Свойства свинца и его применение. Свинец и его характеристики

(нм, в скобках даны координац. числа) Рb 4+ 0,079 (4), 0,092 (6), Рb 2+ 0,112 (4), 0,133(6).

Содержание свинца в земной коре 1,6-10 3 % по массе, в Мирового океана 0,03 мкг/л (41,1 млн. т), в речных 0,2-8,7 мкг/л. Известно ок. 80 , содержащих свинец, главнейший из них-галенит, или свинцовый блеск, PbS. Небольшое пром. значение имеют англезит PbSO 4 и церус-сит РbСО 3 . В свинцу сопутствуют Сu, Zn; Cd, Bi, Те и др. ценные элементы. Прир. фон в 2·10 -9 -5·10 -4 мкг/м 3 . В теле взрослого человека содержится 7-15 мг свинца.

Свойства. Свинец-металл синевато-серого цвета, кристаллизуется в гранецентрир. кубич. решетке типа Сu, а - = 0,49389 нм, z = 4, пространств. группа Fm3m. Свинец-один из легкоплавких , тяжелый ; т. пл. 327,50 °С, т. кип. 1751 °С; плотн., г/см 3: 11,3415 (20 °С), 10,686 (327,6 °С), 10,536 (450 °С), 10,302 (650 °С), 10,078 (850 °С); 26,65 Дж/( · К); 4,81 кДж/ , 177,7 кДж/ ;64,80 ДжДмоль · К); , Па: 4,3·10 -7 (600 К), 9,6·10 -5 (700 К), 5,4·10 -2 (800 К). 1,2·10 -1 (900 К), 59,5 (1200 К), 8,2·10 2 (1500 К), 12,8·10 3 (1800 К). Свинец-плохой проводник тепла и электричества; 33,5 Вт/(м·К) (менее 10% от Ag); температурный коэф. линейного расширения свинца (чистотой 99,997%) в интервале т-р 0-320 °С описывается ур-нием: a = 28,15·10 -6 t + 23,6·10 -9 t 2 °C -1 ; при 20°С r 20,648 мкОм·см (менее 10% от r Ag), при 300 °С и 460 °С соотв. 47,938 и 104,878 мкОм·см. При -258,7°С r свинца падает до 13,11·10 -3 мкОм·см; при 7,2 К он переходит в сверхпроводящее состояние. Свинец диамагнитен, магн. восприимчивость -0,12·10 -6 . В жидком состоянии свинец жидкотекуч, h в интервале т-р 330-800 °С изменяется в пределах 3,2-1,2 мПа·с; g в интервале 330-1000 °С находится в пределах (4,44-4,01)·10 -3 Н/м.

С винец мягок, пластичен, легко прокатывается в тончайшие листы. по Бринеллю 25-40 МПа; s раст 12-13 МПа, s сж ок. 50 МПа; относит. удлинение при разрыве 50-70%. Значительно повышают и свинца Na, Ca и Mg, но уменьшают его хим. стойкость. увеличивает антикоррозионную стойкость свинца (к действию H 2 SO 4). С Sb возрастает , а также кислотоупорность свинца по отношению к H 2 SO 4 . Понижают кислотоупорность свинца Bi и Zn, a Cd, Те и Sn повышают и сопротивление усталости свинца. В свинце практически не раств. N 2 , CO, CO 2 , O 2 , SO 2 , H 2 .

В хим. отношении свинец довольно инертен. Стандартный свинца -0,1265 В для Рb 0 /Рb 2+ . В сухом не окисляется, во влажном-тускнеет, покрываясь пленкой , переходящей в присут. СО 2 в основной 2РbСО 3 ·Рb(ОН) 2 . С свинец образует ряд : Рb 2 О, РbО (), РbО 2 , Рb 3 О 4 () и Рb 2 О 3 (см. ). При комнатной т-ре свинец не реагирует с разб. серной и соляной к-тами, т. к. образующиеся на его пов-сти труднорастворимые пленки PbSO 4 и РbС1 2 препятствуют дальнейшему . Конц. H 2 SO 4 (>80%) и НС1 при нагр. взаимод. со свинцом с образованием р-римых соед. Pb(HSO 4) 2 и Н 4 [РbСl 6 ]. Свинец устойчив по отношению к фтористоводородной к-те, водным р-рам NH 3 и и к мн. орг. к-там. Лучшие р-рители свинца-разб. HNO 3 и СН 3 СООН. При этом образуются Pb(NO 3) 2 и Рb(СН 3 СОО) 2 . Свинец заметно раств. также в лимонной, муравьиной и винной к-тах.

Рb + РbO 2 + 2H 2 SO 4 : 2PbSO 4 + 2Н 2 О

При взаимод. Pb(IV) и Pb(II) с образуются соли-соотв. плюмбаты(IV) и плюмбиты(II), напр. Na 2 PbO 3 , Na 2 PbO 2 . Свинец медленно раств. в конц. р-рах с выделением Н 2 и образованием М 4 [Рb(ОН) 6 ].

При нагревании свинец реагирует с , образуя . С азотистоводородной к-той свинец дает Pb(N 3) 2 , с при нагр.- PbS (см. Свинца халь-когениды). для свинца не характерны. В нек-рых р-циях обнаруживают тетрагидрид РbН 4 -бесцв. , легко разлагающийся на Рb и Н 2 ; образуется при действии разб. соляной к-ты на Mg 2 Pb. См. также , Сви-нецорганические соединения.

Получение. Осн. источник получения свинца-сульфидные полиметаллич. . Селективной из , содержащих 1-5% Рb, получают свинцовые и др. концентраты. Свинцовый концентрат обычно содержит 40-75% Рb, 5-10% Zn, до 5% Сu, а также и Bi. Ок. 90% свинца получают по технологии, включающей стадии: агломерирующий сульфидных концентратов, шахтная восстановит. плавка агломерата и чернового свинца. Разрабатывают автогенные процессы плавки, позволяющие использовать тепло сгорания .

Агломерирующий при традиц. произ-ве свинца проводят на прямолинейных машинах с дутьем либо путем просасывания его. При этом PbS окисляется преим. в жидком состоянии: 2PbS + 3О 2 : 2РbО + 2SO 2 . В шихту добавляют флюсы (SiO 2 , CaCO 3 , Fe 2 O 3), к-рые, реагируя между собой и с РbО, образуют жидкую фазу, цементирующую шихту. В готовом агломерате свинец в осн. концентрируется в свинцовосиликатном стекле, занимающем до 60% объема агломерата. Zn, Fe, Si, Ca кристаллизуются в форме сложных соед., образуя жаропрочный каркас. Эффективная (рабочая) площадь агломерац. машин 6-95 м 2 .

В готовом агломерате содержится 35-45% Рb и 1,2-3% S, часть к-рой находится в виде . Производительность агломерац. машин по агломерату зависит от содержания S в шихте и колеблется от 10 (бедные концентраты) до 20 т/(м 2 · сут) (богатые концентраты); по выжигаемой S она находится в пределах 0,7-1,3 т/(м 2 · сут). Часть , содержащих 4-6% SO 2 , используют для произ-ва H 2 SO 4 . Степень утилизации S составляет 40-50%.

Полученный агломерат направляют на восстановит. плавку в шахтных . для выплавки свинца представляет собой шахту прямоугольного сечения, образуемую водо-охлаждаемыми коробками (кессонами). (или воздушно-кислородная смесь) подается в через спец. сопла (фурмы), расположенные по всему периметру в ниж. ряду кессонов. В шихту плавки входят в осн. агломерат и , иногда загружают кусковое оборотное и вторичное сырье. Уд. проплав агломерата 50-80 т/(м 2 · сут). Прямое извлечение свинца в черновой 90-94%.

Цель плавки-максимально извлечь свинец в черновой , a Zn и пустую вывести в шлак. Осн. р-ция шахтной плавки свинцового агломерата: РbО + СО : Рb + + СО 2 . В качестве в шихту вводят . Часть свинца восстанавливается им непосредственно. Для свинца требуется слабовосстановит. ( О 2 10 -6 -10 -8 Па). Расход к массе агломерата при шахтной плавке 8-14%. В этих условиях Zn и Fe не восстанавливаются и переходят в шлак. присутствует в агломерате в форме СuО и CuS. в условиях шахтной плавки легко восстанавливается до и переходит в свинец. При высоком содержании Си и S в агломерате при шахтной плавке образуется самостоят. фаза-штейн.

Осн. шлакообразующие компоненты шлаков (80-85% от массы шлака) - FeO, SiO 2 , CaO и ZnO-направляются на дальнейшую переработку для извлечения Zn. В шлак переходит до 2-4% Рb и ~20% Си, содержание в нем этих соотв. 0,5-3,5 и 0,2-1,5%. Образующаяся при шахтной плавке (и агломерации) служит исходным сырьем для извлечения редких и .

В основе автогенных процессов выплавки свинца лежит экзотермич. р-ция PbS + О 2 : Рb + SO 2 , состоящая из двух стадий:

2PbS + 3O 2 : 2PbO + 2SO 2 PbS + 2РbО: 3Рb + SO 2

Преимущества автогенных способов перед традиц. технологией: исключается агломерац. , устраняется необходимость разбавления концентрата флюсами, что снижает выход шлака, используется тепло от и исключается (частично) расход , повышается извлечение SO 2 с , что упрощает их использование и повышает безопасность на заводе. В пром-сти применяют два автогенных процесса: КИВЦЭТ-ЦС, разработанный в СССР и осуществленный на Усть-Каменогорском заводе и в Италии на заводе Порто-Весме, и американский процесс QSL.

Технология плавки по методу КИВЦЭТ-ЦС: тонкоизмельченную, хорошо высушенную шихту, содержащую концентрат, оборотную и , с помощью горелки инжектируют техническим О 2 в плавильную камеру , где происходит , получение свинца и формирование шлака. (содержат 20-40% SO 2) после очистки от , возвращаемой в шихту плавки, поступают на произ-во H 2 SO 4 . Черновой свинец и шлак через разделит. перегородку протекают в электротермич. печь-отстойник, откуда их выпускают через летки. подают в шихту для избыточного в плавильной зоне.

Процесс QSL проводят в агрегате типа конвертера. разделена перегородкой на зоны. В плавильной зоне происходит загрузка гранулир. концентрата, плавка и техническим О 2 . Шлак поступает во вторую зону, где с помощью фурм он продувается пылеугольной смесью для свинца. Во всех способах плавки осн. кол-во Zn (~80%) переходит в шлак. Для извлечения Zn, а также оставшегося свинца и нек-рых редких и шлак перерабатывают способом фьюмингования или вальцевания.

Черновой свинец, полученный тем или иным способом, содержит 93-98% Рb. Примеси в черновом свинце: Сu (1-5%), Sb, As, Sn (0,5-3%), Аl (1-5 кг/т), Аu (1-30%), Bi (0,05-0,4%). Очистку чернового свинца производят пирометаллургически или (иногда) электролитически.

Пирометаллургич. методом из чернового свинца последовательно удаляют: 1) медь-двумя операциями: ликвацией и с помощью элементарной S, образующей Cu 2 S. Предварит. (грубую) очистку от Си до содержания 0,5-0,7.% проводят в отражательных либо электротермических с глубокой свинцовой , имеющей перепад т-ры по высоте. взаимод. на пов-сти с сульфидным свинцовым концентратом с образованием Cu-Pb штейна. Штейн направляют в медное произ-во либо на самостоят. гидроме-таллургич. переработку.

2) Теллур-действием металлич. Na в присут. NaOH. селективно взаимод. с Те, образуя Na 2 Te, всплывающий на пов-сть и растворяющийся в NaOH. Плав идет на переработку для извлечения Те.

3) , и сурьму-окислением их либо О 2 в отражат. при 700-800 °С, либо NaNO 3 в присут. NaOH при 420 °C. Щелочные плавы направляют на гидрометаллургич. переработку для из них NaOH и извлечения Sb и Sn; As выводят в виде Ca 3 (AsO 4) 2 , к-рый направляют на захоронение.

4) и золото-с помощью Zn, избирательно реагирующего с растворенными в свинце ; образуются AuZn 3 , AgZn 3 , всплывающие на пов-сть . Образовавшиеся съемы удаляют с пов-сти для послед. переработки их на

– мягкий, ковкий, химически инертный металл весьма стойкий к коррозии. Именно эти качества в основном обуславливают широчайшее его применение в народном хозяйстве. К тому же металл обладает довольно низкой температурой плавления и легко образует разнообразные сплавы.

Давайте поговорим сегодня про и его применение в строительстве и промышленности: сплавы, свинцовые кабельные оболочки, краски на основе него,

Первое применение свинца было связано с его превосходной ковкостью и устойчивостью к коррозии. В результате металл использовался там, где применяться не должен был: при изготовлении посуды, водопроводных труб, умывальников и так далее. Увы, последствия такого использования были самые печальные: свинец является материалом токсичным, как и большинство его соединений и, попадая в организм человека, вызывает множество тяжких повреждений.

  • Настоящее же распространение металл получил после того, как от опытов с электричеством перешли к повсеместному использованию электротока. Именно свинец применяется в многочисленных химических источниках тока. Более 75% от всей доли выплавляемого вещества уходит на производство свинцовых аккумуляторов. Щелочные аккумуляторы, несмотря на большую легкость и надежность, вытеснить их не могут, поскольку свинцовые создают ток более высокого напряжения.
  • Свинец образует множество легкоплавких сплавов с висмутом, кадмием и так далее и все они применяются для получения электрических предохранителей.

Свинец, являясь токсичным, отравляет окружающую среду, да и для человека представляет немалую опасность. Свинцовые аккумуляторы нуждаются в утилизации или что перспективнее в переработке. На сегодня до 40% металла получают путем переработки аккумуляторов.

  • Еще одно интересное применение металла – обмотка сверхпроводящего трансформатора. Свинец был одним из первых металлов, проявивших сверхпроводимость, причем при относительно высокой температуре – 7,17 К (для сравнения температура сверхпроводимости для – 0,82 К).
  • 20% от объема вещества свинец используется при производстве свинцовых оболочек для силовых кабелей при подводной и подземной укладке.
  • Свинец, а, вернее, его сплавы – баббиты, являются антифрикционными. Их повсеместно используют при производстве подшипников.
  • В химической промышленности металл используется при получении кислотоупорной аппаратуры, так как очень неохотно реагирует с кислотами и с очень небольшим их числом. По тем же причинам из него производят трубы для перекачки кислот и сточную канализацию для лабораторий и химических предприятий.
  • В военном производстве роль свинца преуменьшить сложно. Свинцовые шары метали катапульты еще Древнего Рима. Сегодня это не только боеприпас для стрелкового, охотничьего или спортивного оружия, но и инициирующие взрывчатые вещества, например, знаменитый азид свинца.
  • Еще одно общеизвестное применение – припои. предоставляет универсальный материал для соединения всех остальных металлов, которые обычным способом не сплавляются.
  • Свинец металл хотя и мягкий, но относится к тяжелым, к тому же не просто тяжелым, а самым доступным в получении. А с этим связано одно из самых интересных его свойств, хотя и относительно недавно открытых – поглощение радиоактивного излучения, причем любой жесткости. Свинцовая защита применяется везде, где есть угроза повышения радиации – от рентгеновского кабинета до ядерного полигона.

Жесткое излучение обладает большей проникающей способностью, то есть, для защиты от него требуется более толстый слой материала. Однако свинец поглощает жесткое излучение даже лучше, чем мягкое: это связано с образованием электронно-позитронной пары вблизи массивного ядра. Слой свинца толщиной в 20 см способен защитить от любого известного науке излучения.

Во многих случаях альтернативы металлу попросту нет, так что ожидать приостановления из-за его экологической опасности нельзя. Все усилия такого рода должны быть направлены на разработку и внедрение эффективных способов очистки и вторичной переработки.

Данное видео расскажет о добыче и применении свинца:

Его использование в строительстве

Металл в строительных работах применяется нечасто: его токсичность ограничивает круг применения. Однако в составе сплавов или при сооружении специальных конструкций вещество используется. И первое, о чем мы погорим, это кровли из свинца.

Кровля

В качестве свинец применяется с незапамятных времен. В Древней Руси свинцовым листом покрывали церкви и колокольни, так как его цвет прекрасно подходил для этой цели. Металл пластичен, что позволяет получить листы едва ли не любой толщины, а, главное, формы. При перекрытии нестандартных архитектурных элементов, сооружении сложных карнизов свинцовый лист подходит просто идеально, поэтому используется постоянно.

Для кровли выпускают прокатный свинец, как правило, в рулонах. Кроме листов со стандартной ровной поверхностью, есть также материал волнистый – плиссированный, окрашенный, луженный и даже самоклеящийся с одной стороны.

На воздухе свинцовый лист довольно быстро покрывается патиной, состоящей из слоя оксида и карбонатов. Патина защищает металл от коррозии. Но если ее внешний вид по каким-то причина не нравится, кровельный материал можно покрыть специальным патинирующим маслом. Это делается вручную или в производственных условиях.

Звукопоглощение

Звукоизоляция жилища – одна из непреходящих проблем старых, и многих современных домов. Причин тому множество: сама конструкция, где стены или перекрытия проводят звук, материал перекрытий и стен, который не поглощает звук, новшество в виде лифта новой конструкции, который проектом не предусмотрен и создает дополнительную вибрацию и множество других факторов. Но в итоге обитатель квартиры вынужден самостоятельно справляться с этими проблемами.

На предприятии, в звукозаписывающей студии, в здании стадиона эта проблема приобретает куда большие размеры, а решается таким же образом – монтажом звукопоглощающей отделки.

Свинец, как ни странно, используется именно в этой роли – звукопоглотителя. Конструкция материала практически одинакова. Свинцовая пластина малой толщины – 0,2–0,4 мм покрывается защитным полимерным слоем, поскольку металл все же относится к опасным, а с двух сторон пластины закрепляется органический материал – вспененный каучук, полиэтилен, полипропилен. Звукоизолятор поглощает не только звук, но вибрацию.

Механизм таков: звуковая волна, проходя через первый полимерный слой, теряет часть энергии и возбуждает колебания свинцовой пластины. Часть энергии при этом поглощается металлом, а остаток гасится во втором вспененном слое.

Стоит отметить, что направление волны в этом случае никакого значения не имеет.

О том, как используют свинец в строительстве и хозяйстве, расскажет этот видеоролик:

Рентген-кабинеты

Рентгеновское излучение чрезвычайно широко используется в медицине, по сути, составляя базу инструментального обследования. Но если в минимальных дозах особой опасности оно не представляет, то получение большой дозы облучения составляет угрозу для жизни.

При обустройстве рентгеновского кабинета именно свинец используется в качестве защитного слоя:

  • стен и дверей;
  • пола и потолка;
  • мобильных перегородок;
  • средств индивидуальной защиты – фартуков, надплечников, перчаток и других предметов со свинцовыми вставками.

Защиту обеспечивают благодаря определенной толщине экранирующего материала, что требует точных расчетов с учетом размеров помещения, мощности аппаратуры, интенсивности использования и так далее. Способность материала снижать излучение измеряется в «свинцовом эквиваленте» – значении толщины такого слоя чистого свинца, который способен рассчитанное излучение поглотить. Эффективной считается такая защита, которая превосходит указанную величину на ¼ мм.

Уборка рентгеновских кабинетов проводится особым образом: здесь важным является своевременное удаление свинцовой пыли, так как последняя представляет опасность.

Другие направления


Свинец – тяжелый, ковкий, стойкий к коррозии металл, и что самое важное: доступный и достаточно дешевый в производстве. К тому же металл незаменим при защите от излучения. Так что полный отказ от его использования – дело довольно отдаленного будущего.

О проблемах со здоровьем, вызванных применением свинца, расскажет Елена Малышева в видео ниже:

Свинец (латинское название plumbum ) – это химический элемент, металл с атомным номером 82. В чистом виде вещество имеет серебристый, слегка синеватый оттенок.


Благодаря тому, что свинец широко распространен в природе, его легко добывать и обрабатывать, этот металл знаком человечеству с глубокой древности. Известно, что люди пользовались свинцом еще в 7-м тысячелетии до нашей эры. В Древнем Египте, позднее – в Древнем Риме велась добыча и обработка свинца. Свинец довольно мягок и податлив, поэтому еще до изобретения плавильных печей его использовали для изготовления металлических предметов. Например, римляне делали из свинца трубы для сети водопроводов.

В Средние века свинец применялся как кровельный материал, для производства печатей. Длительное время люди не знали о вреде вещества, поэтому его подмешивали в вино, использовали в строительстве. Даже в 20-м веке свинец добавляли в типографскую краску и бензиновые присадки.

Свойства свинца

В природе свинец, чаще всего, встречается в виде соединений, входящих в состав руд. Руды добывают, а затем выделяют чистое вещество промышленным способом. Сам металл, а также его соединения имеют уникальные физические и химические свойства, чем и объясняется широкое использование свинца в различных отраслях.

Свинец обладает следующими свойствами:

— очень мягкий, послушный металл, который можно резать ножом;

— тяжелый, плотнее железа;

— плавится при сравнительно низких температурах (327 градусов);

— быстро окисляется на воздухе. Кусок чистого свинца всегда покрыт слоем оксида.

Токсичность свинца

Свинец имеет одну неприятную особенность: он сам и его соединения токсичны. Отравление свинцом носит хронический характер: при постоянном поступлении в организм элемент накапливается в костях и органах, вызывая серьезнейшие нарушения.


Длительное время летучее соединение тетраэтилсвинец использовался для улучшения бензинов, что вызывало загрязнение окружающей среды в городах. Сейчас в цивилизованных странах использование этой присадки запрещено.

Применение свинца

В наше время токсичность свинца хорошо известна. В то же время, свинец и его соединения могут принести огромную пользу при их рациональном и грамотном использовании.

Усилия ученых и разработчиков направлены на то, чтобы максимально использовать полезные свойства свинца, снизив его опасность для человека. Свинец используется в различных отраслях, в том числе:

в медицине и других областях, где необходима защита от радиации. Свинец плохо пропускает любое излучение, поэтому его применяют в качестве защиты. В частности, свинцовые пластины вшиваются в фартуки, которые надевают пациентам для безопасности при рентгенографическом обследовании. Защитные свойства свинца применяются в атомной промышленности, науке, производстве ядерного оружия;

в электротехнической промышленности . Свинец мало подвержен коррозии – это свойство активно используется в электротехнике. Самое широкое распространение получили свинцовые аккумуляторы. В них устанавливают пластины из свинца, погруженные в электролит. Гальванический процесс позволяет получать электрический ток, достаточный для запуска автомобильного двигателя. Именно аккумуляторная промышленность является самым крупным потребителем свинца в мире. Помимо этого, свинец используется для защиты кабелей, производства кабельных рубок, предохранителей, сверхпроводников;

в военной промышленности . Свинец идет на изготовление пуль, дроби и снарядов. Нитрат свинца входит в состав взрывчатых смесей, азид свинца используется в качестве детонатора;

в производстве красителей и строительных смесей . Свинцовые белила, чрезвычайно распространенные прежде, сейчас уступают место другим краскам. Свинец используется при производстве шпатлевок, цемента, защитных покрытий для и керамики.


Из-за токсичности свинца применение этого металла стараются ограничивать, заменяя на альтернативные материалы. Большое внимание уделяется безопасности производств, связанных со свинцом, утилизации изделий, содержащих этот элемент, а также тому, чтобы снизить контакт свинцовых деталей с человеком и выброс вещества в окружающую среду.

Свинец (Pb от лат. Plumbum) – химический элемент, который находится в IV группе Таблицы Менделеева. Свинец имеет множество изотопов, среди которых более 20 обладают радиоактивными свойствами. Изотопы свинца являются продуктами распада урана и тория, поэтому содержание свинца в литосфере постепенно увеличивалось в течение миллионов лет и сейчас составляет около 0,0016% по массе, но он более распространен, чем его ближайшие родственники, такие как золото и . Свинец легко выделяется из рудных месторождений. Основные источники свинца - галенит, англезит и церуссит. В руде со свинцом очень часто соседствуют другие металлы, например, цинк , кадмий и висмут. В самородном виде свинец встречается исключительно редко.

Свинец - интересные исторические факты

Этимология слова «свинец» до сих пор точно не выяснена и является предметом очень интересных исследований. Свинец очень похож на олово, очень часто их путали, поэтому в большинстве западнославянских языков свинец это олово. Зато слово «свинец» встречается в литовском (svinas) и латышском (svin) языках. Свинец в переводе на английский lead, на голландский lood. Видимо отсюда и пошло слово «лудить», т.е. покрывать изделие слоем олова (или свинца). Не до конца понятно также происхождение латинского слова Plumbum, от которого произошло английское слово plumber – водопроводчик. Дело в том, что когда-то водопроводные трубы «запечатывали» свинцом, «пломбировали» (франц. plomber «запечатывать свинцом»). Кстати, отсюда же всем известное слово «пломба». Но на этом путаница не заканчивается, греки всегда называли свинец «молибдос», отсюда и латинское «molibdaena», незнающему человеку легко спутать это название с наименованием химического элемента молибден . Так в древности называли блестящие минералы оставляющие тёмный след на светлой поверхности. Этот факт оставил свой след в немецком языке: «карандаш» по-немецки называется Bleistift, т.е. свинцовый стержень.
Человечество знакомо со свинцом с незапамятных времен. Археологами найдены свинцовые изделия выплавленные 8000 лет тому назад. В Древнем Египте из свинца даже отливали статуи. В Древнем Риме из свинца были изготовлены водопроводные трубы, именно он предопределил первую в истории экологическую катастрофу. Римляне не имели никакого представления о вреде свинца, им нравился податливый, прочный и простой в работе металл. Считалось даже, что свинец, добавленный в вино, улучшает его вкус. Поэтому почти каждый римлянин был отравлен свинцом. О симптомах отравления свинцом мы расскажем ниже, а пока лишь укажем, что одним из них является расстройство рассудка. Видимо отсюда и берут свое начало все эти безумные выходки знатных римлян и бесчисленные сумасшедшие оргии. Некоторые исследователи даже считают, что свинец явился чуть ли основной причиной падения Древнего Рима.
В древности гончары мололи свинцовую руду, разводили водой и обливали полученной смесью глиняные предметы. После обжига такие сосуды покрывались тонким слоем блестящего свинцового стекла.
Англичанин Джордж Равенскрофт в 1673 году усовершенствовал состав стекла, добавив к исходным компонентам оксид свинца и таким образом получил легкоплавкое блестящее стекло, которое было очень похоже на натуральный горный хрусталь. А в конце 18 века Георг Страсс при производстве стекла сплавил вместе белый песок, поташ и оксид свинца, получив такое чистое и блестящее стекло, что его сложно было отличить от алмаза. Отсюда и пошло название «стразы», по сути подделка под драгоценные камни. К сожалению, среди современников Страсс прослыл мошенником и его изобретение находилось в забвении до тех пор, пока в начале XX века Даниэль Сваровски не смог сделать из производства страз целую индустрию моды и направление искусства.
После появления и широкого распространения огнестрельного оружия, свинец начал использоваться для производства пуль и дроби. Из свинца изготавливали типографские литеры. Свинец ранее входил в состав белой и красной красок, ими писали почти все старинные художники.

Свинцовая дробь

Химические свойства свинца кратко

Свинец - металл матового серого цвета. Однако его свежий срез хорошо блестит, но к сожалению почти моментально покрывается грязноватой оксидной плёнкой. Свинец очень тяжелый металл, он тяжелее железа в полтора раза, а алюминия в четыре. Недаром в русском языке слово «свинцовый» является в некоторой мере синонимом тяжести. Свинец очень легкоплавкий металл, он плавится уже при 327 ° С. Ну, этот факт известен всем рыбакам, которые с легкостью выплавляют нужные по весу грузила. Также свинец очень мягок, его можно резать обычным стальным ножом. Свинец очень малоактивный металл, провести с ним реакцию или растворить его не составляет никакого труда даже при комнатной температуре.
Органические производные свинца являются очень ядовитыми веществами. К сожалению, одно из них, тетраэтилсвинец, широко использовалось как присадка к бензину, позволяющая повысить октановое число. Но зато к счастью, тетраэтилсвинец больше не применяется в такой ипостаси, химики и производственники научились повышать октановое число более безопасными способами.

Влияние свинца на организм человека и симптомы отравления

Любые соединения свинца очень ядовиты. Металл проникает в организм вместе с едой или со вдыхаемым воздухом и разносится кровью. Причем вдыхание паров свинцовых соединений и пыли намного более опасно, чем присутствие его в пище. Свинец имеет свойство накапливаться в костях, частично замещая в этом случае кальций . При повышении концентрации свинца в организме развивается анемия, поражается головной мозг, что приводит к снижению интеллекта, а у детей может вызвать необратимые задержки в развитии. Достаточно растворить один миллиграмм свинца в литре воды и она станет не только непригодной, но и опасной для питья. Такое низкое количество свинца представляет также определенную опасность, ни цвет ни вкус воды не изменяется. Основные симптомы отравления свинцом:

  • серая кайма на деснах,
  • вялость,
  • апатия,
  • потеря памяти,
  • слабоумие,
  • проблемы со зрением,
  • раннее старение.

Применение свинца

Всё же, несмотря на токсичность, отказаться от использования свинца пока нет никакой возможности ввиду его исключительных свойств и дешевизны. Свинец в основном используется для производства аккумуляторных пластин, на эти нужды в настоящее время тратится около 75% добываемого на планете свинца. Свинец используется как оболочка для электрических кабелей, благодаря своей пластичности и неподверженности коррозии. Этот металл широко используется в химической и нефтеперерабатывающей промышленности, например, для облицовки реакторов в которых получают серную кислоту. Свинец обладает свойством задерживать радиоактивное излучение, этим тоже широко пользуются в энергетике, медицине и химии. В свинцовых контейнерах, к примеру, транспортируют радиоактивные элементы. Свинец идет в производство сердечников пуль и шрапнели. Также этот металл находит свое применение в производстве подшипников.


Свинцовая статуя Святого Мартина в Братиславе

Свинец - во многом идеальный металл, ведь он обладает массой важных для промышленности достоинств. Наиболее очевидное из них - сравнительная легкость его получения из руд, которая объясняется низкой температурой плавления (всего 327°С). При обработке важнейшей свинцовой руды - галенита, - металл легко отделяется от серы. Для этого галенит достаточно в смеси с углем обжечь на воздухе..

Из-за высокой пластичности свинец легко куется, прокатывается в листы и проволоку, что позволяет применять его в машиностроительной промышленности для изготовления различных сплавов с другими металлами. Широкой известностью пользуются так называемые баббиты (подшипниковые сплавы свинца с оловом, цинком и некоторыми другими металлами), типографские сплавы свинца с сурьмой и оловом, сплавы свинца с оловом для пайки различных металлов.

Металлический свинец - очень хорошая защита от всех видов радиоактивного излучения и рентгеновских лучей. Он введен в резину фартука и защитных рукавиц врача-рентгенолога, задерживая рентгеновские лучи и предохраняя организм от их губительного действия. Защищает от радиоактивного излучения и стекло, содержащее окислы свинца. Подобное свинцовое стекло позволяет управлять обработкой радиоактивных материалов с помощью "механической руки" - манипулятора.

При воздействии воздуха, воды и различных кислот свинец проявляет большую устойчивость. Это свойство позволяет широко использовать его в электротехнической промышленности, особенно для изготовления аккумуляторов и кабельных рубок. Последние находят широкое применение в авиа- и радиопромышленности. Устойчивость свинца позволяет использовать его и для предохранения от порчи медных проводов телеграфных и телефонных линий. Тонкими свинцовыми листами покрывают железные и медные детали, подвергающиеся химическому воздействию (ванны для электролиза меди, цинка и других металлов).

Свинец и электротехника

Особенно много свинца потребляет кабельная промышленность, где им предохраняют от коррозии телеграфные и электрические провода при подземной или подводной прокладке. Много свинца идет и на изготовление легкоплавких сплавов (с висмутом, оловом и кадмием) для электрических предохранителей, а также для точной пригонки контактирующих деталей. Но главное, видимо, – это использование свинца в химических источниках тока.

Свинцовый аккумулятор с момента своего создания претерпел много конструктивных изменений, но основа его осталась той же: две свинцовые пластины, погруженные в сернокислый электролит. На пластины нанесена паста из окиси свинца. При зарядке аккумулятора на одной из пластин выделяется водород, восстанавливающий окись до металлического свинца, на другой – кислород, переводящий окись в перекись. Вся конструкция превращается в гальванический элемент с электродами из свинца и перекиси свинца. В процессе разрядки перекись раскисляется, а металлический свинец превращается в окись. Эти реакции сопровождаются возникновением электрического тока, который будет течь по цепи до тех пор, пока электроды не станут одинаковыми – покрытыми окисью свинца.

Производство щелочных аккумуляторов достигло в наше время гигантских размеров, но оно не вытеснило аккумуляторы свинцовые. Последние уступают щелочным в прочности, они тяжелее, но зато дают ток большего напряжения. Так, для питания автостартера нужно пять кадмиево-никелевых аккумуляторов или три свинцовых.

Аккумуляторная промышленность – один из самых емких потребителей свинца.

Можно, пожалуй, сказать и то, что свинец находился у истоков современной электронно-вычислительной техники.

Свинец был одним из первых металлов, переведенных в состояние сверхпроводимости. Кстати, температура, ниже которой этот металл приобретает способность пропускать электрический ток без малейшего сопротивления, довольно высока – 7,17°K. (Для сравнения укажем, что у олова она равна 3,72, у цинка – 0,82, у титана – всего 0,4°K). Из свинца была сделана обмотка первого сверхпроводящего трансформатора, построенного в 1961 г.

На сверхпроводимости свинца основан один из самых эффектных физических «фокусов», впервые продемонстрированный в 30-х годах советским физиком В.К. Аркадьевым.

По преданию, гроб с телом Магомета висел в пространстве без опор. Из трезвомыслящих людей никто, конечно, этому не верит. Однако в опытах Аркадьева происходило нечто подобное: небольшой магнитик висел без какой-либо опоры над свинцовой пластинкой, находившейся в среде жидкого гелия, т.е. при температуре 4,2°K, намного меньшей, чем критическая для свинца.

Известно, что при изменении магнитного поля в любом проводнике возникают вихревые токи (токи Фуко). В обычных условиях они быстро гасятся сопротивлением. Но, если сопротивления нет (сверхпроводимость!), эти токи не затухают и, естественно, сохраняется созданное ими магнитное поле. Магнитик над свинцовой пластинкой имел, разумеется, свое поле и, падая на нее, возбуждал магнитное поле от самой пластинки, направленное навстречу полю магнита, и оно отталкивало магнит. Значит, задача сводилась к тому, чтобы подобрать магнитик такой массы, чтобы его могла удержать на почтительном расстоянии эта сила отталкивания.

В наше время сверхпроводимость – огромнейшая область научных исследований и практического приложения. Говорить о том, что она связана только со свинцом, конечно нельзя. Но значение свинца в этой области не исчерпывается приведенными примерами.

Один из лучших проводников электричества – медь – никак не удается перевести в сверхпроводящее состояние. Почему это так, у ученых еще нет единого мнения. В экспериментах по сверхпроводимости меди отведена роль электроизолятора. Но сплав меди со свинцом используют в сверхпроводниковой технике. В температурном интервале 0,1...5°K этот сплав проявляет линейную зависимость сопротивления от температуры. Поэтому его используют в приборах для измерения исключительно низких температур.

Свинец и транспорт

И эта тема складывается из нескольких аспектов. Первый – это антифрикционные сплавы на основе свинца. Наряду с общеизвестными баббитами и свинцовыми бронзами, антифрикционным сплавом часто служит свинцово-кальциевая лигатура (3...4% кальция). То же назначение имеют и некоторые припои, отличающиеся низким содержанием олова и, в отдельных случаях, добавкой сурьмы. Все более важную роль начинают играть сплавы свинца с таллием. Присутствие последнего повышает теплостойкость подшипников, уменьшает коррозию свинца органическими кислотами, образующимися при физико-химическом разрушении смазочных масел.

Второй аспект – борьба с детонацией в двигателях. Процесс детонации сродни процессу горения, но скорость его слишком велика... В двигателях внутреннего сгорания он возникает из-за распада молекул еще не сгоревших углеводородов под влиянием растущих давления и температуры. Распадаясь, эти молекулы присоединяют кислород и образуют перекиси, устойчивые лишь в очень узком интервале температур. Они-то и вызывают детонацию, и топливо воспламеняется раньше, чем достигнуто необходимое сжатие смеси в цилиндре. В результате мотор начинает «барахлить», перегреваться, появляется черный выхлоп (признак неполного сгорания), ускоряется выгорание поршней, сильнее изнашивается шатунно-кривошипный механизм, теряется мощность...

Самый распространенный антидетонатор – тетраэтилсвинец (ТЭС) Pb(С 2 Н 5) 4 – бесцветная ядовитая жидкость. Действие ее (и других металлоорганических антидетонаторов) объясняется тем, что при температуре выше 200°C происходит распад молекул вещества-антидетонатора. Образуются активные свободные радикалы, которые, реагируя прежде всего с перекисями, уменьшают их концентрацию. Роль металла, образующегося при полном распаде тетраэтилсвинца, сводится к дезактивации активных частиц – продуктов взрывного распада тех же перекисей.

Добавка тетраэтилсвинца к топливу никогда не превышает 1%, но не только из-за токсичности этого вещества. Избыток свободных радикалов может инициировать образование перекисей.

Важная роль в изучении процессов детонации моторных топлив и механизма действия антидетонаторов принадлежит ученым Института химической физики АН СССР во главе с академиком Н.Н. Семеновым и профессором А.С. Соколиком.

Свинец и война

Свинец – тяжелый металл, его плотность 11,34. Именно это обстоятельство послужило причиной массового использования свинца в огнестрельном оружии. Между прочим, свинцовыми метательными снарядами пользовались еще в древности: пращники армии Ганнибала метали в римлян свинцовые шары. И сейчас пули отливают из свинца, лишь оболочку их делают из других, более твердых металлов.

Любая добавка к свинцу увеличивает его твердость, но количественно влияние добавок неравноценно. В свинец, идущий на изготовление шрапнели, добавляют до 12% сурьмы, а в свинец ружейной дроби – не более 1% мышьяка.

Без инициирующих взрывчатых веществ ни одно скорострельное оружие действовать не будет. Среди веществ этого класса преобладают соли тяжелых металлов. Используют, в частности, азид свинца PbN 6 .

Ко всем взрывчатым веществам предъявляют очень жесткие требования с точки зрения безопасности обращения с ними, мощности, химической и физической стойкости, чувствительности. Из всех известных инициирующих взрывчатых веществ по всем этим характеристикам «проходят» лишь «гремучая ртуть», азид и тринитрорезорцинат свинца (ТНРС).

Свинец и наука

В Аламогордо – место первого атомного взрыва – Энрико Ферми выехал в танке, оборудованном свинцовой защитой. Чтобы понять, почему от гамма-излучения защищаются именно свинцом, нам необходимо обратиться к сущности поглощения коротковолнового излучения.

Гамма-лучи, сопровождающие радиоактивный распад, идут из ядра, энергия которого почти в миллион раз превышает ту, что «собрана» во внешней оболочке атома. Естественно, что гамма-лучи неизмеримо энергичнее лучей световых. Встречаясь с веществом, фотон или квант любого излучения теряет свою энергию, этим-то и выражается его поглощение. Но энергия лучей различна. Чем короче их волна, тем они энергичнее, или, как принято выражаться, жестче. Чем плотнее среда, через которую проходят лучи, тем сильнее она их задерживает. Свинец плотен. Ударяясь о поверхность металла, гамма-кванты выбивают из нее электроны, на что расходуют свою энергию. Чем больше атомный номер элемента, тем труднее выбить электрон с его внешней орбиты из-за большей силы притяжения ядром.

Возможен и другой случай, когда гамма-квант сталкивается с электроном, сообщает ему часть своей энергии и продолжает свое движение. Но после встречи он стал менее энергичным, более «мягким», и в дальнейшем слою тяжелого элемента поглотить такой квант легче. Это явление носит название комптон-эффекта по имени открывшего его американского ученого.

Чем жестче лучи, тем больше их проникающая способность – аксиома, не требующая доказательств. Однако ученых, положившихся на эту аксиому, ожидал весьма любопытный сюрприз. Вдруг выяснилось, что гамма-лучи энергией более 1 млн эВ задерживаются свинцом не слабее, а сильнее менее жестких! Факт, казалось, противоречащий очевидности. После проведения тончайших экспериментов выяснилось, что гамма-квант энергией более 1,02 МэВ в непосредственной близости от ядра «исчезает», превращаясь в пару электрон – позитрон, и каждая из частиц уносит с собой половину затраченной на их образование энергии. Позитрон недолговечен и, столкнувшись с электроном, превращается в гамма-квант, но уже меньшей энергии. Образование электронно-позитронных пар наблюдается только у гамма-квантов высокой энергии и только вблизи от «массивного» ядра, то есть в элементе с бóльшим атомным номером.

Свинец – один из последних стабильных элементов таблицы Менделеева. И из тяжелых элементов – самый доступный, с отработанной веками технологией добычи, с разведанными рудами. И очень пластичный. И очень удобный в обработке. Вот почему свинцовая защита от излучения – самая распространенная. Пятнадцати-двадцати-сантиметрового слоя свинца достаточно, чтобы предохранить людей от действия излучения любого известного науке вида.

Коротко упомянем еще об одной стороне служения свинца науке. Она тоже связана с радиоактивностью.

В часах, которыми мы пользуемся, нет свинцовых деталей. Но в тех случаях, когда время измеряют не часами и минутами, а миллионами лет, без свинца не обойтись. Радиоактивные превращения урана и тория завершаются образованием стабильных изотопов элемента №82. При этом, правда, получается разный свинец. Распад изотопов 235 U и 238 U приводит в конечном итоге к изотопам 207 Pb и 206 Pb. Наиболее распространенный изотоп тория 232 Th заканчивает свои превращения изотопом 208 Pb. Установив соотношение изотопов свинца в составе геологических пород, можно узнать, сколько времени существует тот или иной минерал. При наличии особо точных приборов (масс-спектрометров) возраст породы устанавливают по трем независимым определениям – по соотношениям 206 Pb: 238 U; 207 Pb: 235 U и 208 Pb: 232 Th.

Свинец и культура

Начнем с того, что эти строчки отпечатаны литерами, изготовленными из свинцового сплава. Главные компоненты типографских сплавов – свинец, олово и сурьма. Интересно, что свинец и олово стали использовать в книгопечатании с первых его шагов. Но тогда они не составляли единого сплава. Немецкий первопечатник Иоганн Гуттенберг литеры из олова отливал в свинцовые формы, так как считал удобным чеканить из мягкого свинца формы, которые выдерживали определенное количество заливок олова. Нынешние оловянно-свинцовые типографские сплавы составляют так, чтобы они удовлетворяли многим требованиям: они должны иметь хорошие литьевые свойства и незначительную усадку, быть достаточно твердыми и химически стойкими по отношению к краскам и смывающим их растворам; при переплавке должно сохраняться постоянство состава.

Однако служение свинца человеческой культуре началось задолго до появления первых книг. Живопись появилась раньше письменности. На протяжении многих столетий художники использовали краски на свинцовой основе, и они до сих пор не вышли из употребления: желтая – свинцовый крон, красная – сурик и, конечно, свинцовые белила. Между прочим, именно из-за свинцовых белил кажутся темными картины старых мастеров. Под действием микропримесей сероводорода в воздухе свинцовые белила превращаются в темный сернистый свинец PbS...

С давних пор стенки гончарных изделий покрывали глазурями. Простейшая глазурь делается из окиси свинца и кварцевого песка. Ныне санитарный надзор запрещает использовать эту глазурь при изготовлении предметов домашнего обихода: контакт пищевых продуктов с солями свинца должен быть исключен. Но в составе майоликовых глазурей, предназначенных для декоративных целей, сравнительно легкоплавкие соединения свинца используют, как и прежде.

Наконец, свинец входит в состав хрусталя, точнее, не свинец, а его окись. Свинцовое стекло варится без каких-либо осложнений, оно легко выдувается и гранится, сравнительно просто нанести на него узоры и обычную нарезку, винтовую, в частности. Такое стекло хорошо преломляет световые лучи и потому находит применение в оптических приборах.

Добавляя в шихту свинец и поташ (вместо извести), приготовляют страз – стекло с блеском, большим, чем у драгоценных камней.

Свинец и медицина

Попадая в организм, свинец, как и большинство тяжелых металлов, вызывает отравления. И тем не менее свинец нужен медицине. Со времен древних греков остались во врачебной практике свинцовые примочки и пластыри, но этим не ограничивается медицинская служба свинца.

Желчь нужна не только сатирикам. Содержащиеся в ней органические кислоты, прежде всего гликохолевая C 23 H 36 (OH) 3 CONHCH 2 COOH, а также таурохолевая C 23 H 36 (OH) 3 CONHCH 2 CH 2 SO 3 H, стимулируют деятельность печени. А поскольку не всегда и не у всех печень работает с точностью хорошо отлаженного механизма, эти кислоты нужны медицине. Выделяют их и разделяют с помощью уксуснокислого свинца. Свинцовая соль гликохолевой кислоты выпадает при этом в осадок, а таурохолевой – остается в маточном растворе. Отфильтровав осадок, из маточного раствора выделяют и второй препарат, действуя опять же свинцовым соединением – основной уксусной солью.

Но главная работа свинца в медицине связана с диагностикой и рентгенотерапией. Он защищает врачей от постоянного рентгеновского облучения. Для практически полного поглощения лучей Рентгена достаточно на их пути поставить слой свинца в 2...3 мм. Вот почему медицинский персонал рентгеновских кабинетов облачен в фартуки, рукавицы и шлемы из резины, в состав которой введен свинец. И изображение на экране наблюдают через свинцовое стекло.

Таковы главные аспекты взаимоотношений человечества со свинцом – элементом, известным с глубокой древности, но и сегодня служащим человеку во многих областях его деятельности.

Чудесные горшки благодаря свинцу

Производство металлов, прежде всего золота, в Древнем Египте считалось «священным искусством». Завоеватели Египта истязали его жрецов, выпытывая у них секреты выплавки золота, но те умирали, сохраняя тайну. Сущность процесса, который египтяне так оберегали, выяснили спустя много лет. Они обрабатывали золотую руду расплавленным свинцом, растворяющим благородные металлы, и таким образом извлекали золото из руд. Этот раствор затем подвергали окислительному обжигу, и свинец превращался в окись. Главной тайной этого процесса были горшки для обжига. Их делали из костяной золы. При плавке окись свинца впитывалась в стенки горшка, увлекая при этом случайные примеси. А на дне оставался чистый сплав.

Использование свинцового балласта

26 мая 1931 г. профессор Огюст Пиккар должен был подняться в небо на стратостате собственной конструкции – с герметичной кабиной. И поднялся. Но, разрабатывая детали предстоящего полета, Пиккар неожиданно столкнулся с препятствием совсем не технического порядка. В качестве балласта он решил взять на борт не песок, а свинцовую дробь, для которой требовалось гораздо меньше места в гондоле. Узнав об этом, чиновники, ведавшие полетом, категорически запретили замену: в правилах сказано «песок», ничто другое сбрасывать на головы людей недопустимо (за исключением лишь воды). Пиккар решил доказать безопасность своего балласта. Он вычислил силу трения свинцовой дроби о воздух и распорядился сбросить эту дробь ему на голову с самой высокой постройки Брюсселя. Полная безопасность «свинцового дождя» была доказана наглядно. Однако администрация оставила опыт без внимания: «Закон есть закон, сказано песок, значит, песок, а не дробь». Препятствие казалось неодолимым, но ученый нашел выход: он объявил, что в гондоле стратостата в качестве балласта будет находиться «свинцовый песок». Заменой слова «дробь» на слово «песок» бюрократы были обезоружены и более не препятствовали Пиккару.

Свинец в лакокрасочной промышленности

Свинцовые белила умели изготовлять 3 тыс. лет назад. Основным поставщиком их в древнем мире был остров Родос в Средиземном море. Красок тогда не хватало, и стоили они чрезвычайно дорого. Прославленный греческий художник Никий однажды с нетерпением ожидал прибытия белил с Родоса. Драгоценный груз прибыл в афинский порт Пирей, но там неожиданно вспыхнул пожар. Пламя охватило корабли, на которых были привезены белила. Когда пожар погасили, расстроенный художник поднялся на палубу одного из пострадавших кораблей. Он надеялся, что не весь груз погиб, мог же уцелеть хотя бы один бочонок с нужной ему краской. Действительно, в трюме нашлись бочки с белилами: они не сгорели, но сильно обуглились. Когда бочки вскрыли, то удивлению художника не было границ: в них была не белая краска, а ярко-красная! Так пожар в порту подсказал путь изготовления замечательной краски – сурика.

Свинец и газы

При плавке того или иного металла приходится заботиться об удалении из расплава газов, так как иначе получается низкокачественный материал. Добиваются этого различными технологическими приемами. Выплавка же свинца в этом смысле никаких хлопот металлургам не доставляет: кислород, азот, сернистый газ» водород, окись углерода, углекислый газ, углеводороды не растворяются ни в жидком, ни в твердом свинце.

Свинец в строительстве

В древности при строительстве зданий или оборонительных сооружений камни нередко скрепляли расплавленным свинцом. В селении Старый Крым и сейчас сохранились руины так называемой свинцовой мечети, сооруженной в XIV столетии. Такое название здание получило оттого, что зазоры в каменной кладке залиты свинцом.

Ограничения в применении свинца

В настоящее время промышленность всего мира переживает очередной этап преобразований, связанных с ужесточением экологических стандартов - происходит всеобщий отказ от свинца. Германия существенно ограничила его использование с 2000 г., Голландия - с 2002 г., а такие европейские страны, как Дания, Австрия и Швейцария, вообще запретили использование свинца. Эта тенденция станет общей для всех стран ЕС в 2015 г. США и Россия также активно развивают технологии, которые помогут найти альтернативу применению свинца.

Его широкое применение в промышленности привело к тому, что свинцовое загрязнение можно обнаружить повсюду. Рассмотрим важнейшие составляющие биосферы, такие как воздух, вода и почва.

Начнем с атмосферы. С воздухом в организм человека поступает незначительное количество свинца - (всего 1-2%), но при этом большая часть свинца усваивается. Наибольшие выбросы свинца в атмосферу происходят в следующих отраслях производства:

  • металлургическая промышленность;
  • машиностроение (производство аккумуляторов);
  • топливно-энергетический комплекс (производство этилированного бензина);
  • химический комплекс (производство пигментов, смазок и др.);
  • стекольные предприятия;
  • консервное производство;
  • деревообрабатывающая и целлюлозно-бумажная промышленность;
  • предприятия оборонной промышленности.

Без сомнения, наиболее значимым источником загрязнения атмосферы свинцом является автомобильный транспорт, использующий этилированный бензин.

Доказано, что повышение содержания свинца в питьевой воде обуславливает, как правило, увеличение его концентрации в крови. Значительное повышение содержания этого металла в поверхностных водах связано с его высокой концентрацией в сточных водах рудообогатительных фабрик, некоторых металлургических заводов, шахт и т.д.

Из загрязненной почвы свинец поступает в сельскохозяйственные культуры, а вместе с пищей - и непосредственно в организм человека. Отмечено активное накопление данного металла в капусте и корнеплодах, причем именно в тех, которые повсеместно употребляются в пищу (например, в картофеле). Некоторые виды почв прочно связывают свинец, что предохраняет от загрязнения грунтовые и питьевые воды, растительную продукцию. Но тогда сама почва постепенно становится все более зараженной и в какой-то момент может произойти разрушение органического вещества почвы с выбросом свинца в почвенный раствор. В итоге она окажется непригодной для сельскохозяйственного использования.

Таким образом, вследствие глобального загрязнения окружающей среды свинцом, он стал вездесущим компонентом любой растительной и животной пищи. В организм человека большая часть свинца поступает с продуктами питания - от 40 до 70% в разных странах. Растительные продукты в целом содержат больше свинца, чем животные.

Как уже было сказано, всему виною промышленные предприятия. Естественно, на самих производствах, имеющих дело со свинцом, экологическая обстановка хуже, чем где бы то ни было. По результатам официальной статистики, среди профессиональных интоксикаций свинцовая занимает первое место. В электротехнической промышленности, цветной металлургии и машиностроении интоксикация обусловлена превышением ПДК свинца в воздухе рабочей зоны в 20 и более раз. Свинец вызывает обширные патологические изменения в нервной системе, нарушает деятельность сердечно-сосудистой и репродуктивной систем.