Доверительная вероятность показывает. Определение доверительного интервала и доверительной вероятности

Теоремы 1 и 2 хотя и являются общими, т. е. сформулированы при достаточно широких предположениях, они не дают возможности установить, насколько близки оценки к оцениваемым параметрам. Из факта, что -оценки являются состоятельными, следует только то, что при увеличении объема выборки значение P (|θ * – θ | < δ), δ < 0, приближается к 1.

Возникают следующие вопросы.

1) Каким должен быть объем выборки п, чтобы заданная точность
|θ * – θ | = δ была гарантирована с заранее принятой вероятностью?

2) Какова точность оценки, если объем выборки известен и вероятность безошибочности вывода задана?

3) Какова вероятность того, что при заданном объеме выборки будет обеспечена заданная точность оценки?

Введем несколько новых определений.

Определение. Вероятность γ выполнения неравенства, |θ *– θ | < δ называется доверительной вероятностью или надежностью оценки θ .

Перейдем от неравенства |θ *–θ | < δ к двойному неравенству. Известно, что . Поэтому доверительную вероятность можно записать в виде

Так как θ (оцениваемый параметр) – число постоянное, а θ * – величина случайная, понятие доверительной вероятности сформулировать так: доверительной вероятностью γ называется вероятность того, что интервал (θ *– δ, θ *+ δ) накрывает оцениваемый параметр.

Определение. Случайный интервал (θ *–δ , θ *+δ ), в пределах которого с вероятностью γ находится неизвестный оцениваемый параметр, называется доверительным интервалом İ , соответствующим коэффициенту доверия γ,

İ= (θ*– δ, θ*+ δ ). (3)

Надежность оценки γ может задаваться заранее, тогда, зная закон распределения изучаемой случайной величины, можно найти доверительный интервал İ . Решается и обратная задача, когда по заданному İ находится соответствующая надежность оценки.

Пусть, например, γ = 0,95; тогда число р = 1 – у = 0,05 показывает, с какой вероятностью заключение о надежности оценки ошибочно. Число р=1–γ называется уровнем значимости. Уровень значимости задается заранее в зависимости от конкретного случая. Обычно р принимают равным 0,05; 0,01; 0,001.

Выясним, как построить доверительный интервал для математического ожидания нормально распределенного признака. Было показано, что

Оценим математическое ожидание с помощью выборочной средней учитывая, что также имеет нормальное распределение*. Имеем

(4)

а по формуле (12.9.2) получаем

Принимая во внимание (13.5.12), получим

(5)

Пусть известна вероятность γ . Тогда

Для удобства пользования таблицей функции Лапласа положим тогда а

Интервал

(7)

накрывает параметр а = М (Х ) с вероятностью γ .

В большинстве случаев среднее квадратическое отклонение σ(Х) исследуемого признака неизвестно. Поэтому вместо σ (Х ) при большой выборке (n > 30) применяют исправленное выборочное среднее квадратическое отклонение s , являющееся, в свою очередь оценкой σ (X ), доверительный интервал будет иметь вид

İ =

Пример. С вероятностью γ = 0,95 найти доверительный интервал для М (Х ) – длины колоса ячменя сорта «Московский 121». Распределение задается таблицей, в которой" вместо интервалов изменения (х i , х i + 1) взяты числа , см. Считать, что случайная величина X подчинена нормальному распределению.

Решение. Выборка большая (n = 50). Имеем

Найдем точность оценки

Определим доверительные границы:

Таким образом, с надежностью γ = 0,95 математическое ожидание заключено в доверительном интервале I = (9,5; 10,3).

Итак, в случае большой выборки (n > 30), когда исправленное среднее квадратическое отклонение незначительно отклоняется от среднего квадратического отклонения значения признака в генеральной совокупности, можно найти доверительный интервал. Но делать большую выборку удается не всегда и это не всегда целесообразно. Из (7) видно, что чем меньше п, тем шире доверительный интервал, т. е. I зависит от объема выборки п.

Английский статистик Госсет (псевдоним Стьюдент) доказал, что в случае нормального распределения признака X в генеральной совокупности нормирования случайная величина

(8)

зависит только от объема выборки. Была найдена функция распределения случайной величины Т и вероятность P (T < t γ ), t γ – точность оценки. Функция, определяемая равенством

s (n , t γ ) = P (|T | < t γ ) = γ (9)

названа t-распределением Стьюдента с п – 1 степенями свободы. Формула (9) связывает случайную величину Т, доверительный интервал İ и доверительную вероятность γ . Зная две из них, можно найти третью. Учитывая (8), имеем

(10)

Неравенство в левой части (13.7.10) заменим равносильным ему неравенством . В результате получим

(11)

где t γ =t (γ ,n ). Для функции t γ составлены таблицы (см. Приложение 5). При n >30 числа t γ и t, найденные по таблице функции Лапласа, практически совпадают.

Доверительный интервал для оценки среднего квадратического отклонения σ x в случае нормального распределения.

Теорема. Пусть известно, что случайная величина имеет нормальное распределение. Тогда для оценки параметра σ х этого закона имеет место равенство

(12)

где γ – доверительная вероятность, зависящая от объема выборки п и точности оценки β .

Функция γ = Ψ (n , β ) хорошо изучена. С ее помощью определяют β = β (γ ,п ). Для β = β (γ ,п ) составлены таблицы, по которым по известным п (объему выборки) и γ (доверительной вероятности) определяется β .

Пример. Для оценки параметра нормально распределенной случайной величины была сделана выборка (дневной удой 50 коров) и вычислено s = 1,5. Найти доверительный интервал, накрывающий с вероятностью γ = 0,95.

Решение. По таблице β (γ , п) для n = 50 и γ = 0,95 находим β = 0,21 (см. Приложение 6).

В соответствии с неравенством (13) найдем границы доверительного интервала. Имеем

1,5 – 0,21·1,5 = 1,185; 1,5 + 0,21·1,5 = 1,185;

В котором с той или иной вероятностью находится генеральный параметр. Вероятности, признанные достаточными для уверенного суждения о генеральных параметрах на основании выборочных показателей, называют доверительными .

Понятие о доверительных вероятностях вытекает из принципа, что маловероятные события считаются практически невозможными, а события, вероятность которых близка к единице, принимают за почти достоверные. Обычно в качестве доверительных используют вероятности Р 1 = 0.95, Р 2 = 0.99, Р 3 = 0.999. Определенным значениям вероятностей соответствуют уровни значимости , под которыми понимают разность α = 1-Р. Вероятности 0.95 соответствует уровень значимости α 1 = 0.05 (5%), вероятности 0.99 - α 2 = 0.01 (1%), вероятности 0.999 - α 3 = 0.001 (0.1%).

Это означает, что при оценке генеральных параметров по выборочным показателям существует риск ошибиться в первом случае 1 раз на 20 испытаний, т.е. в 5% случаев; во втором - 1 раз на 100 испытаний, т.е. в 1% случаев; в третьем - 1 раз на 1000 испытаний, т.е. в 0.1% случаев. Таким образом, уровень значимости обозначает вероятность получения случайного отклонения от установленных с определенной вероятностью результатов. Вероятности, принятые как доверительные, определяют доверительный интервал между ними. На них можно основывать оценку той или иной величины и те границы, в которых она может находиться при разных вероятностях.

Для различных вероятностей доверительные интервалы будут следующими:

Р 1 = 0.95 интервал - 1.96σ до + 1.96σ (рис. 5)

Р 2 = 0.99 интервал - 2.58σ до + 2.58σ

Р 3 = 0.999 интервал - 3.03σ до + 3.03σ

Доверительным вероятностям соответствуют следующие величины нормированных отклонений:

Вероятности Р 1 = 0.95 соответствует t 1 = 1.96σ

Вероятности Р 2 = 0.99 соответствует t 2 = 2.58σ

Вероятности Р 3 = 0.999 соответствует t 3 = 3.03σ

Выбор того или иного порога доверительной вероятности осуществляют исходя из важности события. Уровень значимости в таком случае - эта та вероятность, которой решено пренебрегать в данной исследовании или явлении.

Средняя ошибка (m), или ошибка репрезентативности.

Выборочные характеристика, как правило, не совпадают по абсолютной величине с соответствующими генеральными параметрами. Величину отклонения выборочного показателя от его генерального параметра называют статистической ошибкой, или ошибкой репрезентативности. Статистические ошибки присущи только выборочным характеристикам, они возникают в процессе отбора вариант из генеральной совокупности.


Средняя ошибка вычисляется по формуле:

где σ - среднее квадратическое отклонение,

n - количество измерений (объем выборки).

Выражается в тех же единицах измерения, что и .

Величина средней ошибки обратно пропорциональна численности выборочной совокупности. Чем больше размеры выборки, тем меньше средняя ошибка, а следовательно, меньше расхождение между значениями признаков в выборочных и генеральной совокупностях.

Среднюю ошибку выборки можно использовать для оценки генеральной средней согласно закону нормального распределения. Так, в пределах ±1 находится 68.3% всех выборочных средних арифметических , в пределах ±2 - 95.5% всех выборочных средних , в пределах ±3 - 99.7% всех выборочных средних .

Доверительный интервал пришел к нам из области статистики. Это определенный диапазон, который служит для оценки неизвестного параметра с высокой степенью надежности. Проще всего это будет пояснить на примере.

Предположим, нужно исследовать какую-либо случайную величину, например, скорость отклика сервера на запрос клиента. Каждый раз, когда пользователь набирает адрес конкретного сайта, сервер реагирует на это с разной скоростью. Таким образом, исследуемое время отклика имеет случайный характер. Так вот, доверительный интервал позволяет определить границы этого параметра, и затем можно будет утверждать, что с вероятностью в 95% сервера будет находиться в рассчитанном нами диапазоне.

Или же нужно узнать, какому количеству людей известно о торговой марке фирмы. Когда будет подсчитан доверительный интервал, то можно будет, к примеру, сказать что с 95% долей вероятности доля потребителей, знающих о данной находится в диапазоне от 27% до 34%.

С этим термином тесно связана такая величина, как доверительная вероятность. Она представляет собой вероятность того, что искомый параметр входит в доверительный интервал. От этой величины зависит то, насколько большим окажется наш искомый диапазон. Чем большее значение она принимает, тем уже становится доверительный интервал, и наоборот. Обычно ее устанавливают равной 90%, 95% или 99%. Величина 95% наиболее популярна.

На данный показатель также оказывает влияние дисперсия наблюдений и Его определение основано на том предположении, что исследуемый признак подчиняется Это утверждение известно также как Закон Гаусса. Согласно ему, нормальным называется такое распределение всех вероятностей непрерывной случайной величины, которое можно описать плотностью вероятностей. Если предположение о нормальном распределении оказалось ошибочным, то оценка может оказаться неверной.

Сначала разберемся с тем, как вычислить доверительный интервал для Здесь возможны два случая. Дисперсия (степень разброса случайной величины) может быть известна либо нет. Если она известна, то наш доверительный интервал вычисляется с помощью следующей формулы:

хср - t*σ / (sqrt(n)) <= α <= хср + t*σ / (sqrt(n)), где

α - признак,

t - параметр из таблицы распределения Лапласа,

σ - квадратный корень дисперсии.

Если дисперсия неизвестна, то ее можно рассчитать, если нам известны все значения искомого признака. Для этого используется следующая формула:

σ2 = х2ср - (хср)2, где

х2ср - среднее значение квадратов исследуемого признака,

(хср)2 - квадрат данного признака.

Формула, по которой в этом случае рассчитывается доверительный интервал немного меняется:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n)), где

хср - выборочное среднее,

α - признак,

t - параметр, который находят с помощью таблицы распределения Стьюдента t = t(ɣ;n-1),

sqrt(n) - квадратный корень общего объема выборки,

s - квадратный корень дисперсии.

Рассмотри такой пример. Предположим, что по результатам 7 замеров была определена исследуемого признака, равная 30 и дисперсия выборки, равная 36. Нужно найти с вероятностью в 99% доверительный интервал, который содержит истинное значение измеряемого параметра.

Вначале определим чему равно t: t = t (0,99; 7-1) = 3.71. Используем приведенную выше формулу, получаем:

хср - t*s / (sqrt(n)) <= α <= хср + t*s / (sqrt(n))

30 - 3.71*36 / (sqrt(7)) <= α <= 30 + 3.71*36 / (sqrt(7))

21.587 <= α <= 38.413

Доверительный интервал для дисперсии рассчитывается как в случае с известным средним, так и тогда, когда нет никаких данных о математическом ожидании, а известно лишь значение точечной несмещенной оценки дисперсии. Мы не будем приводить здесь формулы его расчета, так как они довольно сложные и при желании их всегда можно найти в сети.

Отметим лишь, что доверительный интервал удобно определять с помощью программы Excel или сетевого сервиса, который так и называется.

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра. Будем считать постоянным числом (может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше, тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность, с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном.

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

T(/n^?)= (1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью, то минимальный объем выборки, который обеспечит эту точность, находят по формуле

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н.

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

Ранее нами было рассмотрено определение доверительной вероятности для отдельного измерения X i с помощью табл. 1.1, то есть определение вероятности того, что X i не будет отклоняться от истинного значения более чем на величину ΔX.

Однако, наиболее важной задачей является определение величины отклонения от истинного значения X ист среднего арифметического результатов измерений. Для решения поставленной задачи также можно воспользоваться табл. 1.1, взяв, вместо величины σ величину σ , то есть у / (n 0.5) или с учетом (1.14), для конечного числа измерений

Средняя квадратичная ошибка среднего арифметического S n равна средней квадратичной ошибке отдельного результата, деленой на корень квадратный из числа измерений.

Это фундаментальный закон возрастания точности при росте наблюдений. Из него следует, что для повышения точности измерений в 2 раза необходимо увеличить число измерений в 4 раза. Однако этот вывод относится только к измерениям, в которых точность результата полностью определяется случайной ошибкой.

Обычно выполняется сравнительно небольшое число измерений для n которых определяется величина S n . Если при оценке доверительной вероятности считать, что значение S n совпадает с у и пользоваться табл. 1.1, то будем получать завышенные значения α. Из того, что σ является пределом S n при n → ∞, следует, что S n пропорциональна величине σ . Коэффициент пропорциональности зависит от числа измерений и отражает степень приближения S n к σ . На основании этого интервал ΔX можно представить в виде

Значения величины t αn , носящей название коэффициента Стьюдента, вычислены для различных значений n и α и приведены в табл. 1.2. Сравнивая приведенные в ней данные с данными табл. 1.1, легко убедиться, что при больших n величина t αn стремится к соответствующим значениям величины ε. Это естественно, так как с увеличением n S n стремится к σ .

Используя коэффициенты Стьюдента, мы можем переписать равенство (1.14) в виде

Пользуясь этим соотношением и табл. 1.2, легко определить доверительные интервалы и доверительные вероятности при любом небольшом числе измерений. После выполнения измерений должны быть известны все величины, входящие в это выражение - одни из них могут быть наперед заданы, другие необходимо определить.

Мерой точности результатов измерений является относительная погрешность (ошибка), обычно выражаемая в процентах (%):


Величину ϕ = 1/δ, обратную относительной погрешности называют точностью измерений.

Используя таблицу коэффициентов Стьюдента, можно решить и обратную задачу: по известной абсолютной погрешности измерительного прибора и заданной величине надежности определить необходимое число измерений в серии.