Волновая функция ее физический смысл. Волновая функция

корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow{r},t)$- пси-функция).

Определение 1

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow{r},t)$, импульсное представление: $\psi"(\overrightarrow{p},t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если ${\left|\psi\right|}^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ {\rm и}\ $ $\psi_2$, то для этой системы существует состояние:

где $C_{1\ }и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где ${\left|C_n\right|}^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac{E}{\hbar }$, $\psi\left(\overrightarrow{r}\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow{r}\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow{r}\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow{r}\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow{r}\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow{r}\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow{r}\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac{\partial \psi}{\partial x},\ \frac{\partial \psi}{\partial y},\frac{\partial \psi}{\partial z}$).

Пример 1

Задание: Для некоторой частицы задана волновая функция вида: $\psi=\frac{A}{r}e^{-{r}/{a}}$, где $r$ -- расстояние от частицы до центра силы (рис.1), $a=const$. Примените условие нормировки, найдите нормировочный коэффициент A.

Рисунок 1.

Решение:

Запишем условие нормировки для нашего случая в виде:

\[\int{{\left|\psi\right|}^2dV=\int{\psi\psi^*dV=1\left(1.1\right),}}\]

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

\[\psi=\frac{A}{r}e^{-{r}/{a}}\to \psi^*=\frac{A}{r}e^{-{r}/{a}}\left(1.2\right).\]

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=1\left(1.3\right).}\]

Проведем интегрирование в левой части:

\[\int\limits^{\infty }_0{\frac{A^2}{r^2}e^{-{2r}/{a}}4\pi r^2dr=2\pi A^2a=1\left(1.4\right).}\]

Из формулы (1.4) выразим искомый коэффициент:

Ответ: $A=\sqrt{\frac{1}{2\pi a}}.$

Пример 2

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^{-{r}/{a}}$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac{dP}{dr}$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac{dp}{dr}$ приравняетм к нулю:

\[{\left.\frac{dp}{dr}\right|}_{r=r_B}=8\pi rA^2e^{-{2r}/{a}}+4\pi r^2A^2e^{-{2r}/{a}}\left(-\frac{2}{a}\right)=8\pi rA^2e^{-{2r}/{a}}\left(1-\frac{r}{a}\right)=0(2.4)\]

Так как решение $8\pi rA^2e^{-{2r_B}/{a}}=0\ \ {\rm при}\ \ r_B\to \infty $, нам не подходит, то отсается:

Экспериментальное подтверждение идеи Луи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречия ряда экспериментов с применяемыми в начале XX века теориями привели к новому этапу развития квантовой физики – созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность , а величина , названная амплитудой вероятности и обозначаемая . Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

(4.3.1)

где , где – функция комплексно-сопряженная с Ψ.

Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический , вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волны де Бройля) определяет вероятность нахождения частицы в момент времени в области с координатами x и dx , y и dy , z и dz .

Итак, в квантовой механике состояние частицы описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых

. (4.3.2)

Величина (квадрат модуля Ψ-функции) имеет смысл плотности вероятности , т.е. определяет вероятность нахождения частицы в единице объема в окрестности точки , имеющей координаты x , y , z . Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля , которым определяется интенсивность волн де Бройля .

Вероятность найти частицу в момент времени t в конечном объеме V , согласно теореме о сложении вероятностей, равна:

.

Т.к. определяется как вероятность, то необходимо волновую функцию Ψ представить так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей:

(4.3.3)

где данный интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x , y , z от до . Таким образом, условие нормировки говорит об объективном существовании частицы во времени и пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть:

· конечной (вероятность не может быть больше единицы);

· однозначной (вероятность не может быть неоднозначной величиной);

· непрерывной (вероятность не может меняться скачком).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями , , … , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

где (n = 1, 2, 3…) – произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории , в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояния микрообъектов . Например, среднее расстояние электрона от ядра вычисляется по формуле

,

  • 5. Принцип Гюйгенса-Френеля. Зоны Френеля. Прямолинейное распространение света. Принцип гюйгенса-френеля
  • Метод зон френеля
  • 7.Дифракция в паралллных лучах.Дифракция от одной щели.Условия максимумов и минимумов
  • §5 Дифракционная решетка.
  • 8.Дифракционная решетка.Дифракционные спектры.Условия главных максимумов
  • 9.Пространственная решетка. Формула Вульфа Брегга.Исследования структуры кристаллов. Оптически однородная среда.
  • 15.Дисперсия света.Спектры.Электронная теория дисперсии света.
  • 2. Электронная теория дисперсии света
  • 13.Двойное лучепреломление.Построения Гюйгенса для одноосных кристаллов.
  • 14.Давление света.Опыты Лебедева.Классическое и квантовое объяснение давления..
  • 16.Тепловое излучение.Испускательная и поглощательная способности.Абсолютно черное тело.Законкиргофа.
  • 22 Формулы де Бройля. Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Дифракция электронов.
  • 23 Излучение Вавилова-Черенкова.
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  • 25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.
  • 26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.
  • 27 Туннельный эффект. Линейный гармонический осциллятор.
  • 28 Основное состояние атома водорода по Шредингеру. Энергия основного cостояния. Размеры атома водорода.
  • 29.Постулаты Бора. Теория атома водорода по Бору. Недостатки теории Бора.
  • 30.Спектр атома водорода и его объяснение. Спектральные закономерности Ридберга
  • 31.Атом водорода в квантовой механике. Главное, орбитальное и магнитное поле.
  • 32.Спин электрона. Спиновое квантовое число. Опыт Штерна и Герлаха.
  • 33.Поглощение свет. Спонтанное и вынужденное испускание излучения. Инверсная населенность. Усиливающая среда
  • 34.Оптические квантовые генераторы(лазеры). Метастабильный уровень. Особенности лазерного излучения.
  • §2 Трехуровневая схема
  • 35.Лазеры. Усиливающая среда. Порог генерации лазерного излучения.
  • 36 Цепная реакция деления.Критическиеразмеры.Коэффициент размножения нейтронов.Мгновенные и запаздывающие нейтроны.
  • 37 Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева.
  • 40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения
  • 41 Ядерные реакции и законы сохранения.Эффективное поперечное сечение.
  • 46. Понятие о ядерной энергетике. Ядерные реакторы. Понятие трансурановых элементов
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.

    Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

    Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

    Где Лапласа, который можно

    расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

    В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

    1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

    Сопряженные функции.

    2) Плотность вероятностей нахождения частицы в единице объема:

    3) Волновая функция должна удовлетворять условию:

    где 3 интеграла расчитываются по всему объему, где может находится частица.

    Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

    25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

    Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

    т.к. зависит только от времени, то разделим наполучим:

    Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

    Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

    Рассмотрим левую часть уравнения Шредингера: ;;

    разделим переменные , проинтегрируем полученное уравнение:

    воспользуясь математическими преобразованиями:

    В этом случае вероятность нахождения частицы можно определить:

    Либо после преобразований:

    –данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

    Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

    Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

    Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

    26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

    Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

    Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

    При таком условии частица не проникает за пределы "ямы", т.е.

    y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

    илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

    n-главное квантовое число n=1,2,3…

    Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

    состояние с min энергией называется основным, все остальные возбужденные.

    Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

    Графически изобразим

    Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

    Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

    Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

    В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

    Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

    Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия

    Вывод формулы для ядра в случае свободной частицы, приведенный в задаче 4.11, неудовлетворителен по двум причинам, которые связаны между собой. Во-первых, понятие суммы по различным состояниям и, использованной в выражении (4.62), не удовлетворительно, если состояния принадлежат непрерывному спектру, что имеет место в случае свободной частицы. Во-вторых, волновые функции для свободных частиц (плоские волны], хотя и являются ортогональными, однако не могут быть нормированы, так как

    и не выполнено условие равенства (4.47), которое применялось при выводе выражения (4.62). Оба эти пункта можно одновременно исправить чисто математическим путем. Возвратимся к разложению произвольной функции по собственным функциям :

    (4.65)

    и учтем, что все или часть состояний могут принадлежать к непрерывному спектру, так что часть суммы по следует заменить интегралом. Можно математически строго получить корректное выражение для ядра , аналогичное выражению (4.62), но применимое также и в том случае, когда состояния находятся в непрерывной части спектра.

    Нормировка на конечный объем . Многие физики предпочитают другой, менее строгий подход. То, что они делают, заключается в некоторой модификации исходной задачи, причем результаты (в их физическом смысле) изменятся несущественно, однако все состояния оказываются дискретными по энергии и поэтому все разложения принимают вид простых сумм. В нашем примере этого можно достичь следующим образом. Мы рассматриваем амплитуду вероятности перехода из точки в точку за конечное время. Если эти две точки находятся на некотором конечном расстоянии друг от друга и разделяющий их промежуток времени не слишком велик, то в амплитуде заведомо не будет сколько-нибудь заметных различий от того, является ли электрон действительно свободным или предполагается помещенным в какой-то очень большой ящик объемом со стенками, расположенными очень далеко от точек и . Если бы частица могла достичь стенок и вернуться назад за время , это могло бы сказаться на амплитуде; но если стенки достаточно удалены, то они никак не повлияют на амплитуду.

    Конечно, это предположение может стать неверным при некотором специальном выборе стенок; например, если точка будет находиться в фокусе волн, вышедших из точки и отраженных от стенок. Иногда по инерции допускают ошибку, заменяя систему, находящуюся в свободном пространстве, системой, расположенной в центре большой сферы. Тот факт, что система остается точно в центре идеальной сферы, может давать некий эффект (подобно появлению светлого пятна в центре тени от совершенно круглого предмета), который не исчезает, даже если радиус сферы стремится к бесконечности. Влияние поверхности было бы пренебрежимо малым в случае стенок другой формы или для системы, смещенной относительно центра этой сферы.

    Рассмотрим сначала одномерный случай. Волновые функции, зависящие от координаты, имеют вид , где принимает оба знака. Какой вид будут иметь функции , если область изменения ограничить произвольным интервалом от до ? Ответ зависит от граничных условий, определяющих значения в точках и . Простейшими с физической точки зрения являются граничные условия в случае стенок, создающих для частицы сильный отталкивающий потенциал, ограничивая тем самым область ее движения (т. е. при идеальном отражении). В этом случае в точках и . Решениями волнового уравнения

    , (4.66)

    соответствующими энергии в области , будут экспоненты и или любая их линейная комбинация. Как , так и не удовлетворяют выбранным граничным условиям, однако при (где - целое число) требуемыми свойствами обладает в случае нечетного их полусумма (т. е. ), а в случае четного - деленная на их полуразность (т. е. ), как это схематически изображено на фиг. 4.1. Таким образом, волновые функции состояний имеют вид синусов и косинусов, а соответствующие им энергетические уровни дискретны и не составляют континуума.

    Фиг. 4.1. Вид одномерных волновых функций, нормированных в ящике.

    Показаны первые четыре из них. Энергии соответствующих уровней равны , , и . Абсолютное значение энергии, которое зависит от размеров нашего фиктивного ящика, несущественно для большинства реальных задач. То, что действительно имеет значение, - это соотношение между энергиями различных состояний.

    Если решения записать в виде и , то они будут нормированы, поскольку

    . (4.67)

    Сумма по всем состояниям является суммой по . Если мы рассмотрим, например, синусоидальные волновые функции (т. е. четные значения ), то при небольших значениях и очень большой величине (стенки далеки от интересующей нас точки) соседние по номерам функции различаются весьма незначительно. Их разность

    (4.68)

    приблизительно пропорциональна малой величине . Поэтому сумму по можно заменить интегралом по . Так как допустимые значения расположены последовательно с интервалом , в промежутке расположено состояний. Все это применимо также и к состояниям с косинусоидальной волновой функцией, поэтому во всех наших формулах мы можем заменить суммы интегралами

    , (4.69)

    не забывая, что в конце нужно сложить результаты для обоих типов волновых функций, а именно и .

    Часто бывает неудобным использовать в качестве волновых функций и , и более предпочтительными являются их линейные комбинации

    и .

    Однако, вводя ограниченный объем , мы вынуждены использовать синусы и косинусы, а не их линейные комбинации, потому что при заданном значении решением будет лишь одна из этих функций, а не обе сразу. Но если пренебречь малыми погрешностями, являющимися следствием таких небольших различий в значениях , то мы можем рассчитывать на получение правильных результатов и с этими новыми линейными комбинациями. После нормировки они принимают вид и . Поскольку волну можно рассматривать как волну , но с отрицательным значением , наша новая процедура, включая объединение двух типов волновых функций, сводится к следующему практическому правилу: взять волновые функции свободной частицы , нормировать их на отрезке длины изменения переменной (т. е. положить ) и заменить суммы по состояниям интегралами по переменной таким образом, чтобы число состояний со значениями , заключенных в интервале , было равно , а само изменялось от до .

    Периодические граничные условия . Иногда подобный экскурс к косинусам и синусам, а затем обратно к экспонентам удается обойти с помощью следующего довода. Так как введение стенки является искусственным приемом, то ее конкретное положение и соответствующее граничное условие не должны иметь какого-нибудь физического значения, если только стенка достаточно удалена. Поэтому вместо физически простых условий мы можем использовать другие, решениями для которых сразу окажутся экспоненты . Таковыми условиями являются

    (4.70)

    . (4.71)

    Их называют периодическими граничными условиями, потому что требование периодичности с периодом во всем пространстве привело бы к тем же самым условиям. Легко проверить, что функции являются нормированными на отрезке решениями при условии, что , где - любое целое (положительное или отрицательное) число или нуль. Отсюда непосредственно следует правило, сформулированное выше.

    Что происходит в случае трех измерений, мы можем понять, если рассмотрим прямоугольный ящик со сторонами, равными , , . Используем периодические граничные условия, т. е. потребуем, чтобы значения волновой функции и ее первой производной на одной грани ящика были симметрично равны их значениям на противоположной грани. Нормированная волновая функция свободной частицы будет представлять собой произведение

    , (4.72)

    где - объем ящика, и допустимыми значениями будут , и (, , - целые числа). Кроме того, число решений со значениями , , , лежащими соответственно в интервалах , , , равно произведению, нужно ввести добавочный множитель . [Выражение (4.64) содержит произведение двух волновых функций.] Во-вторых, символ суммы надо заменить на интеграл . Все это оправдывает то, что было проделано в § 2 гл. 4, а также результаты вывода в задаче 4.11.

    Следует отметить, что множители сокращаются, как это и должно быть, так как при ядро не должно зависеть от размера ящика.

    Некоторые замечания о математической строгости . У читателя при виде того, как в конце вычислений объем сокращается, может возникнуть одна из двух реакций: либо удовлетворение от того, что он сокращается, как это и должно быть, поскольку стенки ни на что не влияют, либо недоумение, почему все делается так нестрого, «грязно» и запутанно, с помощью стенок, которые не имеют никакого реального смысла, и т. д., когда все это можно было бы выполнить намного изящнее и математически строже без всяких стенок и тому подобных вещей. Тип такой реакции зависит от того, мыслите ли вы физически или же математически. По поводу математической строгости в физике между математиками и физиками возникает много недоразумений, поэтому, быть может, уместно дать оценку каждому методу: рассуждениям с ящиком и математически строгому рассмотрению.

    Здесь, конечно, содержится более тривиальный вопрос: какой метод для нас более привычен, т. е. требует минимума новых знаний? Прежде чем подсчитывать число различных состояний в ящике, большинство физиков думали прежде всего именно об этом.

    Наряду с этим математически строгое решение может быть нестрогим с физической точки зрения; иначе говоря, возможно, что ящик существует на самом деле. Им может быть не обязательно прямоугольный ящик, ведь не часто оказывается, что эксперименты ставят под звездами; чаще их проводят в комнате. Хотя физически представляется вполне разумным, что стенки не должны влиять на опыт, тем не менее такую постановку задачи надо рассматривать как идеализацию. Удаление стенок на бесконечность ничем не лучше, чем замена их достаточно далекими идеальными зеркалами. В первом случае математическая строгость также нарушается, поскольку реальные стенки находятся не на бесконечности.

    Подход с привлечением удаленных стенок справедлив и строг настолько же, насколько оправдан. Он обладает несколькими преимуществами. Например, когда объем в заключительных формулах сокращается, мы видим, что несуществен по крайней мере один из аспектов идеализации - насколько стенки удалены. Этот результат интуитивно еще более убеждает нас в том, что истинное расположение реальной окружающей обстановки может быть несущественным. Наконец, полученная формула очень полезна, когда мы действительно имеем случай конечных размеров. Например, в гл. 8 мы воспользуемся ею, чтобы подсчитать число различных звуковых волн в большом блоке вещества прямоугольной формы.

    С другой стороны, преимуществом математически строгого подхода является упразднение в сущности ненужной детали, которая не входит в результат. Хотя введение стенок позволяет кое-что узнать о том, почему же они все-таки ни на что но влияют, тем не менее можно убедиться в справедливости этого, не вникая при этом в детали.

    Задача о нормировке волновых функций представляет собой довольно частный пример, но он иллюстрирует главное. Физик не может понять осторожности, проявляемой математиком при решении идеализированной физической задачи. Он знает, что реальная задача намного сложнее. Она уже упрощена с помощью интуиции, которая отбрасывает несущественное и аппроксимирует то, что остается.

    В этой статье описывается волновая функция и ее физический смысл. Также рассматривается применение этого понятия в рамках уравнения Шредингера.

    Наука на пороге открытия квантовой физики

    В конце девятнадцатого века молодых людей, которые хотели связать свою жизнь с наукой, отговаривали становиться физиками. Бытовало мнение, что все явления уже открыты и великих прорывов в этой области уже не может быть. Сейчас, несмотря на кажущуюся полноту знаний человечества, подобным образом говорить никто не решится. Потому что так бывает часто: явление или эффект предсказаны теоретически, но людям не хватает технической и технологической мощи, чтобы доказать или опровергнуть их. К примеру, Эйнштейн предсказал более ста лет назад, но доказать их существование стало возможным лишь год назад. Это касается и мира (а именно к ним применимо такое понятие, как волновая функция): пока ученые не поняли, что строение атома сложное, у них не было необходимости изучать поведение таких маленьких объектов.

    Спектры и фотография

    Толчком к развитию квантовой физики стало развитие техники фотографии. До начала двадцатого века запечатление изображений было делом громоздким, долгим и дорогостоящим: фотоаппарат весил десятки килограммов, а моделям приходилось стоять по полчаса в одной позе. К тому же малейшая ошибка при обращении с хрупкими стеклянными пластинами, покрытыми светочувствительной эмульсией, приводила к необратимой потере информации. Но постепенно аппараты становились все легче, выдержка - все меньше, а получение отпечатков - все совершеннее. И наконец, стало возможно получить спектр разных веществ. Вопросы и несоответствия, которые возникали в первых теориях о природе спектров, и породили целую новую науку. Основой для математического описания поведения микромира стали волновая функция частицы и её уравнение Шредингера.

    Корпускулярно-волновой дуализм

    После определения строения атома, возник вопрос: почему электрон не падает на ядро? Ведь, согласно уравнениям Максвелла, любая движущаяся заряженная частица излучает, следовательно, теряет энергию. Если бы это было так для электронов в ядре, известная нам вселенная просуществовала бы недолго. Напомним, нашей целью является волновая функция и ее статистический смысл.

    На выручку пришла гениальная догадка ученых: элементарные частицы одновременно и волны, и частицы (корпускулы). Их свойствами являются и масса с импульсом, и длина волны с частотой. Кроме того, благодаря наличию двух ранее несовместимых свойств элементарные частицы приобрели новые характеристики.

    Одной из них является трудно представимый спин. В мире более мелких частиц, кварков, этих свойств настолько много, что им дают совершенно невероятные названия: аромат, цвет. Если читатель встретит их в книге по квантовой механике, пусть помнит: они совсем не то, чем кажутся на первый взгляд. Однако как же описать поведение такой системы, где все элементы обладают странным набором свойств? Ответ - в следующем разделе.

    Уравнение Шредингера

    Найти состояние, в котором находится элементарная частица (а в обобщенном виде и квантовая система), позволяет уравнение :

    i ħ[(d/dt) Ψ]= Ĥ ψ.

    Обозначения в этом соотношении следующие:

    • ħ=h/2 π, где h - постоянная Планка.
    • Ĥ - Гамильтониан, оператор полной энергии системы.

    Изменяя координаты, в которых решается эта функция, и условия в соответствии с типом частицы и поля, в котором она находится, можно получить закон поведения рассматриваемой системы.

    Понятия квантовой физики

    Пусть читатель не обольщается кажущейся простотой использованных терминов. Такие слова и выражения, как «оператор», «полная энергия», «элементарная ячейка», - это физические термины. Их значения стоит уточнять отдельно, причем лучше использовать учебники. Далее мы дадим описание и вид волновой функции, но эта статья носит обзорный характер. Для более глубокого понимания этого понятия необходимо изучить математический аппарат на определенном уровне.

    Волновая функция

    Ее математическое выражение имеет вид

    |ψ(t)> = ʃ Ψ(x, t)|x> dx.

    Волновая функция электрона или любой другой элементарной частицы всегда описывается греческой буквой Ψ, поэтому иногда ее еще называют пси-функцией.

    Для начала надо понять, что функция зависит от всех координат и времени. То есть Ψ(x, t) - это фактически Ψ(x 1 , x 2 … x n , t). Важное замечание, так как от координат зависит решение уравнения Шредингера.

    Далее необходимо пояснить, что под |x> подразумевается базисный вектор выбранной системы координат. То есть в зависимости от того, что именно надо получить, импульс или вероятность |x> будет иметь вид | x 1 , x 2 , …, x n >. Очевидно, что n будет также зависеть от минимального векторного базиса выбранной системы. То есть в обычном трехмерном пространстве n=3. Для неискушенного читателя поясним, что все эти значки около показателя x - это не просто прихоть, а конкретное математическое действие. Понять его без сложнейших математических выкладок не удастся, поэтому мы искренне надеемся, что интересующиеся сами выяснят его смысл.

    И наконец, необходимо объяснить, что Ψ(x, t)=.

    Физическая сущность волновой функции

    Несмотря на базовое значение этой величины, она сама не имеет в основании явления или понятия. Физический смысл волновой функции заключается в квадрате ее полного модуля. Формула выглядит так:

    |Ψ (x 1 , x 2 , …, x n , t)| 2 = ω,

    где ω имеет значение плотности вероятности. В случае дискретных спектров (а не непрерывных) эта величина приобретает значение просто вероятности.

    Следствие физического смысла волновой функции

    Такой физический смысл имеет далеко идущие последствия для всего квантового мира. Как становится понятно из значения величины ω, все состояния элементарных частиц приобретают вероятностный оттенок. Самый наглядный пример - это пространственное распределение электронных облаков на орбиталях вокруг атомного ядра.

    Возьмем два вида гибридизации электронов в атомах с наиболее простыми формами облаков: s и p. Облака первого типа имеют форму шара. Но если читатель помнит из учебников по физике, эти электронные облака всегда изображаются как некое расплывчатое скопление точек, а не как гладкая сфера. Это означает, что на определенном расстоянии от ядра находится зона с наибольшей вероятностью встретить s-электрон. Однако чуть ближе и чуть дальше эта вероятность не нулевая, просто она меньше. При этом для p-электронов форма электронного облака изображается в виде несколько расплывчатой гантели. То есть существует достаточно сложная поверхность, на которой вероятность найти электрон самая высокая. Но и вблизи от этой «гантели» как дальше, так и ближе к ядру такая вероятность не равна нулю.

    Нормировка волновой функции

    Из последнего следует необходимость нормировать волновую функцию. Под нормировкой подразумевается такая «подгонка» некоторых параметров, при которой верно некоторое соотношение. Если рассматривать пространственные координаты, то вероятность найти данную частицу (электрон, например) в существующей Вселенной должна быть равна 1. Формула выгладит так:

    ʃ V Ψ* Ψ dV=1.

    Таким образом, выполняется закон сохранения энергии: если мы ищем конкретный электрон, он должен быть целиком в заданном пространстве. Иначе решать уравнение Шредингера просто не имеет смысла. И неважно, находится эта частица внутри звезды или в гигантском космическом войде, она должна где-то быть.

    Чуть выше мы упоминали, что переменными, от которых зависит функция, могут быть и непространственные координаты. В таком случае нормировка проводится по всем параметрам, от которых функция зависит.

    Мгновенное передвижение: прием или реальность?

    В квантовой механике отделить математику от физического смысла невероятно сложно. Например, квант был введен Планком для удобства математического выражения одного из уравнений. Теперь принцип дискретности многих величин и понятий (энергии, момента импульса, поля) лежит в основе современного подхода к изучению микромира. У Ψ тоже есть такой парадокс. Согласно одному из решений уравнения Шредингера, возможно, что при измерении квантовое состояние системы изменяется мгновенно. Это явление обычно обозначается как редукция или коллапс волновой функции. Если такое возможно в реальности, квантовые системы способны перемещаться с бесконечной скоростью. Но ограничение скоростей для вещественных объектов нашей Вселенной непреложно: ничто не может двигаться быстрее света. Явление это зафиксировано ни разу не было, но и опровергнуть его теоретически пока не удалось. Со временем, возможно, этот парадокс разрешится: либо у человечества появится инструмент, который зафиксирует такое явление, либо найдется математическое ухищрение, которое докажет несостоятельность этого предположения. Есть и третий вариант: люди создадут такой феномен, но при этом Солнечная система свалится в искусственную черную дыру.

    Волновая функция многочастичной системы (атома водорода)

    Как мы утверждали на протяжении всей статьи, пси-функция описывает одну элементарную частицу. Но при ближайшем рассмотрении атом водорода похож на систему из всего лишь двух частиц (одного отрицательного электрона и одного положительного протона). Волновые функции атома водорода могут быть описаны как двухчастичные или оператором типа матрицы плотности. Эти матрицы не совсем точно являются продолжением пси-функции. Они скорее показывают соответствие вероятностей найти частицу в одном и другом состоянии. При этом важно помнить, что задача решена только для двух тел одновременно. Матрицы плотности применимы к парам частиц, но невозможны для более сложных систем, например при взаимодействии трех и более тел. В этом факте прослеживается невероятное подобие между наиболее «грубой» механикой и очень «тонкой» квантовой физикой. Поэтому не стоит думать, что раз существует квантовая механика, в обычной физике новых идей не может возникнуть. Интересное скрывается за любым поворотом математических манипуляций.