников ОДК трубопроводов и терминалов.

Для определения эффективных способов поиска дефектов изоляции предизолированных трубопроводов ППУ специалистами ООО «РМС», ЗАО «СПб ИТЭ» и ГУП «ТЭК СПб» были проведены испытания различных опросных линий системы ОДК (с использованием кабеля типа NYM, коаксиального кабеля и различных рефлектометров) на натурной модели трубопровода с воспроизведением типовых дефектов изоляции.

На территории филиала «ЭАП» ГУП «ТЭК СПб» смонтирован участок ППУ трубопровода тепловой сети условного диаметра Ду57 с применением фасонных изделий, сильфонного компенсатора и концевого элемента (рис. 1, фото 1).

Для моделирования дефектных участков тепловой сети на модели были оставлены незаделанные стыки с желобами из жести (фото 2). Остальные стыки выполнены методом заливки вспенивающихся компонентов с использованием термоусаживаемых муфт.

При монтаже системы ОДК согласно СП 41-105-2002 (кабель типа NYM) использовали 10-метровый кабель отточки подключения рефлектометра до трубопровода и 5-метровый кабель на промежуточном концевом элементе.

Монтаж системы ОДК согласно технологии фирмы EMS (АВВ) (с использованием соединительного коаксиального кабеля и согласующих трансформаторов линии «соединительный провод - сигнальный проводник») был выполнен 10-метровым коаксиальным кабелем отточки подключения рефлектометра до трубопровода (фото 3).

Для снижения потерь в линии опроса соединение рефлектометра с кабелем осуществлялось при помощи коаксиальных фитингов.

Измерения проводились рефлектометрами РЕЙС-105 и mTDR-007 (снятие рефлектограмм) при моделировании наиболее вероятных видов дефектов на тепловой сети: обрыв, короткое замыкание проводника на трубу, однократное и двойное увлажнение изоляции (в разных местах).

В рамках данного эксперимента были исследованы возможности комбинированного применения различных кабелей при монтаже линии опроса сигнальных проводников СОДК (наличие проходного терминала) в следующей последовательности: коаксиальный кабель - проводник ОДК - кабель NYM - проводник ОДК с разрывом проводников в конце линии опроса.

В результате проведенных испытаний и измерений можно сделать следующие выводы.

1. Затухание зондирующего импульса в кабеле типа NYM (рис. 2б) в несколько раз выше, чем в коаксиальном кабеле (рис. 2а). Это снижает длину обследуемого участка, ограничивая эффективное применение локатора на участках от камеры до камеры (150-200 м).

2. В связи с большими потерями мощности зондирующего импульса, при его прохождении по кабелю NYM необходимо повышать его энергию за счет увеличения длительности импульса, что приводит к снижению точности определения расстояния до места дефекта трубопровода.

3. Отсутствие согласующих элементов на переходах «кабель - труба», «труба - кабель» приводит к изменению формы отраженных импульсов, сглаживает их фронты и снижает точность определения места дефекта изоляции (рис. 3).

Российские трубы в ППУ-изоляции имеют отличные от импортных волновые свойства и параметры. Комплексное электрическое сопротивление (импеданс) труб и фасонных изделий на практике варьируется от 267 до 361 Ом (трубы ABB имеют импеданс 211 Ом), поэтому применение зарубежных согласующих устройств на наших трубах невозможно (ООО «РМС» разработаны согласующие устройства для труб ППУ, выпущенных по российским стандартам, имеется положительный опыт их практического применения на реальных объектах).

На данном пункте выводов следует остановиться особо, ввиду его важности для эксплуатации СОДК.

Разброс импеданса для различных трубоэле-ментов приводит к варьированию так называемого коэффициента укорочения для этих трубоэле-ментов. Как известно, измерения проводят при одном общем для всего трубопровода коэффициенте укорочения. Таким образом, имея вдоль трубопровода участки с различными коэффициентами укорочения, мы получим несоответствие измеренных электрических параметров – реальным физическим параметрам трубопроводов, причем несоответствие будет тем больше, чем длиннее трубопровод и чем больше на нем фасонных изделий (из практики несоответствие достигает до 5 м на 100-метровом участке трубопровода).

Для качественного оформления исполнительной документации по СОДК необходимо проводить контроль не только сопротивления изоляции и омического сопротивления петли проводников, но и измерение коэффициента укорочения каждого монтируемого трубоэлемента при помощи рефлектометра, фиксируя результаты измерений на исполнительной схеме трубопровода. В противном случае ошибки при поиске обрывов проводников и увлажнения изоляции, приведут к увеличению стоимости производства ремонтных работ за счет значительного увеличения объема земляных и восстановительных работ.

Отсутствие нормирования импеданса позволяет недобросовестным производителям при производстве труб в ППУ-изоляции применять в качестве проводников ОДК медный лакированный обмоточный провод. Это позволяет получать при монтаже превосходные электрические характеристики и «вечно исправный» трубопровод не зависимо от любого увлажнения изоляции. Система ОДК, в таком случае, является бесполезным, бутафорским приложением.

Так как импеданс зависит от диэлектрической проницаемости среды и расстояния от трубы до проводника, то применение нестандартных методов производства труб приводит, как правило, к увеличению импеданса и как следствие коэффициента укорочения трубоэлемента. Нормирование импеданса позволило бы осложнить доступ некачественных труб на рынок.

5. Применение кабелей NYM в качестве линии связи между локатором и трубопроводом ППУ с СОДК, а также в качестве соединителей между различными участками трубопроводов, полностью исключает применение стационарных специализированных локаторов повреждений (рис. 4) и не позволяет рассматривать тепловую сеть в качестве объекта автоматизации и диспетчеризации, оставляя значительные расходы на обходчиков и обслуживающий персонал (табл. 1).

6. Применение на одном контролируемом участке трубопровода различных типов соединительных кабелей неэффективно.

Наиболее эффективными являются системы ОДК, основанные на применении коаксиальных кабелей с согласующими устройствами. Такие системы ОДК полностью совместимы с приборами контроля проводников труб ППУ (использование которых предписывает СП 41-105-2002) и позволяют значительно повысить эффективность их применения.

Использование коаксиальных кабелей связи между трубопроводами откроет возможность применения специализированных стационарных локаторов повреждений для тепловых сетей. Что, в свою очередь, позволит:

Объединить в последствии локальные системы ОДК в единую сеть с необходимой иерархией;

Отображать состояние локальных СОДК на центральном диспетчерском пункте с указанием конкретного места дефекта сети (примером реализации подобной системы может служить опыт ГУП «ТЭК СПб»);

Оперативно принимать меры по ликвидации дефектов на начальной стадии их возникновения;

Снизить расходы на эксплуатацию систем ОДК (табл.1);

Экономить значительные средства на аварийном ремонте тепловых сетей (табл. 2);

Повысить надежность сетей за счет уменьшения аварийных отключений;

Получать объективную информацию о дефектах и состоянии тепло- и гидроизоляции на тепловой сети за счет устранения влияния субъективного человеческого фактора в подобного рода вопросах.

В заключение следует отметить, что система ОДК трубопроводов только на первый взгляд кажется простой и даже примитивной в монтаже. Большинство строительных организаций доверяют монтаж СОДК обычным электрикам, которые монтируют СОДК как обычные осветительные сети или подземные кабельные прокладки. В результате вместо эффективного средства контроля организации, эксплуатирующие тепловые сети, получают бесполезное приложение к тепловой сети.

Также необходимо отметить, что грамотно смонтированные системы ОДК позволяют реализовать все преимущества трубопроводов с ППУ-изоляцией, в частности максимально автоматизировать поиск мест увлажнения и повреждения изоляции трубопроводов, повысить точность определения этих мест. Трубопроводы с другими типами изоляции (АПб, ППМ и т.п.) в принципе не обладают подобными преимуществами.

Монтаж СОДК должны вести профессиональные организации, понимающие все тонкости и нюансы в обнаружении дефектов при помощи рефлектометров, имеющие необходимое оборудование, практический опыт строительства и наладки систем. Только профессионалы способны создавать эффективно работающие системы -СОДК не является исключением из этого правила.

Литература

1. СП 41-105-2002. Проектирование и строительство тепловых сетей бесканальной прокладки из стальных труб с индустриальной тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке.

2. СНиП 41-02-2003. Тепловые сети.

3. Слепченок В.С. Опыт эксплуатации коммунального теплоэнергетического предприятия. Уч. пособие - СПб., ПЭИпк, 2003 г., 185 с.

Министерство образования Российской Федерации Кузбасский государственный технический университет Кафедра электропривода и автоматизации

МЕСТНЫЙ И ДИСТАНЦИОННЫЙ КОНТРОЛЬ УРОВНЯ ЖИДКОСТИ

Методические указания к лабораторной работе по курсу «Технические средства автоматизации»

для студентов направления 551800

Составитель В.А. Старовойтов Утверждены на заседании кафедры Протокол № 3 от 30 марта 1999 г. Рекомендованы к печати методической комиссией по направлению 551800 Протокол № 2 от 24 сентября 1999 г. Электронная копия находится в библиотеке главного корпуса КузГТУ

Кемерово 2000

1. ЦЕЛЬ РАБОТЫ

Изучение методов и принципов действия устройств для измерения уровня жидкостей, а также приобретение навыков в определении уровня имеющимися на стенде приборами.

2.1. Ознакомление с измерительными устройствами, преобразователями и приборами, установленными на стенде.

2.2. Заполняя последовательно резервуар водой и затем сливая ее, произвести 5-6 измерений уровня с помощью всех предназначенных для этого технических средств.

2.3. Оценить точность измерений, считая измерения, произведенные мерной линейкой, образцовыми.

2.4. Представить данные для тарировки шкал измерительных приборов в единицах уровня.

3. УКАЗАНИЯ К ОТЧЕТУ

Поскольку работа предполагает одновременное участие 2-3 студентов, составляется один (общий) отчет с указанием названия работы, цели ее проведения и фамилий участников. Кроме того он должен содержать необходимые экспериментальные и расчетные данные.

4. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Значительная часть объектов управления, в качестве которых можно рассматривать разнообразные конструкции машин и аппаратов, требует постоянного контроля или оперативного регулирования уровня жидких сред, находящихся в них.

Устройства для измерения уровня жидкостей называют уровнемерами. Выбор метода измерения и типа уровнемера в каждом конкретном случае определяется условиями его работы и назначением.

Для измерения уровня жидкости наибольшее распространение получили указательные стекла, поплавковые, гидростатические, электрические, ультразвуковые и акустические уровнемеры.

В настоящей работе используются первые четыре из вышеуказанных типов уровнемеров.

Работа указательных стекол для жидкостей основана на принципе сообщающихся сосудов. Указательное стекло соединяют с сосудом нижним концом (для открытых сосудов) или обоими концами (для сосудов с избыточным давлением или разрежением). Наблюдая за положением уровня жидкости в стеклянной трубке, можно судить об изменении уровня в сосуде.

Указательные стекла снабжают вентилями или кранами для отключения их от сосуда и для продувки системы. В арматуру указательных стекол сосудов, работающих под давлением, обычно вводят предохранительные устройства, автоматически закрывающие каналы в головках при случайной поломке стекла.

Существуют

зательные

ходящего (рис. 1 а) и

отраженного (рис. 1 б)

Указательное

отраженного

представляет

ную пластину, на по-

верхности которой, об-

ращенной

жидкости,

вой области и проходят внутрь в область заполнения жидкостью. При этом часть стекла, соприкасающегося с жидкостью, кажется темной, а часть стекла, соприкасающегося с парами или газом, - серебристобелой. Плоские указательные стекла рассчитаны на давление до 2,94 МПа и температуру до 300 °С.

В поплавковых уровнемерах перемещение поплавка на поверхности жидкости передается на показывающее устройство или преобразователь для преобразования перемещения или силы в выходной сигнал.

На рис.2 показано простейшее уст-

ройство с поплавком постоянного погру-

жения (x = const ).

Поплавок 1 подвешен на

гибком тросе, перекинутом через ролики 2.

На другом конце троса укреплен груз 3 для

поддержания постоянного натяжения тро-

са. На тросе закреплена стрелка, показы-

вающая на шкале 4 уровень жидкости. Та-

ким простым устройством можно измерять

уровень с достаточной для большинства

2. Схема про-

случаев точностью.

стейшего

поплавкового

Недостатки

простого поплавкового

уровнемера - перевернутая шкала (с ну-

измерителя уровня

лем у верхнего края бака), погрешность из-

за изменения силы, натягивающей трос (при подъеме уровня к силе тяжести противовеса добавляется сила тяжести троса). В более сложных конструкциях эти недостатки устранены .

Широкое распространение, и особенно для герметичных аппаратов, работающих при больших давлениях, получили поплавковые уровнемеры переменного погружения, называемые также буйковыми из-за специфической формы поплавка (отклонение диска к диаметру более трех при длине цилиндра до 1,6 м).

На рис. 3 приведена схема перемещения цилиндрического поплавка переменного погружения.

Для положения, показанного на рис. 3 а, условие равновесия по-

где S - площадь поперечного сечения поплавка;ρ п - плотность материала поплавка;g - ускорение свободного падения;Z - жесткость пружины.

Для положения, показанного на рис 3 б, условие равновесия имеет

После вычитания из уравнения (1) уравнения (2) получим

(Н - х) Sρ g = LZ - (L - х) Z,

Из выражения (3) следует, что перемещение поплавка пропорционально изменению уровня жидкости; коэффициент пропорциональности меньше единицы (равен единице при Z = 0) и зависит от жесткости пружины. С увеличением жесткости пружины относительное перемещение поплавка снижается.

Для дистанционного измерения уровня жидкости применяют буйковые уровнемеры с унифицированными выходными сигналами постоянного тока 0-5 и 0-20 мА (типа УБ-Э) или давления воздуха 0,002-0,1 МПа (тип УБ-П) . Для преобразования перемещения буйка в унифицированный электрический или пневматический сигналы используют преобразователи, аналогичные рассмотренным в книгах

На рис. 4 показана схема поплавкового (буйкового) уровнемера с пневматической передачей показаний на расстояние. Уровнемер при-

соединяют к объекту с помощью фланцев. Поплавок 1 подвешен к рычагу 2, на конце которого находится уравновешивающий груз 3. Этим грузом уравновешивается начальная сила тяжести поплавка, когда

жидкости в резервуаре нет (Н = 0 иρ вых = 0,1 МПа). Функции первичного преобразователя выполняют сопло 5 и заслонка 6. Сильфон 4 реа-

лизует обратную связь.

Для уровнемеров с пневматическим выходным сигналом применяют любые вторичные приборы, имеющие диапазон измерения

0,02-0,1 МПа.

Уровнемеры типа УБ-Э могут работать в комплекте с любыми миллиамперметрами. Недостатки поплавковых уровнемеров: большая металлоемкость, недостаточные надежность и точность из-за наличия кинематических узлов.

В гидростатических уровнемерахизмерение уровня жидкости сводится к измерению давления, создаваемого столбом жидкости, т.е. Р = Ηρ g. Существуют гидростатические уровнемеры с непрерывной продувкой воздуха или газа (пьезометрические уровнемеры) и с непосредственным измерением столба жидкости как с помощью дифференциальных манометров , так и с помощью разработанных в последнее время преобразователей типа «Сапфир22ДГ» .

Пьезометрические уровнемеры (рис. 5) применяют для измерения самых разнообразных, в том числе агрессивных и вязких, жидкостей в открытых резервуарах и в сосудах под давлением. Сжатый воздух или газ, пройдя дроссель 1 и ротаметр 2, попадает в пьезометрическую трубку 3, находящуюся в резервуаре. Давление воздуха (газа), измеряемое манометром 4, характеризует положение уровня жидкости в резервуаре. С начала подачи воздуха давление будет повышаться до тех пор, пока не станет равным давлению столба жидкости высотой Н. В момент выравнивания этих давлений из трубки в жидкость начнет выходить воздух, расход которого регулируют так, чтобы он пробулькивал отдельными пузырьками (примерно один пузырек в секунду). Расход воздуха устанавливают регулируемым дросселем 1 и контролируют ротаметром 2.

При измерении уровня жидкостей следует учитывать возможность образования при определенных условиях статического электричества. В связи с этим при контроле легковоспламеняющихся и взрывоопасных жидкостей (сероуглерода, бензола, масел и др.) в качестве сжатого газа применяют двуокись углерода, азот, дымовые газы или устанавливают специальные пьезометрические уровнемеры.

Другим видом гидростатических уровнемеров является дифманометр любой системы, измеряющий давление столба жидкости в сосуде. Дифманометрами можно измерять уровень в открытых и закрытых сосудах, т. е. в сосудах, находящихся под давлением и разрежением. На рис. 6 a показана схема при измерении уровня в открытом резервуаре и установке дифманометра ниже дна резервуара.

При использовании дифманометров для измерения уровня обязательно устанавливают уравнительный сосуд, наполненный до определенного уровня жидкостью, находящейся в резервуаре. Назначение уравнительного сосуда - обеспечение постоянного столба жидкости в одном из колен дифманометра. Высота столба жидкости во втором колене дифманометра меняется с изменением уровня в резервуаре. Каждому значению уровня в резервуаре соответствует определенный пере-

пад давлений, что позволяет по величине перепада, показываемого дифманометром, судить об уровне жидкости в резервуаре.

На рис. 6 б показана схема измерения уровня жидкости в резервуаре, находящемся под давлением, при установке дифманометра ниже резервуара. В этом случае уравнительный сосуд устанавливают на высоте максимального уровня и соединяют с контролируемым резервуаром.

В рассмотренных выше схемах гидростатических уровнемеров для измерения давления или перепада давлений можно использовать бесшкальные измерительные преобразователи, имеющие на выходе унифицированные пневматические или электрические сигналы, что позволяет обеспечить дистанционный контроль и управление.

В этом плане весьма перспективны измерительные преобразователи унифицированной системы типа «Сапфир-22» и преобразователь гидростатического давления (уровня) «Сапфир-22ДГ» (рис. 7), в частности. Все преобразователи системы состоят из измерительного блока

и электронного устройства, а «Сапфир-22ДГ» отличается от других

лишь наличием фланца

с «открытой» мембра-

ной для монтажа непо-

средственно

технологического

зервуара . Из-

мерительный блок соб-

ран на основании 1 с

фланцем 2.

Внутренняя

полость 3, ограниченная

двумя мембранами 4 и

тензопреобразователем,

заполнена

кремнийор-

ганической

жидкостью.

Тензопреобразователь

представляет собой фи-

гурную металлическую

Рис. 7. Схема преобразователя гидростати-

мембрану 5 с закреп-

ленной на ее поверхно-

ческого давления (уровня) «Сапфир-22ДГ»

сти пластиной из моно-

кристаллического сапфира с кремниевыми пленочными тензорезисто-

рами 6. Измеряемый параметр (в нашем случае столб жидкости) воздействует на мембрану 4 со знаком «+» и прогибает ее. При этом происходит перемещение связанных с мембраной штока 7 и тяги 8, а также деформация тензорезисторов.

Таким образом, в измерительном блоке измеряемый параметр линейно преобразуется в изменение электрического сопротивления тензорезисторов тензопреобразователя, а электронное устройство преобразователя преобразует его в унифицированный токовый выходной сигнал (0-5; 0-20 или 4-20 мА).

В электрических уровнемерах изменение уровня жидкости преобразуется в какой-либо электрический сигнал. Из электрических уровнемеров наиболее распространены емкостные и омические. В емкостных уровнемерах используются диэлектрические свойства контролируемых сред, в омических - свойство контролируемой среды проводить электрический ток.

Преобразователь емкостного уровнемера является электрическим конденсатором, емкость которого зависит от уровня жидкости. Преобразователи емкостных уровнемеров выполняют цилиндрического и пластинчатого типов, а также в виде жесткого стержня. Широкое распространение на практике получили датчики-реле уровня емкостные типа ЭСУ-1М, ЭСУ-2М, называемые также сигнализаторами уровня. Они состоят из датчика (двух датчиков для ЭСУ-2М) и электронного блока, соединенных между собой коаксиальным кабелем длиной до 3 м. Датчики могут быть стержневыми и пластинчатыми, с изолированным и неизолированным электродом (рис. 8). Датчики устанавливаются на стенке или крышке резервуара.

Электронный блок устанавливается обычно в зоне обслуживания резервуара на расстоянии до 10 м и представляет собой электронное реле, содержащее генератор высокой частоты, собранный на лампе 6Н6П (рис. 9). Последние модификации ЭСУ выполнены на современной элементной базе. При любой конструкции ЭСУ имеют один или несколько выходов, используемых для дистанционного автоматического управления.

Рис. 8. Датчики ЭСУ-1М: а - стержневой с изолированным электродом; б - стержневой без изолятора; в - пластинчатый

Рис. 9. Сигнализатор уровня электронный ЭСУ-1М: а - внешний вид электронного блока; б - принципиальная электрическая схема

В анодную цепь лампы включено исполнительное реле МКУ-48. Генератор настраивается таким образом, что при некотором увеличе-

Добрый день!

Думаю, мой опыт может кому-то оказаться полезным. По крайней мере, я не смог найти в свое время ответы на ряд мелких технических вопросов, которые я освечу в этом топике.

Исходная задача минимум- осуществлять мониторинг состояния климата в доме, находящемся в 20 км от города, куда сейчас приезжаю только по выходным. Задача максимум - получать расширенную информацию о состоянии параметров отопительной системы и иметь возможность удаленно скорректировать режимы и переменные величины.

Отопительное оборудование - котел WOLF COB-29CS. К данному котлу изготовитель продает модуль ISM1, которые подключается по шине eBus к котлу и позволяет обмениваться с котлом в двухстороннем режиме информацией. ISM1 предназначен либо для прямого подключения к ПК по RS-232 либо для подключения к нему войс-модема.

В режме модемного соединения, необходим модем на стороне ISM1 и второй модем на вашей стороне. Для модуля немцы рекомендуют использовать Siemens TC35i. Модемный вариант показался мне не слишком удобным.

Второй вариант - прямое соединение с компьютером. Если использовать постоянно включенный малопотребляющий комп, то в принципе, при наличии интернет соединения, можно попадать на него снаружи и осуществлять как мониторинг так и управление системой.

Интернет соединений. С учетом, что дом расположен за городом, единственный доступный вариант - 3г модем. По опыту эксплуатации 3г модемов, особенно в точке нахождения дома, было замечено, что модем время от времени теряет соединение, и для возобновления требуется реинициализация модема. То есть должен быть механизм самостоятельной, на стороне модема, проверки и перезапуска системы.
Для пробы был приобретем 3г роутер от билайн. Меня интересовало насколько стабильно он будет поддерживать соединение. Ни насколько . То есть если соединение пропадает, то роутер просто теряет доступ в сеть. Перезапустить можем он не догадывается. Для дома-офиса решение замечательное, но для удаленного применения - однозначно не подходит. Друзья посоветовали обратить внимание на роутер dlink dir-320. С прошивкой от энтузиастов, он позволяет подключить к нему 3г модем и раздавать интернет. Плюс ко всему, так как это аппарат, на котором крутится Линукс, можно написать несложный скрипт, проверяющий на регулярной основе наличие интернета и если не обнаруживает, то запустить процедуру перезапуска модема.
dir-320 был куплен, перепрошит, модем huawei e150 от билайна был распознан устройством и подключился вообще без проблем. Далее, я собрал несложный скрипт, который пингует гугл.ком и в случае отсутствия пинга перезапускает роутер.

Теперь вторая часть марлезонского балета - работа с ISM1. Мною для нужд работы в связке с ISM1 модулем был выбран нетбук на процессоре атом. Выбор был сделан с учетом низкого энергопотребления и достаточного (до 6 часов) времени жизни от батарейки в случае пропадания питания. Вместе с ISM1 модулем инженер отдал мне юсб-ком шнурок, который он использовал сам, когда пробовал подключать модуль к разным системам. Шнурок определился компьютером, как переходник на основе чипа Prolific. Вот тут и начались мучения, длившиеся полторы недели. На стороне ПК, взаимодействие с котлом осуществляет программа WRS, скачанная с сайта немецкого производителя. Первые впечатления были очень отрицательные. Программа устанавливала коннект через раз, каждый раз в случае неудачи надо было подолгу перезагружаться. Работа была очень нестабильной, все время все висло . Я почти потерял надежду заставить это железо работать. Оказалось, что всему причиной был глючный кабель на чипе от пролифик. Ребята в профильном форуме посоветовали использовать адаптеры на базе чипа от FTDI. Мне удалось купить такой переходник и все сразу заработало.
Для того чтобы "заходить" на удаленный компьютер я использую программу TeamViewer, разработчики которой разрешают использовать ее бесплатно в случае некоммерческого применения. К слову сказать, клиентская часть тимвьюера есть и для Phone и для Android. Таким образом, я со своего htc Desire могу открывать экран удаленного компьютера, мониторить и даже менять параметры.
Роутер я подключил к источнику бесперебойного питания. Комп работает от адаптера, плюс у него есть батарейка. Вся связка должна прожить часов шесть без внешнего питания, то есть, на мелкие проблемы должно хватить.
Софт позволяет не только смотреть параметры в моменте, но и писать протоколы работы. Я сейчас записываю протокол, который включает:
- внешнюю температуру;
- внутреннюю фактическую температуру;
- температуру котловой воды;
- режим горелки;
- температуру подачи после смесителя на коллекторе ВТП.

Все это пишется в файл с промежутком 10 сек. Планирую потом анализировать чтобы понять из чего складываются фактический расход топлива.

Надуюсь, мой опыт окажется полезным.

ЗЫ Подключил к роутеру ip-камеру, теперь еще и имею возможность посмотреть что творится в доме в мое отсутствие.