Кислородная стадия энергетического обмена. Причины кислородной катастрофы

При развитии кислородного голодания, возникающего в результате снижения парциального давления р О 2 во вдыхаемом воздухе, происходят существенные сдвиги всех основных параметров дыхания. Различные механизмы влияния гипоксии на организм человека представлены в виде обобщенной схемы на рисунке 2.5.

Рис. 2.5. Обобщенная схема механизмов влияния гипоксии на организм человека (по: В. Б. Малкин и др., 1977)

Изменяется внешнее дыхание, изменяются условия, определяющие диффузию газов и транспорт О 2 к тканям, могут происходить сдвиги и в самом тканевом дыхании.

Одной из важнейших адаптивных реакций как при острой, так и при хронической гипоксии является рост легочной вентиляции. Исследования показали, что вентиляция легких начинает увеличиваться уже на высоте 1000 м над уровнем моря. Это происходит в основном благодаря углублению дыхания. Частота дыхания изменяется незакономерно. Следует отметить, что у различных людей при развитии острой гипоксии величина р О 2 , при которой происходит начальный рост МОД, широко варьирует. Вместе с тем установлено, что у большинства здоровых людей достоверное увеличение МОД отмечается, начиная с высот 2500–3000 м.

Известно, что повышенная легочная вентиляция улучшает газообмен в плохо вентилируемых альвеолах и способствует росту парциального альвеолярного давления кислорода р А О 2 . Отсюда ясно, что при высоких уровнях вентиляции градиент намного меньше давления О 2 в альвеолах и в трахее, чем при низких уровнях легочной вентиляции. Выигрыш в градиенте давления О 2 имеет решающее значение для высокогорной адаптации, так как позволяет поддерживать в условиях данной атмосферы максимально возможное р О 2 в альвеолах.

Рост легочной вентиляции при развитии острой гипоксии сопровождается быстрой перестройкой нейрогуморальной регуляции дыхания. При этом исследования показали, что автоматическая перестройка дыхания не является оптимальной. Как правило, уровень вентиляции бывает ниже того, который необходим для более эффективного снабжения организма О 2 в новых условиях обитания.

Что же препятствует развитию гипервентиляции при гипоксии? На этот вопрос Холден и Пристли (1937) однозначно ответили еще в начале столетия. Они объясняли это развитием гипокапнии – падением р А СО 2 , которое неизбежно сопровождает гипервентиляцию.

На высотах более 3000 м ритм дыхания может нарушаться и возникает так называемое периодическое дыхание. Оно проявляется чаще ночью, во время сна. При этом происходит снижение легочной вентиляции, влекущее за собой еще большее падение насыщения крови О 2 . Существуют разные мнения относительно механизма возникновения периодического дыхания.



Появление выраженных нарушений ритма дыхания в начальный период пребывания в горах свидетельствует о том, что устойчивая высокоэффективная адаптация к гипоксии еще не достигнута.

Возникновение периодического дыхания при хронической гипоксии расценивают как неблагоприятный фактор, так как оно часто отмечается у лиц, недостаточно адаптированных к гипоксии.

Многие исследователи отмечают уменьшение жизненной емкости легких (ЖЕЛ) как при острой, так и при хронической гипоксии. Снижение ЖЕЛ сопровождается изменением всех составляющих ее компонентов: резервные объемы вдоха и выдоха уменьшаются, дыхательный же объем возрастает.

Большой интерес представляют данные К. Ю. Ахмедова о том, что после возвращения с гор функциональный остаточный объем легких в течение многих дней остается повышенным. Увеличение остаточного объема легких при гипоксии принято связывать с повышением тонуса мышц, осуществляющих вдох, в результате которого изменяется среднее положение грудной клетки. 0но приближается более к вдоху, что приводит к увеличению объема легких при нормальном дыхании. Увеличение среднего объема легких было названо функциональной или физиологической эмфиземой. Ее возникновение при гипоксии имеет определенное адаптивное значение. Физиологическая эмфизема способствует более равномерной перфузии и вентиляции легких, а также увеличению дыхательной поверхности легких, и тем самым увеличивает рост диффузионной способности легких. Кроме того, ее возникновение приводит к демпфированию выраженных колебаний насыщения артериальной крови О 2 в различные фазы дыхания, и в результате этого условия регуляции дыхания оказываются более благоприятными.

В результате следует отметить, что порог реакции дыхания, равно как и степень роста легочной вентиляции, при гипоксии варьирует у различных людей в широком диапазоне. Это весьма существенно, так как определяет значительные индивидуальные колебания при гипоксии альвеолярного р а СО 2 , р а О 2 и артериального р а СО 2 , р а О 2 парциального давления газов, а также S a О 2 . В результате индивидуальных колебании на одной и той же высоте при равном снижении рО 2 во вдыхаемом воздухе у различных практически здоровых людей уровень гипоксемии и уровень гипокапнии оказываются неодинаковыми. В процессе длительной адаптации к гипоксии происходит приспособление и к гипокапнии. При этом отмечается тенденция к росту р А О 2 , т. е. к сохранению более высокого уровня кислородного снабжения организма. Индивидуальное многообразие проявления адаптивных сдвигов системы дыхания при гипоксии обусловлено многими факторами: индивидуальными особенностями нервной регуляции дыхания; различной чувствительностью хеморецептивных образований и самого дыхательного центра к изменениям р а СО 2 и р а О 2 . Процесс адаптации системы дыхания к гипоксии внутренне противоречив. Этим и определяются неодинаковая устойчивость различных людей к острой гипоксии и некоторые индивидуальные различия в структуре адаптации к хронической форме кислородного голодания.

Горная болезнь. При постепенно развивающейся гипоксии реакции систем носят вначале приспособительный характер. 0днако в дальнейшем, при нарастании кислородной недостаточности, появляются серьезные патологические сдвиги. Человек заболевает горной болезнью.

Горную болезнь подразделяют на острую, подострую и хроническую.

Острая форма. Симптомокомплекс, характеризующий острую форму горной болезни, наблюдается при быстром перемещении людей на большие горные высоты. Высотный уровень, на котором впервые появляются признаки горной болезни, бывает различным, но у большинства синдромы острой формы отмечаются начиная с 3000 м.

К наиболее частым признакам этой формы относят головную боль, одышку, побледнение кожного покрова лица, цианоз губ, ногтей, выраженную слабость, анорексию, тошноту и рвоту, нарушение сна с тяжелыми сновидениями, расстройство ритма дыхания, сходное с дыханием Чейн‑Стокса. Эти и другие симптомы обычно проявляются не сразу, а спустя несколько часов после быстрого подъема в горы.

Подострая форма. Характеризуется симптомами, более устойчивыми (более длительно проявляющимися) по сравнению с симптомами острой горной болезни. Одним из признаков является расстройство ночного сна – от легких нарушений до почти полной утраты способности спать. Причину бессонницы многие связывают с нарушением ритма дыхания. При этой форме горной болезни наблюдаются головная боль, состояние депрессии, чрезмерная раздражительность, повышенная утомляемость, резкая одышка, анорексия. Нарушения со стороны системы пищеварения проявляются в непереносимости жирной пищи и метеоризме. Часто отмечается кожный зуд.

Хроническая форма. Существенная ее черта – чрезмерное проявление адаптивных сдвигов в системах, испытывающих в условиях гипоксии гиперфункцию, морфологическим проявлением чего являются гиперплазия красного костного мозга с резко выраженной полицитемией, резкая гипертрофия правого желудочка с клиническим проявлением синдрома легочного сердца, гиперплазия мышечных стенок артериол и бронхиальной ткани, каротидных телец и т. д.

Важный диагностический признак горной болезни – почти полное исчезновение всех нарушений после спуска с высоты. Наиболее опасными осложнениями горной болезни являются высотный отек легких и отек мозга.

Признаком надвигающегося отека легких служит одышка. Дыхание становится шумным и клокочущим. Появляется кашель. Важную роль в развитии отека легких играет возникновение гипертензии сосудов малого круга кровообращения. Его возможными причинами считают трансартериальный выход жидкой части крови в дыхательные пути под влиянием повышенного легочного артериального давления, увеличение проницаемости легочных капилляров, рост объема циркулирующей крови в организме, микротромбозы сосудов малого круга.

Основное средство лечения высотного отека легких – немедленный спуск вниз и кислородная терапия, иногда в условиях гипербарии в целях улучшения насыщения крови О 2 .

Помимо отека легких, на больших высотах в течение нескольких часов может развиваться острый отек мозга. Симптомами этого менее распространенного, но крайне опасного осложнения горной болезни, развивающегося уже на высотах 3600–4000 м, являются вначале сильная головная боль, иногда рвота, расстройство координации движений, возникновение слуховых и зрительных галлюцинаций, а затем нарушение и потеря сознания, после чего может развиться паралич, кома и наступить смерть. Причиной отека мозга является нарушение проницаемости клеточных мембран при гипоксии в результате снижения эффективности калий‑натриевого насоса, связанного с дефицитом АТФ.

Для лечения отека мозга необходимы срочный спуск с высоты, кислородная и лекарственная терапия.

Морфофункциональные особенности коренных жителей высокогорья. В процессе длительной адаптации к недостатку кислорода организм коренных жителей высокогорья приспособился энергетически более экономно осуществлять газообмен. Равномерность альвеолярной вентиляции всех долей легкого, оптимальные режимы вентиляционно‑перфузионных отношений и высокие диффузионные способности альвеол позволяют аборигену гор менее интенсивно вентилировать легкие. Большая кислородная емкость крови и высокое сродство гемоглобина к кислороду создают условия для умеренной активности сердечно‑сосудистой системы. Необходимый запрос организма по кислороду удовлетворяется за счет лучшей утилизации О 2 в тканях благодаря более эффективной организации биофизических механизмов клеточного метаболизма.

Из морфологических характеристик у коренных жителей гор указывают на обусловленное повышенным основным обменом более массивное телосложение. Крупная грудная клетка сочетается с более высокой жизненной емкостью легких. Относительное увеличение длинных костей скелета связывают с гипертрофией костного мозга, которая соотносится с повышенным эритропоэзом.

Для большинства высокогорных популяций характерно замедление ростовых процессов и сроков полового созревания.

Перечисленный комплекс наследственно закрепленных морфо‑функциональных черт определяют как высокогорный адаптивный тип, сформировавшийся в результате приспособления поколений людей к основному внешнему фактору – гипоксии.

Следующий этап энергетического обмена, идущий за гликолизом, — клеточное дыхание , или, как его еще называют, биологическое окисление. Это кислородный этап окисления органических соединений. Если рассматривать дыхание в широком смысле слова, то это процесс поглощения живыми организмами кислорода (О 2) из окружающей среды и выделения ими углекислого газа (СО 2). Этот процесс необходим для поддержания внутриклеточных окислительных процессов, обеспечивающих энергетический обмен. Дыхание может быть внешним дыханием и тканевым или клеточным. Что такое внешнее дыхание понятно из названия. Так называют процесс газообмена между живым организмом и окружающей его средой. Тканевое или клеточное дыхание (еще называют биологическое окисление) – совокупность ферментативных окислительно-восстановительных реакций. В результате этих реакций сложные органические вещества окисляются кислородом до углекислого газа, при этом освобождается энергия, запасаемая клетками в форме АТФ.

Клеточное дыхание у растений, животных и большей части аэробных микроорганизмов начинается с отщепления СО 2 (декарбоксилирования) от молекулы пировиноградной кислоты (пирувата), которая была образована в процессе гликолиза. Таким образом, гликолиз является необходимой подготовительной стадией клеточного дыхания при расщеплении углеводов. В процессе этой реакции от пирувата отрывается СО2 и образуется двухуглеродный остаток – радикал уксусной кислоты (ацетил-радикал). Этот двухуглеродный остаток присоединяется к молекуле универсального переносчика углеводородных радикалов — кофермента А — с образованием ацетил-кофермента А (ацетил-КоА ). В результате этой реакции НАД+ восстанавливается до НАДН. Ацетил-КоА и НАДН образуются и при окислении жирных кислот, которые также являются субстратами клеточного дыхания. В дальнейшем окисление ацетил-КоА происходит в цикле Кребса , а НАДН – в дыхательной цепи митохондрий . В цикл Кребса на различных стадиях могут вступать все аминокислоты. Таким образом, в цикле Кребса сходятся пути окисления и углеводов, и жиров, и белков.

(также его называют цикл трикарбоновых кислот или цикл лимонной кислоты) – это сложный многоступенчатый окислительно-восстановительный процесс, в результате которого остаток уксусной кислоты, полученный от ацетил-КоА, полностью окисляется до 2-х молекул СО2 с образованием 3-х молекул НАДН, одной молекулы ФАДН2 и одной молекулы ГТФ. Все ферменты цикла Кребса также, как и ферменты окисления жирных кислот, локализованы в матриксе митохондрий, а один фермент – сукцинатдегидрогеназа – находится во внутренней митохондриальной мембране.

На первой стадии цикла Кребса остаток уксусной кислоты передается от ацетил-КоА на молекулу щавелевоуксусной кислоты (оксалоацетата) с образованием лимонной кислоты (цитрата), которая через промежуточную реакцию образования цис-аконитовой кислоты превращается в изолимонную кислоту (изоцитрат). От изолимонной кислоты отщепляется СО 2 и 2 атома Н + , в результате чего образуется молекула НАДН и a-кетоглутаровая кислота (a-кетоглутарат), которая взаимодействует с молекулой кофермента А. При этом отщепляется вторая молекула СО 2 и образуется еще одна молекула НАДН и богатое энергией соединение сукцинил-КоА, которое расщепляется с образованием свободной янтарной кислоты (сукцината), что сопровождается синтезом ГТФ из ГДФ и Ф н. Янтарная кислота окисляется до фумаровой (фумарата) с образованием ФАДН 2 , фумаровая кислота с присоединением воды превращается в яблочную (малат), а яблочная кислота окисляется до щавелевоуксусной (оксалоацетата) с образованием НАДН. На этой стадии цикл Кребса замыкается, т.е. оксалоацетат может снова вступать в цикл и конденсироваться со следующим остатком уксусной кислоты с образованием цитрата.

Таким образом, суммарную реакцию цикла Кребса можно описать следующим уравнением:

Ацетил-КоА +3НАД + + ФАД + ГДФ + Ф н +3Н 2 О —> 2СО 2 + 3НАДН + 3Н + + ФАДН 2 + ГТФ + КоА

Энергия, освобождаемая при окислении ацетил-КоА, запасается в виде одной молекулы ГТФ (которая может превращаться в АТФ) и 4-х молекул восстановительных эквивалентов (3 молекулы НАДН и одна ФАДН 2),
которые могут или использоваться в различных процессах биосинтеза, или окисляться. Дальнейшее их окисление происходит в дыхательной цепи митохондрий, которая локализована во внутренней митохондриальной мембране. При окислении НАДН в дыхательной цепи митохондрий происходит отрыв от него электронов, и их перенос на молекулу кислорода. У аэробных бактерий дыхательная цепь расположена в специальных структурах плазматической мембраны – мезосомах, и в общих чертах напоминает дыхательную цепь митохондрий.

Характеристики цикла Кребса
Входящий субстрат

Ацетилкоэнзим А — источником ацетильной группы являются пируват, жирные кислоты и аминокислоты.
Источником некоторых интермедиатов являются аминокислоты.

Локализация ферментов Внутренние отделы митохондрий (матрикс)
Образование АТФ

Непосредственно в цикле образуется одна молекула ГТФ, которая может быть превращена в АТФ.
Функционирует только в аэробных условиях, хотя непосредственно молекулярный кислород в этом метаболическом пути не используется.

Образование коферментов 3НАДН + 3H + и ФАДН 2
Конечные продукты

Две молекулы CO2 на каждую молекулу ацетилкоэнзима А, входящую в цикл. Некоторые интермедиаты используются для синтеза аминокислот и других органических молекул, необходимых для осуществления функций клетки

Суммарная реакция АцетилКоА + 3НАД + + ФАД + ГДФ + P i + 2H 2 O —> 2CO 2 + KoA + 3НАДН + 3H + + ФАДН 2 + ГТФ

Окислительное фосфорилирование начинается с окисления НАДН в дыхательной цепи митохондрий, сопровождающегося отщеплением двух электронов и протона (Н +). Окончательным акцептором этих электронов является О 2 , который соединяется с ионами Н + , находящимися в матриксе, с образованием Н 2 О. Электроны, отобранные от НАДН, передаются в дыхательной цепи от одного переносчика к другому, при этом они теряют свой восстановительный потенциал. Часть энергии, выделяемой при этом, рассеивается в виде тепла, но, кроме того, часть энергии тратится на создание на внутренней мембране митохондрий разности концентраций протонов (электрохимического потенциала) за счет их переноса в нескольких пунктах дыхательной цепи (так называемых пунктах сопряжения) из матрикса в межмембранное пространство.

Разность концентраций протонов получается в результате того, что при переносе электронов от НАДН к кислороду происходит «перекачивание» протонов из матрикса митохондрий в межмембранное пространство.

«Перекачивание» протонов из матрикса митохондрий в межмембранное пространство

В результате работы дыхательной цепи митохондрий концентрация Н + в межмембранном пространстве намного выше их концентрации в матриксе, это создает направленный внутрь митохондрий градиент концентрации протонов. Мембрана митохондрий является для них непроницаемой, т.е. можно сказать, что она работает как плотина гидроэлектростанции, удерживающая воду в водохранилище. Энергия данного градиента используется ферментом АТФ-синтетазой , переносящим в матрикс ионы Н + и синтезирующим АТФ из АДФ и Ф н.

Для синтеза 1 молекулы АТФ необходимо перенести внутрь митохондрий 3 иона Н + по градиенту концентрации, следовательно за счет окисления 1 молекулы НАДН может быть синтезировано 3 молекулы АТФ, а при окислении 1 молекулы ФАДН 2 – 2 молекулы АТФ.

Кроме того, часть энергии градиента концентрации протонов тратится на перенос через внутреннюю мембрану митохондрий различных веществ. Синтез АТФ в митохондиях ферментом АТФ-синтетазой называют окислительным фосфорилированием , подчеркивая связь этого процесса с окислением органических субстратов.

Таким образом, в результате полного окисления глюкозы до углекислого газа CO2 и воды H2O образуется большое количество АТФ – 38 молекул. Две из них синтезируются в процессе гликолиза, а остальные 36 – при окислении пирувата. 1) при образовании одной молекулы пирувата в процессе гликолизе восстанавливается молекула НАДН, окисление которого в митохондриях дает 3 молекулы АТФ. 2) в процессе декарбоксилировании пирувата и образовании ацетил-КоА будет восстановлена еще 1 молекула НАДН (т.е. это 3 молекулы АТФ). 3) в цикле Кребса образуются 3 молекулы НАДН (это будет 9 молекул АТФ), 1 молекула ФАДН2 (плюс еще 2 молекулы АТФ) и 1 молекула ГТФ (обменивается своим терминальным макроэргическим фосфатом с АДФ, что дает еще 1 молекулу АТФ). Т.е., при полном окислении образовавшейся в гликолизе 1 молекулы НАДН и 1 молекулы пирувата получается 18 молекул АТФ, а 2-х – соответственно 36 молекул АТФ. С учетом того, что в процессе гликолиза образовались 2 молекулы АТФ, полный энергетический выход при окислении глюкозы до углекислого газа (CO2) и воды (H2O) в процессе клеточного дыхания, будет составлять 38 молекул АТФ .

Полный энергетический выход окисления глюкозы до углекислого газа и воды в процессе клеточного дыхания составляет 38 молекул АТФ

Итоговое уравнение данного процесса будет выглядеть следующим образом:

С 6 H 12 O 6 + 6О 2 + 38АДФ + 38Ф н —> 6CO 2 + 6H2O + 38АТФ

Эффективность полного окисления глюкозы до углекислого газа и воды очень высока: от 55 до 70% освобождающейся энергии (в зависимости от конкретных условий) запасается в виде макроэргических связей в молекулах АТФ; остальная часть энергии рассеивается в виде тепла.

Таким образом, основным продуктом реакций энергетического обмена является АТФ .

Синтез АТФ происходит в цитоплазме, главным образом в митохондриях, поэтому они и получили название «силовых станций» клетки.

В клетках человека, многих животных и некоторых микроорганизмов главным поставщиком энергии для синтеза АТФ является глюкоза. Расщепление глюкозы в клетке, в результате которого происходит синтез АТФ, осуществляется в две следующих друг за другом стадии. Первую стадию называют гликолизом или бескислородным расщеплением . Вторую стадию называют кислородным расщеплением .

Гликолиз

Для иллюстрации (не для запоминания) приведем его итоговое уравнение:

Из уравнения видно, что в процессе гликолиза кислород не участвует (поэтому стадия эта и называется бескислородным расщеплением). В то же время обязательным участником гликолиза являются АДФ и фосфорная кислота. Оба эти вещества всегда имеются, так как они постоянно образуются в результате жизнедеятельности клетки. В процессе гликолиза расщепляются молекулы глюкозы и происходит синтез 2 молекул АТФ.

Итоговое уравнение не дает представления о механизме процесса. Гликолиз - процесс сложный, многоступенчатый. Он представляет собой комплекс (или, лучше сказать, конвейер) следующих друг за другом нескольких реакций. Каждую реакцию катализирует особый фермент. В результате каждой реакции происходит небольшое изменение вещества, а в итоге изменение значительно: из молекул 6-углеродной глюкозы образуются 2 молекулы 3-углеродной органической кислоты. В результате каждой реакции освобождается небольшое количество энергии, а в сумме получается внушительная величина - 200 кДж/моль. Часть этой энергии (60%) рассеивается в виде теплоты, а часть (40%) сберегается в форме АТФ.

Процесс гликолиза происходит во всех животных клетках и в клетках некоторых микроорганизмов. Известное всем молочнокислое брожение (при скисании молока, образовании простокваши, сметаны, кефира) вызывается молочнокислыми грибками и бактериями. Механизм этого процесса тождествен гликолизу.

Кислородное расщепление

После завершения гликолиза следует вторая стадия - кислородное расщепление.

В кислородном процессе участвуют ферменты, вода, окислители, переносчики электронов и молекулярный кислород. Основное условие нормального течения кислородного процесса - это неповрежденные митохондриальные мембраны.

Конечный продукт гликолиза - трехуглеродная органическая кислота - проникает в митохондрии, где под влиянием ферментов вступает в реакцию с водой и полностью разрушается:

С 3 H 6 O 3 + 3Н 2 О → ЗСО 2 + 12Н

Образовавшийся оксид углерода (IV) свободно проходит через мембрану митохондрии и удаляется в окружающую среду. Атомы водорода переносятся в мембрану, где под влиянием ферментов окисляются, т. е. теряют электроны:

Н 0 - ē → Н +

Электроны и катионы водорода Н + (протоны) подхватываются молекулами-переносчиками и переправляются в противоположные стороны: электроны на внутреннюю сторону мембраны, где они соединяются с кислородом (молекулярный кислород непрерывно поступает в митохондрии из окружающей среды):

O 2 + ē → O 2 −

Катионы Н + транспортируются на наружную сторону мембраны. В результате внутри митохондрии увеличивается концентрация анионов O 2 − , т. е. частиц, несущих отрицательный заряд. На мембране снаружи накапливаются положительно заряженные частицы (Н +), так как мембрана для них непроницаема. Итак, мембрана снаружи заряжается положительно, а изнутри - отрицательно. По мере увеличения концентрации противоположно заряженных частиц по обеим сторонам мембраны между ними растет разность потенциалов - рисунок 80.

Рисунок 80. Схема синтеза АТФ в митохондрии.

Установлено, что в некоторых участках мембраны в нее встроены молекулы фермента, синтезирующего АТФ. В молекуле фермента имеется канал, через который могут пройти катионы Н + . Это происходит, однако, в том случае, если разность потенциалов на мембране достигает некоторого критического уровня порядка (200 мВ). По достижении этого значения силой электрического поля положительно заряженные частицы проталкиваются через канал в молекуле фермента, переходят на внутреннюю сторону мембраны и, взаимодействуя с кислородом, образуют воду:

4Н + + 2O 2 − → 2Н 2 О + О 2

При прохождении электронов от атомов водорода (Н) к кислороду (О 2) и катионов Н + через канал синтезирующего АТФ фермента освобождается значительная энергия, 45% которой рассеивается в виде тепла, а 55% сберегается, т. е. преобразуется в энергию химических связей АТФ.

Итоговое уравнение отражает количественную сторону синтеза АТФ в результате кислородного расщепления 2 молекул органической кислоты.

2С 3 Н 6 О 3 + 6О 2 + 36АДФ + З6Н 3 РО 4 → 36АТФ + 6СО 2 + 42Н 2 О

Просуммировав это уравнение с уравнением гликолиза, получим:

С 6 Н 12 O 6 + 6О 2 + 38АДФ + З8Н 3 РО 4 → 38АТФ + 6СО 2 + 44Н 2 О

Это уравнение показывает количество синтезированной АТФ в результате полного, т. е. бескислородного и кислородного, расщепления молекулы глюкозы.

Материал этого параграфа позволяет сделать следующие выводы:

1. Синтез АТФ в бескислородном процессе не нуждается в наличии мембран. Если имеются все ферменты гликолиза и необходимые субстраты, т. е. глюкоза, АДФ и фосфорная кислота, синтез АТФ идет и в пробирке. В случае кислородного процесса необходимым условием его осуществления является наличие мембраны, способной разделить противоположно заряженные частицы, в результате чего возникает разность потенциалов.

2. Расщепление в клетке 1 молекулы глюкозы до оксида углерода (IV) и воды обеспечивает синтез 38 молекул АТФ. Из них в бескислородную стадию синтезируются 2 молекулы, а в кислородную - 36. Кислородный процесс, таким образом, почти в 20 раз более эффективен, чем бескислородный.

4. Расщепление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение продуктов окисления - оксида углерода (IV) и воды. Однако при сжигании органического вещества вся освободившаяся энергия переходит в теплоту, при окислении глюкозы в клетке в теплоту переходит около 45% освободившейся энергии, а 55% сберегается в форме АТФ.


Вариант 1
1. Всю совокупность химических реакций в клетке называют
1) фотосинтез 3) брожение
2) хемосинтез 4) метаболизм
2. Фотосинтез, в отличие от биосинтеза белка, происходит в клетках
1) любого организма
2) содержащих хлоропласты
3) содержащих лизосомы
4) содержащих митохондрии
3. Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает
реакции синтеза
1) молекул АТФ
2) органических веществ
3) ферментов
4) минеральных веществ
4. В результате кислородного этапа энергетического обмена в клетках синтезируются молекулы
1) белков
2) глюкозы
3) АТФ, СО2, Н2О
4) ферментов
5. Все живые организмы в процессе жизнедеятельности используют энергию, которая запасается в
органических веществах, созданных из неорганических
1) животными
2) грибами
3) растениями
4) вирусами
6. В процессе фотосинтеза растения
1) обеспечивают себя органическими веществами
2) окисляют сложные органические вещества до более простых
3) поглощают минеральные вещества корнями из почвы
4) расходуют энергию органических веществ
7. Переход электронов на более высокий энергетический уровень происходит в световую фазу
фотосинтеза в молекулах
1) хлорофилла
2) воды
3) углекислого газа
4) глюкозы
8. Особенности обмена веществ у растений по сравнению с животными состоят в том, что в их клетках
происходит
1) хемосинтез
2) энергетический обмен
3) фотосинтез
4) биосинтез белка
9. Реакции биосинтеза белка, в которой последовательность триплетов в и­РНК обеспечивает
последовательность аминокислот в молекулах белка называют
1) гидролитическими.
2) матричными
3) ферментативными
4) окислительными
10. Расщепление глюкозы в клетке на бескислородном этапе энергетического обмена происходит в
1) лизосомах
2) цитоплазме
3) ЭПС

4) митохондриях
3) геном
4) генотипом
11. Какие органические вещества входят в состав хромосом?
1) белок и ДНК
2) АТФ и т­РНК
3) АТФ и глюкоза
4) РНК и липиды
12. Три рядом расположенных нуклеотида в молекуле ДНК, кодирующих одну аминокислоту,
называют
1) триплнтом
2) генетическим кодом
13. Белок состоит из 50 аминокислотных остатков. Сколько нуклеотидов в гене (одна цепь), которым
закодирована первичная структура этого белка?
1) 50 2) 100 3) 150 4) 250
14. Функциональная единица генетического кода ­
1) нуклеотид
2) триплет
3) аминокислота
4) т­РНК
15. Антикодону ААУ на т­РНК соответствует триплет ДНК
1) ТТА 2) ААТ 3) ААА 4) ТТТ
Часть В
В1. Выберите три верных ответа.
Какие процессы вызывает энергия солнечного света в листе?
А) образование молекул кислорода в результате разложения воды;
Б) окисление пировиноградной кислоты до углекислого газа и воды;
В) синтез молекул АТФ;
Г) расщепление биополимеров до мономеров;
Д) расщепление глюкозы до пировиноградной кислоты;
Е) образование атомов водорода за счет отнятия электронов от молекулы воды хлорофиллом.
В2.Установите соответствие между процессами, характерными для фотосинтеза и энергетического
обмена, и видами обмена веществ.
Процессы: Виды обмена:
1) поглощение света; А) энергетический обмен
2) окисление пировиноградной кислоты; Б) фотосинтез
3) выделение углекислого газа и воды;
4) синтез молекул АТФ за счет химической энергии;
5) синтез молекул АТФ за счет энергии света;
6) синтез углеводов из углекислого газа и воды.
1
2
3
4
5
6
В3. Установите последовательность процессов биосинтеза белка в клетке:
А) синтез и­РНК на ДНК;
Б) присоединение аминокислот к т­РНК;
В) доставка аминокислот к рибосоме;
Г) перемещение и­РНК из ядра к рибосоме;
Д) нанизывание рибосом на и­РНК;
Е) присоединение двух молекул т­РНК с аминокислотой к и­РНК;
Ж) взаимодействие аминокислот, присоединенных к и­РНК, образование пептидной связи.
Часть С
С1. Дайте краткий свободный ответ (1­2 предложения).
В чем состоит роль ДНК в биосинтезе белка?
С2. Дайте полный развернутый ответ.
Какие процессы происходят на подготовительном этапе энергетического обмена?

С3. Решите задачу:
Фрагмент кодирующей цепи ДНК имеет последовательность нуклеотидов:
…­ГТГ – ТАТ – ГГА – АГТ ­…
Определите последовательность нуклеотидов на и­РНК, антикодоны соответствующие т­РНК и
аминокислоты во фрагменте молекулы белка, используя таблицу генетического кода.
ТЕМА «ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ»
Вариант 2
Часть А Задания с выбором одного ответа.
1. Обмен веществ между клетками и окружающей средой регулируются
1) плазматической мембраной
2) ЭПС
3) ядерной оболочкой
4) цитоплазмой
2. Хлорофилл в хлоропластах растительных клеток
1) осуществляет связь между органоидами
2) ускоряет реакции энергетического обмена
3) поглощает энергию света в процессе фотосинтеза
4) осуществляет окисление органических веществ в процессе диссимиляции
3. Липиды окисляются в результате процесса
1) энергетического обмена
2) пластического обмена
3) фотосинтеза
4) хемосинтеза
4. При расщеплении одной молекулы глюкозы две молекулы АТФ синтезируются на этапе
1) подготовительном
2) гликолиза
3) кислородном
4) при поступлении веществ в клетку
5. Совокупность реакций синтеза органических веществ из неорганических с использованием энергии
солнечного света называют
1) хемосинтезом
2) фотосинтезом
3) брожением
4) гликолизом.
6. Конечные продукты подготовительного этапа энергетического обмена
1) углекислый газ и вода
2) глюкоза, аминокислоты, глицерин, жирные кислоты
3) белки, жиры
4) АДФ, АТФ
7. Электроны молекулы хлорофилла поднимаются на более высокий энергетический уровень под
воздействием энергии света в процессе
1) фагоцитоза
2) синтеза белка
3) фотосинтеза
4) хемосинтез
8. Углекислый газ используется в качестве источника углерода в процессе
1) синтеза липидов
2) синтеза нуклеиновых кислот
3) фотосинтеза
4) синтеза белка
9. Фотосинтез в отличие от биосинтеза белка происходит в
1) любых клетках организма
2) клетках, содержащих хлоропласты
3) клетках, содержащих лизосомы

4) клетках, содержащих митохондрии
10. Растительная клетка, как и животная, получает энергию в процессе
1) окисления органических веществ
2) биосинтеза белков
3) синтеза липидов
4) синтеза нуклеиновых кислот
3) белок
4) нет верного ответа
3) АТФ
4) неорганических веществ
11. В состав хромосом НЕ входит
1) ДНК
2) АТФ
12. В процессе пластического обмена в клетках происходит синтез молекул
1) белков
2) воды
13. Какая последовательность правильно отражает путь реализации генетической информации:
1) ген – и­РНК – белок – свойство ­ признак
2) признак – белок – и­РНК – ген ­ ДНК
3) и­РНК – ген – белок – признак ­ свойство
4) ген – признак ­ свойство
14. Генетический код определяет принцип записи информации о
1) последовательности аминокислот в молекуле белка
2) транспорте и­РНК в клетке
3) расположении глюкозы в молекуле крахмала
4) числе рибосом на ЭПС
15. Антикодону УГЦ на т­РНК соответствует триплет на ДНК
1) ТГЦ 2) АГЦ 3) ТЦГ 4) АЦГ
Часть В
В­1: Выберите три верных ответа.
В темновую фазу фотосинтеза происходит:
А) фотолиз воды;
Б) восстановление углекислого газа до глюкозы;
В) синтез молекул АТФ за счет энергии Солнца;
Г) соединение водорода с переносчиком НАДФ+;
Д) использование энергии молекул АТФ на синтез углеводов;
Е) образование молекул крахмала из глюкозы.
В­2: Установите соответствие между этапами энергетического обмена и особенностями их
протекания:
Этапы энергетического обмена: А) Бескислородный
Б) Кислородный
Особенности протекания процесса:
1) исходное вещество, участвующее в процессе, ­ глюкоза;
2) исходное вещество, участвующее в процессе, ­ трехуглеродная органическая кислота;
3) конечные продукты процесса – трехуглеродная органическая кислота, вода, АТФ;
4) конечные продукты процесса – углекислый газ, вода, АТФ;
5) образуется две молекулы АТФ на одну молекулу глюкозы;
6) образуется 36 молекул АТФ на одну молекулу глюкозы.
1
3
4
2
5
6
В­3: Установите последовательность процессов фотосинтеза:
А) возбуждение хлорофилла;
Б) синтез глюкозы;
В) соединение электронов с НАДФ+ и Н+;
Г) фиксация углекислого газа;

Д) фотолиз воды.
Часть С
С­1. Задание с кратким свободным ответом (одно ­ два предложения).
Какова роль т­РНК в процессе биосинтеза белка?
С­2. Задание с полным развернутым ответом.
Какие структуры и вещества принимают участие в темновых реакциях фотосинтеза?
С­3. Решите задачу:
Фрагмент кодирующей цепи ДНК имеет последовательность нуклеотидов
…­ЦЦГ­ААТ­ТГА­ГТА­… Определите последовательность нуклеотидов на и­РНК, антикодоны,
соответствующие т­РНК и аминокислоты во фрагменте молекулы белка, используя таблицу
генетического кода.
ОТВЕТЫ ПО ТЕМЕ «ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ»
Вариант 1
Часть А
1
4
2
2
3
1
4
3
5
3
Часть В
В­1: А В Е
В­2:
1
Б
2
А
6
1
3
А
7
1
8
3
9
2
10
2
11
1
12
1
13
3
14
2
15
2
4
А
5
Б
6
Б
В­3: А Г Д Б В Е Ж
Часть С
С­1: Роль ДНК в биосинтезе белка в том, что в ДНК закодирована информация о первичной структуре
белка, то есть о последовательности аминокислот в полипептидной цепи (2 балла)
С­2: Сложные органические вещества пищи под действием ферментов разлагаются в клетках
пищеварительного тракта до более простых: белки – до аминокислот, сложные углеводы – до
глюкозы, жиры – до жирных кислот и глицерина, нуклеиновые кислоты – до нуклеотидов. При этом
энергии выделяется очень мало и она вся рассеивается в виде тепла (3 балла)
С­3: ДНК: …­Г Т Г­ТАТ­ Г ГА­ АГТ­…
и –РНК: …­ЦАЦ­АУА­ЦЦУ­ УЦА­…
антикодоны т­РНК: ГУГ, УАУ, ГГА, АГУ
аминокислоты: Гис – иле – про – сер (3 балла)
Вариант 2
Часть А
1
1
2
3
3
1
4
2
5
2
Часть В
В­1: Б Д Е
В­2:
1
А
2
Б
В­3: А Д В Г Б
Часть С
6
2
3
А
7
3
8
3
9
2
10
1
11
2
12
1
13
1
14
1
15
1
4
Б
5
А
6
Б

С­1: Роль т­РНК в биосинтезе белка в том, что т­РНК присоединяет аминокислоты по принципу
комплементарности и переносит к месту синтеза белка, то есть к рибосомам (2 балла)
С­2: Темновые реакции фотосинтеза происходят в строме хлоропластов. Это реакции фиксации
углерода, то есть из углекислого газа в результате сложных ферментативных реакций образуется
глюкоза, а затем крахмал. На эти реакции тратится энергия АТФ и атомы водорода, образованные в
световой фазе.
С­3: ДНК: …­ ЦЦГ – ААТ – ТГА – ГТА ­…
и­РНК: …­ГГЦ ­ УУА –АЦУ –ЦАУ­…
т­РНК: ЦЦГ, ААУ, УГА, ГУА.
Аминокислоты: гли – лей – тре – гис
Критерии оценки:
Часть А 1балл за ответ, итого 15 баллов
Часть В 2 балла за ответ, итого 6 баллов
Часть С С1 – 1 балл, С2 – 3 балла, С3 – 3 балла
Итого 28 баллов
«5» ­ 24 – 28 баллов «4» ­ 19 – 23 балла «3» ­ 14 – 18 баллов

Организмы, которые могут жить лишь в среде, содержащей кислород, называют аэробами (от греч. aer — воздух и bios — жизнь). В их клетках проходят три стадии энергетического обмена, а АТФ синтезируется в основном на кислородной стадии. Органические вещества в клетках аэробов окисляются с участием кислорода до конечных продуктов дыхания — СО 2 и Н 2 О, которые выделяются в окружающую среду. Человек, все растения, почти все животные, большинство грибов и бактерий — аэробы.
Гликолиз происходит в клетках и аэробов, и анаэробов. Далее в клетках аэробов ПВК, НАД Н поступают в , где наступает третья стадия энергетического обмена — кислородная , названная так за участие кислорода в окислении органических веществ.

* Кислородная стадия сопровождается освобождением энергии. Так, при расщеплении одной грамм-молекулы глюкозы освобождается 635 000 кал. Если бы вся энергия освобождалась сразу, клетка погибла бы от перегрева. Этого не происходит, потому что энергия освобождается поэтапно, небольшими порциями, в ходе последовательных ферментативных реакций.

Реакции кислородной стадии можно разделить на три группы:

  1. Молекулы ПВК в результате многочисленных реакций с участием ферментов окисляются до углекислого газа и воды. При этом от молекулы ПВК отщепляются атомы водорода, которые передаются НАД + с образованием НАД Н. Восстановленная молекула НАД Н доставляет атомы водорода в дыхательную цепь и вновь превращается в НАД + .
  2. Атомы водорода в дыхательной цепи отдают электроны и окисляются до Н + . Дыхательная цепь состоит из комплекса разнообразных белков, встроенных во внутреннюю мембрану митохондрии. Перемещаясь от одного белка к другому, электроны вступают в окислительно-восстановительные реакции и при этом отдают энергию, идущую на синтез молекул АТФ из АДФ и фосфорной кислоты (Ф). В результате кислородного этапа при окислении двух молекул ПВК образуется 36 молекул АТФ.
  3. В конце дыхательной цепи электроны соединяются с молекулярным кислородом и двумя протонами H + , в результат cc8 е образуется молекула воды.

Таким образом, энергия, освобождающаяся при окислении водорода, используется для синтеза АТФ из АДФ. В результате энергетического обмена при расщеплении одной молекулы глюкозы в клетке синтезируется 38 молекул АТФ и, таким образом, сберегается около 55% освобождающейся энергии. Остальные 45% выделяющейся при расщеплении энергии рассеиваются в виде тепла (КПД паровых машин составляет всего 12-15%).

* Какова роль кислорода в энергетическом обмене? После восстановления НАД + — вещества-переносчика атомов водорода — до НАД Н оно уже не способно больше соединяться с водородом. В то же время содержание HAД + в клетке невелико. Если бы не происходило постоянного окисления НАД Н, реакции могли бы приостановиться. Таким образом, кислород необходим как акцептор электронов для окисления НАД Н до НАД + .