Корреляционные методы (correlation methods). На их выбор оказывает влияние

При проведении исследования в биологии или медицине, как правило, регистрируются множество учетных признаков. Представляет интерес вопрос об их взаимном изменении, т.е. обнаружение зависимостей между ними. Выявление наличия таких взаимосвязей является одной из важнейших задач любой науки, в том числе и медицины.

Различают две формы количественных связей между явлениями или процессами: функциональную и корреляционную . Под ФУНКЦИОНАЛЬНОЙ понимают такую связь, при которой любому значению одного из признаков соответствует строго определенное значение другого. В точных науках, таких, как физика, химия и другие, может быть установлена функциональная взаимосвязь. Например, зависимость площади круга от длины окружности в геометрии, или в физике длина пути, пройденной телом в свободном падении, от времени. Наиболее известным видом функциональной зависимости является линейная, которая выражается математической формулой: y = ax+b .

В биологии и медицине установить функциональную зависимость, как правило, не удается. Объекты этих исследований имеют большую изменчивость и зависят от огромного числа факторов, измерить которые просто невозможно. В этом случае определяется наличие КОРРЕЛЯЦИОННОЙ связи, при которой значению каждой средней величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака. Например: связь между ростом и массой тела человека. У группы людей с одинаковым ростом наблюдается различная масса тела, однако она варьирует в определенных пределах вокруг средней величины. Поэтому такую зависимость нужно оценивать с использованием понятия случайной величины с привлечением подходов теории вероятности. Такую форму зависимостей называют «Корреляционной».

При поиске зависимости между признаками может быть обнаружена взаимосвязь, различная по направлению и силе:

Прямая (при увеличении одного признака увеличивается второй);

Обратная (при увеличении одного признака второй уменьшается).

Степень взаимосвязи признаков по силе (тесноте) принято обозначать как:

Отсутствие;

Средняя;

Сильная;

Способами выявления корреляционной взаимосвязи между признаками являются:

Визуальные (таблицы и графики).

Статистические (корреляция и регрессия).

Следует подчеркнуть, что обнаружение корреляции между двумя признаками еще не говорит о существовании причинной связи между ними, а лишь указывает на возможность таковой или на наличие фактора, определяющего изменение обеих переменных совместно.

Приёмы визуализации данных позволяют обнаружить корреляционную зависимость лишь при небольшом числе наблюдений и только приблизительно. Для обнаружения корреляционной взаимосвязи с помощью таблицы в ней располагают ранжированные вариационные ряды и затем определяют совместное изменение признаков. График более наглядно демонстрирует такую зависимость и позволяет оценить ее форму: линейная, параболическая, тригонометрическая и др.



Наиболее точным способом обнаружения взаимосвязи между признаками является вычисление коэффициента корреляции . В зависимости от природы обрабатываемых данных применяются параметрические или непараметрические методы вычисления этого коэффициента.

При вычислении коэффициента корреляции исследователь получает возможность судить о силе связи (степени сопряженности) и ее направлении, а также с требуемой долей вероятности делать вывод о проявлении этой связи в генеральной совокупности. Чем больше коэффициент корреляции, тем с большей степенью уверенности можно говорить о наличии корреляционной зависимости между признаками. Если каждому заданному значению одного признака соответствуют близкие друг к другу, тесно расположенные около средней величины значения другого признака, то связь является более тесной. Когда эти значения сильно варьируют, связь менее тесная. Таким образом, мера корреляции указывает, насколько тесно связаны между собой параметры.

Коэффициент корреляции может принимать значения от -1 до +1. Направление обнаруженной взаимосвязи определяют по знаку коэффициента корреляции. При его положительном значении обнаруженная связь является прямой, при отрицательном – обратной. Сила связи оценивается по модулю этого коэффициента. Условно выделяют следующие уровни корреляционной связи: отсутствие – 0; слабая – от 0 до 0,3; средняя – от 0,3 до 0,7; сильная – 0,7 и более; полная – 1. Однако обсуждать наличие корреляции имеет смысл только в тех случаях, когда она статистически значима (p <0,05). Поэтому после вычисления коэффициента корреляции производится определение его ошибки репрезентативности и критерия достоверности.

Наиболее часто применяемыми в настоящее время методами обнаружения корреляции являются параметрический анализ по Пирсону и непараметрический анализ по Спирмену. Этими методами проверяется нулевая гипотеза (H 0 ) об отсутствии связи между параметрами. Если такая гипотеза отклоняется при заданном уровне значимости (p ), можно говорить о наличии взаимосвязи между параметрами.

Корреляционный анализ по Пирсону используется при решении задачи исследования линейной связи двух нормально распределенных параметров. Кроме проверки на нормальность распределения каждого параметра, до проведения корреляционного анализа рекомендуется строить график в координатах оцениваемых параметров, чтобы визуально определить характер зависимости.

Коэффициент корреляции Пирсона (r xy ) или коэффициент линейной корреляции, был разработан в 90-х годах XIX века Карлом Пирсон, Фрэнсисом Эджуортом и Рафаэлем Уэлдоном в Англии. Он рассчитывается по формуле:

где: r xy

cov XY – ковариация признаков X и Y ;

σ X X ;

σ Y – среднее квадратическое отклонение признака Y;

X ;

– средняя арифметическая признака Y .

В медицинской литературе встречается упрощенная запись этой формулы:

где: r xy – коэффициент линейной корреляции Пирсона;

d x x от средней этого признака: d x = x - M x ,

d y – отклонение каждой варианты признака y от средней этого признака: d y = y - M y .

В программе Excel значение коэффициент линейной корреляции Пирсона может быть вычислено функцией = КОРРЕЛ(Диапазон ячеек 1-го ряда; Диапазон ячеек 2-го ряда).

Для прогнозирования уровня корреляции в генеральной совокупности определяют ошибку репрезентативности этого коэффициента m r . Она вычисляется по формуле:

,

где: m r – ошибка репрезентативности коэффициента корреляции;

r xy – коэффициент линейной корреляции Пирсона;

n – число парных вариант.

Достоверность коэффициента линейной корреляции оценивается по коэффициенту Стьюдента (t r ), который вычисляется с использованием его ошибки:

где: t r

r xy – коэффициент линейной корреляции Пирсона;

m r – ошибка репрезентативности коэффициента корреляции.

Если число парных вариант n >30, то при t r >2 связь считается достоверной при уровне значимости p <0,05. Если число парных вариант n <30, то критическое значение t r-Крит. находят по таблице критических значений Стьюдента при степени свободы df = n - 2 . В программе Excel это значение вычисляется функцией = СТЬЮДРАСПОБР(Уровень значимости p ; Степени свободыdf ).

С целью уменьшения объема вычислений может применяться функция =КОРРЕЛ(Диапазон1; Диапазон2) или надстройка «Анализ данных» и ее модуль «Корреляционный анализ».

Отсутствие линейной корреляции еще не означает, что параметры полностью независимы. Связь между ними может быть нелинейной, или признаки, используемые в вычислениях, могут не подчиняться нормальному закону распределения. Поэтому, помимо вычисления коэффициента линейной корреляции, прибегают к использованию непараметрических коэффициентов корреляции. К ним относятся:

Коэффициент ранговой корреляции Спирмена;

Коэффициент ранговой корреляции Кендалла;

Коэффициент корреляции знаков Фехнера;

Коэффициент множественной ранговой корреляции (конкордации).

Корреляционный анализ по Спирмену применяется для обнаружения взаимосвязи двух параметров, если распределение хотя бы одного из них отлично от нормального.

Каждому показателю x и y присваивается ранг. На основе полученных рангов рассчитываются их разности d. Затем вычисляется коэффициент корреляции (ρ ) по формуле:

где: r

d – разность рангов;

n – число парных вариант.

Ошибка репрезентативности коэффициента корреляции Спирмена определяется по формуле:

,

а коэффициент достоверности Стьюдента:

где: t r – коэффициент достоверности Стьюдента;

r – коэффициент корреляции Спирмена;

m r – ошибка репрезентативности коэффициента корреляции Спирмена.

Оценка коэффициента корреляции Спирмена и его достоверности выполняется так же, как и коэффициента линейной корреляции Пирсона.

Дата публикации: 03.09.2017 13:01

Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.

Материалы по корреляциям в сети слишком научны. Неспециалисту трудно разобраться в формулах. В то же время понимание смысла корреляций необходимо маркетологу, социологу, медику, психологу - всем, кто проводит исследования на людях.

В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.

Содержание

Что такое корреляция

Корреляция - это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.

Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа - машина едет быстрее. Вы сбавляете газ - авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».

Это зависимость функциональная - скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).

Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод - между продажами фирмы и окладом сотрудников есть прямая зависимость - чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?

Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим - связь продаж и оклада сотрудников есть, и она корреляционная.

В основе функциональной связи (педаль газа - скорость) лежит физический закон. В основе корреляционной связи (продажи - оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.

Численное выражение корреляционной зависимости

Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.

Например, изучается роль чтения в жизни людей. Исследователи взяли группу из 40 человек и измерили у каждого испытуемого два показателя: 1) сколько времени он читает в неделю; 2) в какой мере он считает себя благополучным (по шкале от 1 до 10). Ученые занесли эти данные в два столбика и с помощью статистической программы рассчитали корреляцию между чтением и благополучием. Предположим, они получили следующий результат -0,76. Но что значит это число? Как его проинтерпретировать? Давайте разбираться.

Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:

  1. Знак «+» или «-» отражает направление зависимости.
  2. Величина коэффициента отражает силу зависимости.

Прямая и обратная

Знак плюс перед коэффициентом указывает на то, что связь между явлениями или показателями прямая. То есть, чем больше один показатель, тем больше и другой. Выше оклад - выше продажи. Такая корреляция называется прямой, или положительной.

Если коэффициент имеет знак минус, значит, корреляция обратная, или отрицательная. В этом случае чем выше один показатель, тем ниже другой. В примере с чтением и благополучием мы получили -0,76, и это значит, что, чем больше люди читают, тем ниже уровень их благополучия.

Сильная и слабая

Корреляционная связь в численном выражении - это число в диапазоне от -1 до +1. Обозначается буквой «r». Чем выше число (без учета знака), тем корреляционная связь сильнее.

Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.

Максимально возможная сила зависимости - это 1 или -1. Как это понять и представить?

Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.

Испытуемый

IQ

Успеваемость (баллы)

Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.

Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.

Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).

Испытуемый

IQ

Успех в общении с противоположным полом (баллы)

Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.

Это пример полной согласованности изменения двух показателей в группе - максимально возможная отрицательная взаимосвязь. Корреляционная связь между IQ и успешностью общения с противоположным полом равна -1.

А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель - длину прыжка с места.

Испытуемый

IQ

Длина прыжка с места (м)

Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.

Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:

  • если коэффициент больше 0,70 - связь между показателями сильная;
  • от 0,30 до 0,70 - связь умеренная,
  • меньше 0,30 - связь слабая.

Если оценить по этой шкале полученную нами выше корреляцию между чтением и благополучием, то окажется, что эта зависимость сильная и отрицательная -0,76. То есть, наблюдается сильная отрицательная связь между начитанностью и благополучием. Что еще раз подтверждает библейскую мудрость о соотношении мудрости и печали.

Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.

Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).

Корреляционный анализ в психологии

Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?

В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.

В психологии иная ситуация. Например, психологи публикуют данные о связи теплых отношений в детстве с родителями и уровня креативности во взрослом возрасте. Означает ли это, что любой из испытуемых с очень теплыми отношениями с родителями в детстве будет иметь очень высокие творческие способности? Ответ однозначный - нет. Здесь нет закона, подобного физическому. Нет механизма влияния детского опыта на креативность взрослых. Это наши фантазии! Есть согласованность данных (отношения - креативность), но за ними нет закона. А есть лишь корреляционная связь. Психологи часто называют выявляемые взаимосвязи психологическими закономерностями, подчеркивая их вероятностный характер - не жесткость.

Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:

  1. Анализ взаимосвязи между психологическими показателями. В нашем примере IQ и успешность общения с противоположным полом - это психологические параметры. Выявление корреляции между ними расширяет представления о психической организации человека, о взаимосвязях между различными сторонами его личности - в данном случае между интеллектом и сферой общения.
  2. Анализ взаимосвязей IQ с успеваемостью и прыжками - пример связи психологического параметра с непсихологическими. Полученные результаты раскрывают особенности влияния интеллекта на учебную и спортивную деятельность.

Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:

  1. Выявлена значимая положительная зависимость интеллекта студентов и их успеваемости.
  2. Существует отрицательная значимая взаимосвязь IQ с успешностью общения с противоположным полом.
  3. Не выявлено связи IQ студентов с умением прыгать с места.

Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.

Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.

Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.

Коэффициенты Пирсона и Спирмена

Рассмотрим два метода расчета.

Коэффициент Пирсона - это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:

  1. Берутся значения двух параметров в группе испытуемых (например, агрессии и перфекционизма).
  2. Находятся средние значения каждого параметра в группе.
  3. Находятся разности параметров каждого испытуемого и среднего значения.
  4. Эти разности подставляются в специальную форму для расчета коэффициента Пирсона.

Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:

  1. Берутся значения двух индикаторов в группе испытуемых.
  2. Находятся ранги каждого фактора в группе, то есть место в списке по возрастанию.
  3. Находятся разности рангов, возводятся в квадрат и суммируются.
  4. Далее разности рангов подставляются в специальную форму для вычисления коэффициента Спирмена.

В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.

В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.

Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.

Как рассчитать коэффициент корреляции

Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.

Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.

Расчет с помощью электронных таблиц Microsoft Excel

Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.

Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».

Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.

В таблицах Excel реализована формула расчета только коэффициента Пирсона.

Расчет с помощью программы STATISTICA

Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.


Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону - 0,038, полученной выше с помощью Excel. Однако различия незначительны.

Использование корреляционного анализа в дипломных работах по психологии (пример)

Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).

Сам термин «корреляция» в названиях тем звучит редко - он скрывается за следующими формулировками:

  • «Взаимосвязь субъективного ощущения одиночества и самоактуализации у женщин зрелого возраста»;
  • «Особенности влияния жизнестойкости менеджеров на успешность их взаимодействия с клиентами в конфликтных ситуациях»;
  • «Личностные факторы стрессоустойчивости сотрудников МЧС».

Таким образом, слова «взаимосвязь», «влияние» и «факторы» - верные признаки того, что методом анализа данных в эмпирическом исследовании должен быть корреляционный анализ.

Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».

1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:

  • каждая строка содержит данные на одного испытуемого;
  • каждый столбец содержит показатели по одной шкале для всех испытуемых.

№ испытуемого

Личностная тревожность

Агрессивность

2. Необходимо решить, какой из двух типов коэффициентов - Пирсона или Спирмена - будет использоваться. Напоминаем, что Пирсон дает более точный результат, но он чувствителен к выбросам в данных Коэффициенты Спирмена могут использоваться с любыми данными (кроме номинативной шкалы), поэтому именно они чаще всего используют в дипломах по психологии.

3. Заносим таблицу сырых данных в статистическую программу.

4. Рассчитываем значение.



5. На следующем этапе важно определить, значима ли взаимосвязь. Статистическая программа подсветила результаты красным, что означает, что корреляция статистически значимы при уровне значимости 0,05 (указано выше).

Однако полезно знать, как определить значимость вручную. Для этого понадобится таблица критических значений Спирмена.

Таблица критических значений коэффициентов Спирмена

Уровень статистической значимости

Число испытуемых

р=0,05

р=0,01

р=0,001

0,88

0,96

0,99

0,81

0,92

0,97

0,75

0,88

0,95

0,71

0,83

0,93

0,67

0,63

0,77

0,87

0,74

0,85

0,58

0,71

0,82

0,55

0,68

0,53

0,66

0,78

0,51

0,64

0,76

Нас интересует уровень значимости 0,05 и объем нашей выборки 10 человек. На пересечении этих данных находим значение критического Спирмена: Rкр=0,63.

Правило такое: если полученное эмпирическое значение Спирмена больше либо равно критическому, то он статистически значим. В нашем случае: Rэмп (0,66) > Rкр (0,63), следовательно, взаимосвязь между агрессивностью и тревожностью в группе подростков статистически значима.

5. В текст дипломной нужно вставлять данные в таблице формата word, а не таблицу из статистической программы. Под таблицей описываем полученный результат и интерпретируем его.

Таблица 1

Коэффициенты Спирмена агрессивности и тревожности в группе подростков

Агрессивность

Личностная тревожность

0,665*

* - статистически достоверна (р 0,05)

Анализ данных, приведенных в таблице 1, показывает, что существует статистически значимая положительная связьмежду агрессивностью и тревожностью подростков. Это означает, что чем выше личностная тревожность подростков, тем выше уровень их агрессивности. Такой результат дает основание предположить, что агрессия для подростков выступает одним из способов купирования тревожности. Испытывая неуверенность в себе, тревогу в связи с угрозами самооценке, особенно чувствительной в подростковом возрасте, подросток часто использует агрессивное поведение, таким непродуктивным способом снижая тревогу.

6. Можно ли при интерпретации связей говорить о влиянии? Можно ли сказать, что тревожность влияет на агрессивность? Строго говоря, нет. Выше мы показали, что корреляционная связь между явлениями носит вероятностный характер и отражает лишь согласованность изменений признаков в группе. При этом мы не можем сказать, что эта согласованность вызвана тем, что одно из явлений является причиной другого, влияет на него. То есть, наличие корреляции между психологическими параметрами не дает оснований говорить о существовании между ними причинно-следственной связи. Однако практика показывает, что термин «влияние» часто используется при анализе результатов корреляционного анализа.

Корреляционно-регрессионный анализ - один из наиболее широко распространенных и гибких приемов обработки стати­стических данных. Данный метод начинает свой отсчет с 1795 г., когда английский исследователь Фрэнсис Гальтон предложил теоретические основы регрессионного метода, а в 1801 г. рассчи­тал с его помощью траекторию полета планеты Церера. Им же введен в статистику термин «корреляция». Можно также назвать

французского кристаллографа Огюста Браве, немецкого физика Густава Теодора Фехнера, английского экономиста и статистика Фрэнсиса Эджуорта, впервые высказывавших в середине-конце XIX в. идеи о количественном измерении связей явлений. В раз­ное время над теорией анализа работали известные в области теоретической статистики ученые Карл Фридрих Гаусс (Герма­ния), Адриен Мари Лежандр (Франция), Карл Пирсон (Англия) и др.

Корреляционно-регрессионный анализ состоит в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), характеризующего зависи­мость признака от определяющих его факторов.

Корреляционно-регрессионный анализ предполагает сле­дующие этапы:

Предварительный анализ (здесь формулируются основные направления всего анализа, определяется методика оценки ре­зультативного показателя и перечень наиболее существенных факторов);

Сбор информации и ее первичная обработка;

Построение модели (один из важнейших этапов);

Оценка и анализ модели.

Задачи корреляционного анализа сводятся к выделению важ­нейших факторов, которые влияют на результативный признак, измерению тесноты связи между факторами, выявлению неиз­вестных причин связей и оценке факторов, оказывающих макси­мальное влияние на результат.

Задачи регрессионного анализа заключаются в установлении формы зависимости, определении уравнения регрессии и его ис­пользовании для оценки неизвестных значений зависимой пере­менной, прогнозировании возможных значений результативного признака при задаваемых значениях факторных признаков.



При использовании корреляционно-регрессионного анализа необходимо соблюдать следующие требования.

1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.

2. Все факторные признаки должны иметь количественное (цифровое) выражение.

3. Необходимо наличие массовости значений изучаемых по­казателей.

4. Причинно-следственные связи между явлениями и процес­сами могут быть описаны линейной или приводимой к линейной формой зависимости.

5. Не должно быть количественных ограничений на парамет­ры модели связи.

6. Необходимо обеспечить постоянство территориальной и временной структуры изучаемой совокупности.

Корреляция - статистическая зависимость между случай­ными величинами, не имеющими строго функционального харак­тера, при которой изменение одной из случайных величин приво­дит к изменению математического ожидания другой.

В статистике принято различать следующие варианты зави­симостей.

1. Парная корреляция - связь между двумя признаками (ре­зультативным и факторным).

2. Частная корреляция - зависимость между результатив­ным и одним из факторных признаков при фиксированном значе­нии других факторных признаков.

3. Множественная корреляция - зависимость результатив­ного и двух или более факторных признаков, включенных в ис­следование.

Корреляционная связь - частный случай стохастической связи и состоит в том, что разным значениям одной переменной соответствуют различные средние значения другой.

Обязательное условие применения корреляционного метода - массовость значений изучаемых показателей, что позволяет вы­явить тенденцию, закономерность развития, форму взаимосвязи между признаками. Тогда, в соответствии с законом больших, чи­сел, влияние других факторов сглаживается, нейтрализуется. На­личие корреляционной связи присуще многим общественным явлениям.

Показатели тесноты связи между признаками называют ко­эффициентами корреляции. Их выбор зависит от того, в каких шкалах измерены признаки. Основными шкалами являются:

1) номинальная шкала (наименований) предназначена для описания принадлежности объектов к определенным социальным группам (например, коэффициенты ассоциации и контингенции, коэффициенты Пирсона и Чупрова);

2) шкала порядка (ординальная) применяется для измерения упорядоченности объектов по одному или нескольким признакам (например, коэффициенты Спирмена и Кенделла);

3) количественная шкала используется для описания количе­ственных показателей - например, линейный коэффициент кор­реляции и корреляционное отношение.

Корреляционный анализ - метод статистического исследо­вания экспериментальных данных, позволяющий определить сте­пень линейной зависимости между переменными.

Парная линейная корреляция - простейшая система корре­ляционной связи, представляющая линейную связь между двумя признаками. Ее практическое значение состоит в выделении од­ного важнейшего фактора, который и определяет вариацию ре­зультативного признака.

Для определения степени тесноты парной линейной зависи­мости служит линейный коэффициент корреляции, который был впервые введен в начале 1890-х гг. Пирсоном, Эджуортом и Велдоном. В теории разработаны и на практике применяются раз­личные варианты формул расчета данного коэффициента:

Где ,

где n - число наблюдений.

При малом числе наблюдений для практических вычислений линейный коэффициент корреляции удобнее исчислять по формуле:

,

где r принимает значения в пределах от -1 до 1.

Чем ближе линейный коэффициент корреляции по абсолют­ной величине к I, тем теснее связь. С другой стороны, если он ра­вен 1, то зависимость является не стохастической, а функциональ­ной. Знак при нем указывает направление связи: знак «-» соответ­ствует обратной зависимости, «+» - прямой. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям.

Степень взаимного влияния факторов в зависимости от ко­эффициента корреляции приведена в табл. 1.

Таблица 1

Количественная оценка тесноты связи

при различных значениях коэффициента корреляции

После того, как с помощью корреляционного анализа выяв­лено наличие статистических связей между переменными и оце­нена степень их тесноты, обычно переходят к математическому описанию зависимостей, то есть к регрессионному анализу.

Термин «регрессия» (произошел от латинского regression - отступление, возврат к чему-либо) был также введен Ф. Гальтоном в 1886 г. Обрабатывая статистические данные в связи с ана­лизом наследственности роста, он отметил прямую зависимость между ростом родителей и их детей (наблюдение само по себе не слишком глубокое). Но относительно старших сыновей ему уда­лось установить более тонкую зависимость. Он рассчитал, что средний рост старшего сына лежит между средним ростом насе­ления и средним ростом родителей. Если рост родителей выше среднего, то их наследник, как правило, ниже; если средний рост родителей ниже среднего, то рост их потомка выше. Когда Гальтон нанес на график средний рост старших сыновей для различ­ных значений среднего роста родителей, он получил почти пря­мую линию, проходящую через нанесенные точки.

Поскольку рост потомства стремится двигаться к среднему, Гальтон назвал это явление регрессией к среднему состоянию, а ли­нию, проходящую через точки на графике, - линией регрессии.

Регрессивный анализ применяется в тех случаях, когда необ­ходимо отыскать непосредственно вид зависимости х и у. При этом предполагается, что независимые факторы не случайные величины, а результативный показатель у имеет постоянную, не­зависимую от факторов дисперсию и стандартное отклонение.

Одна из проблем построения уравнения регрессии - размер­ность, то есть определение числа факторных признаков, вклю­чаемых в модель. Их число должно быть оптимальным.

Сокращение размерности за счет исключения второстепен­ных, несущественных факторов позволяет получить модель, бы­стрее и качественнее реализуемую. В то же время построение мо­дели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс в единой системе национального счетоводства.

При построении модели число факторных признаков должно быть в 5-6 раз меньше объема изучаемой совокупности.

Если результативный признак с увеличением факторного признака равномерно возрастает или убывает, то такая зависи­мость является линейной и выражается уравнением прямой.

Линейная регрессия сводится к нахождению уравнения вида:

где х - индивидуальное значение факторного признака; а 0 , а 1 - параметры уравнения прямой (уравнения регрессии); у х - теоре­тическое значение результирующего фактора.

Данное уравнение показывает среднее значение изменения ре­зультативного признака х на одну единицу его измерения. Знак па­раметра показывает направление этого изменения. На практике по­строение линейной регрессии сводится к оценке ее параметров а 0 , а 1.

При классическом подходе параметры уравнения а 0 , а 1 нахо­дятся методом наименьших квадратов, который позволяет полу­чить такие оценки параметров, при которых сумма квадратов от­клонений фактических значений результативного признака у от расчетных, теоретических (у х) была бы минимальной.

Для нахождения минимума данной функции приравняем к нулю частные производные и тем самым получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

В уравнении прямой параметр а 0 экономического смысла не имеет, параметр а 1 является коэффициентом регрессии и показы­вает изменение результативного признака при изменении фак­торного на единицу.

Или по следующим формулам:

Где , , ,

Между линейным коэффициентом корреляции и коэффици­ентом регрессии существует определенная зависимость, выра­женная формулой

Часто исследуемые признаки имеют разные единицы измере­ния, поэтому для оценки влияния факторного признака на ре­зультативный применяется коэффициент эластичности. Он рас­считывается для каждой точки и в среднем по всей совокупности по формуле:

где у" х - первая производная уравнения регрессии.

Коэффициент эластичности показывает, на сколько процен­тов изменяется результативный признак при изменении фактор­ного признака на 1%.

Чтобы иметь возможность судить о сравнительной связи влияния отдельных факторов и о тех резервах, которые в них за­ложены, должны быть вычислены частные (средние) коэффициенты эластичности .

Различия в единицах измерения факторов устраняют с помо­щью частных (средних) коэффициентов эластичности , которые рассчитываются по формуле:

где а i - коэффициент регрессии при факторе х; - средние значения факторного и результативного признаков.

Частные коэффициенты эластичности показывают, на сколь­ко процентов в среднем изменяется анализируемый показатель с изменением на 1 % каждого фактора при фиксированном поло­жении других факторов.

Альтернативным показателем степени зависимости между двумя переменными является линейный коэффициент детерми­нации , представляющий собой квадрат линейного коэффициента корреляции r 2 . Его числовое значение всегда заключено в пределе от 0 до 1. Он характеризует долю вариации (разброса) зависимой переменной. Значение коэффициента детерминации непосредст­венно указывает степень влияния независимого фактора на ре­зультативный показатель.

Степень тесноты связи полностью соответствует теоретиче­скому корреляционному отношению , которое является универ­сальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.

С помощью теоретического корреляционного отношения из­меряется теснота связи любой формы, а посредством линейного коэффициента корреляции - только прямолинейной связи.

Теоретическое корреляционное отношение рассчитывается по формулам:

где - факторная дисперсия; - общая дисперсия.

Для упрощения расчетов меры тесноты корреляционной свя­зи часто применятся индекс корреляционной связи, который оп­ределяется по формулам:

где - остаточная дисперсия.

Линейные модели отличаются простой интерпретируемостью и хорошо разработанными приемами оценивания коэффициентов регрессии. Обычно для них все три наиболее распространенных метода статистического оценивания - максимального правдопо­добия, наименьших квадратов и моментов - дают оптимальные решения и соответственно приводят к оценкам, обладающим ли­нейностью, эффективностью, несмещенностью. Принимая во внимание, что линейные регрессионные модели не могут с оди­наково высокой степенью достоверности описывать многообраз­ные процессы, происходящие в реальности, их дополняет боль­шой класс нелинейных моделей. Для последних, однако, с учетом их сложности и специфичности приемов параметрического оце­нивания предпочтительным остается приведение к простой ли­нейной форме.

Корреляционные методы (correlation methods)

К. м., получившие свое назв. благодаря тому, что основываются на «со-отношении» («co-relation») переменных, представляют собой статистические методы, начало к-рым было положено в работах Карла Пирсона примерно в конце XIX в. Они тесно связаны с понятием регрессии, еще раньше сформулированным сэром Фрэнсисом Гальтоном, к-рый первым начал статистически изучать связь между ростом отцов и сыновей. Именно Гальтон нанял Пирсона в качестве статистика для обработки рез-тов исслед., к-рые он и его отец, находясь под влиянием идей своих родственников - Дарвинов, проводили с целью определения вклада наследственности в развитие челов. качеств. Благодаря этому сотрудничеству между Гальтоном и Пирсоном и более ранним открытиям первого в области регрессионного анализа символ «r» (первая буква слова regression) исторически закрепился в качестве маркера К. м.

Корреляция как произведение моментов

Пирсон определял коэффициент корреляции как «среднее произведение Z-оценок». С этих пор r известен всем как коэффициент произведения моментов:

r = (aZxZy) / N.

Его обоснованное вычисление предполагает, что: а) две коррелируемые переменные непрерывны и нормально распределены; б) линии наилучшего соответствия для совместного двумерного распределения яв-ся прямыми; в) одинаковая вариабельность сохраняется по всей широте совместного распределения переменных. Простая формула для вычисления коэффициента корреляции произведения моментов Пирсона по «сырым» (нестандартизованным) данным выглядит следующим образом:

Бисериальная корреляция

Разновидностью коэффициента корреляции произведения моментов яв-ся бисериальный коэффициент корреляции, тж разраб. Пирсоном. В тех случаях, когда только одна из переменных непрерывна и имеет приемлемо нормальное распределение, а др. искусственно дихотомизирована (предполагается, что она тоже непрерывна и нормально распределена, но представлена в бинарной форме, напр.: «справился/не справился»), связь между этими двумя переменными тж можно выразить при помощи r. В этом случае коэффициент корреляции обозначается через rbis. Как и коэффициент произведения моментов r, он изменяется в диапазоне от +1,00 (прямая функциональная связь) через 0,00 (отсутствие связи) до -1,00 (обратная функциональная связь). Метод бисериальной корреляции оказался весьма полезным в процедурах анализа заданий, т. к. он измеряет связь между рез-тами выполнения каждого задания теста, выраженными в бинарной форме («справился/не справился»), и общей оценкой по данному тесту.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r. Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через rpbis Поскольку в rpbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае rbis, его знак определяется произвольно. Поэтому для всех практ. целей rpbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции rtet, к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления rtet достаточно сложны. Поэтому при практ. применении этого метода используются приближения rtet, получаемые на основе сокращенных процедур и таблиц.

Ранговая корреляция

Непараметрический аналог параметрических методов корреляции существует в форме коэффициента ранговой корреляции, обозначаемого греческой буквой ρ(ро). Он применяется для определения степени связи между двумя переменными, значения к-рых представлены рангами, а не «сырыми» или стандартизованными оценками. Логическое обоснование вывода коэффициента ρ не требует соблюдения строго определенного набора допущений, и потому ρ является непараметрической стат. Его формула, получаемая из формулы произведения моментов Пирсона путем замены интервальных данных на ранжированные, приводится к виду:

ρ = 1 - (6Σd2) / N(N2 - 1), где d - ранговая разность, а N - число пар вариантов.

Множественная корреляция

Методы корреляции произведения моментов Пирсона и линейного регрессионного анализа Гальтона были обобщены и расширены в 1897 г. Джорджем Эдни Юлом до модели множественной линейной регрессии, предполагающей использование многомерного нормального распределения. Методы множественной корреляции позволяют оценить связь между множеством непрерывных независимых переменных и одной зависимой непрерывной переменной. Коэффициент множественной корреляции обозначается через R0.123...p Его вычисление требует решения совместной системы линейных уравнений. Число линейных уравнений равно числу независимых переменных.

Иногда необходимо исключить эффект третьей переменной, с тем чтобы определить «чистую» связь между любой парой переменных. Частный (парциальный) коэффициент корреляции выражает связь между двумя переменными при исключенном (элиминированном) влиянии еще одной или неск. др. переменных. В простейшем случае частный коэффициент корреляции вычисляется как функция парных корреляций (произведений моментов) между Y, X1 и Х2:

Если требуется исключить влияние двух переменных, скажем, Х2 и Х3, то формула принимает вид:

Каноническая корреляция

Множественная корреляция, позволяющая оценивать тесноту связи между множеством независимых переменных и одной из множества зависимых переменных, представляет собой частный случай более общего метода - канонической корреляции. Этот метод был разраб. в 1935 г. Гарольдом Хотеллингом. Коэффициенты канонической корреляции (RCi) определяются на двух множествах переменных. Чтобы показать связи, существующие между этими двумя множествами непрерывных переменных, вычисляется неск. канонических коэффициентов; их число определяется по числу переменных в меньшем множестве (если число переменных в них не одинаково). При канонической корреляции в обоих множествах (по отдельности) отыскиваются линейные комбинации входящих в них переменных, позволяющие определить (новые) координатные оси в пространстве каждого множества. Каждая такая линейная комбинация наз. канонической величиной (или канонической переменной). Канонические переменные отличаются друг от друга весами, к-рые они придают первичным переменным в соотв. множестве. Каноническая корреляция - это корреляция произведения моментов между парой канонических переменных, по одной из каждого множества. Т. о., каждый коэффициент канонической корреляции является мерой тесноты линейной связи между двумя координатными осями соотв. множеств переменных. Каноническая корреляция яв-ся методом многомерного статистического анализа.

Корреляционный метод

Модификацией метода сравнения с эталоном является корреляционный метод, основанный на вычислении взаимокорреляционной функции между эталоном и изображением.

Корреляция -- статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляционный анализ -- метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа -- обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б.

Классификация изображений проводится по результату: чем больше значение функции взаимной корреляции, тем с большей вероятностью эталон совпадает с изображением. Используя обозначения, принятые в выражении, формулу для вычисления взаимокорреляционной функции К можно представить в виде

Максимальное значение взаимокорреляционной функции равно,

и достигается при полном совпадении изображения с эталоном. Нормированная взаимокорреляционная функция

при совпадении эталона с изображением достигает максимального значения, равного единице.

Использование корреляционного метода и метода прямого сравнения с эталоном предъявляет к процессу предварительной обработки изображений общие требования. Они заключаются в том, что изображение и эталон должны быть одинаково ориентированы, иметь равный масштаб и не быть сдвинутыми друг относительно друга в поле изображения. Другим свойством этих методов, которое следует учитывать, является необходимость использования большого количества эталонов. Это особенно важно в тех случаях, когда решаются задачи распознавания объектов изменением их проекции.

Распознавание через связь шаблонов

Поиск объектов указанием связей между шаблонами

Часто наблюдаемый объект обладает внутренними степенями свободы, а это означает, что его внешний вид может сильно варьироваться (например, люди могут двигать руками и ногами, рыбы деформируются при плавании, змеи извиваются и т.д.). Данное явление может чрезвычайно затруднить сравнение с шаблоном, поскольку потребуется либо классификатор с гибкими границами (и множество образцов), либо много различных шаблонов.

Многие объекты названного типа содержат небольшое число компонентов, довольно строго упорядоченных. Можно попытаться согласовать данные компоненты как шаблоны, а затем определить, какие объекты присутствуют, изучив предложенные связи между найденными шаблонами. Например, вместо поиска лица по одному полному шаблону лица, можно искать глаза, нос и рот с приемлемым взаимным расположением.

Данный подход имеет несколько потенциальных преимуществ. Во-первых, узнать шаблон глаза может быть легче, чем узнать шаблон лица, поскольку первая структура очевидно проще. Во-вторых, можно получить и использовать относительно простые вероятностные модели, поскольку могут существовать некоторые свойства независимости, которые можно будет использовать. В-третьих, возможно, удастся согласовать большое число объектов с относительно небольшим числом шаблонов. Хороший пример этого явления -- морды животных; почти все животные с характерными мордами имеют глаза, нос и рот, отличается лишь пространственное расположение этих элементов. Наконец, из сказанного следует, что для построения сложных объектов можно использовать простые отдельные шаблоны. Например, люди могут двигать руками и ногами, и похоже, что обучить цельный явный шаблон обнаруживать людей целиком значительно сложнее, чем получить отдельные шаблоны для частей тела и вероятностную модель, описывающую их степени свободы.

Рассматриваемая тема не настолько хорошо изучена, чтобы к ней выработался какой-либо стандартный подход. В то же время основной вопрос достаточно очевиден -- как закодировать набор связей между шаблонами в форму, с которой легко работать. В данной главе изучается ряд различных подходов к данной задаче. Во-первых, каждый шаблон может указывать на объекты, которые он может представлять, а затем каким-то образом считается число указателей. Если построить некоторую явную вероятностную модель, для описания деталей пространственных отношений можно использовать больше весовых коэффициентов. Данную модель можно получить из функций правдоподобия; по сути, нужна функция распределения вероятностей, дающая большое значение, когда конфигурация компонентов подобна объекту, и малое -- в противном случае. Тогда поиск объектов превращается в поиск шаблонов, которые при подстановке в вероятностную модель дают большие значения. Нужно отметить, что следует внимательно относиться к сокращению поиска. Сложность этого подхода заключается в том, что даже при сокращении поиск может быть дорогим. Как утверждают Форсайт и Понс, в то же время при определенном классе вероятностных моделей можно провести эффективный поиск .

Простые модели объектов могут обеспечивать достаточно эффективное распознавание. Простейшая модель -- это рассматривать объект как набор фрагментов изображения (небольших окрестностей элементов характерного вида) нескольких различных типов, формирующих образ (pattern). Чтобы определить, какой образ наблюдается, находятся все фрагменты, каждый из которых указывает на все образы, в которые он входит. То изображение, на которое было указано наибольшее число, и считается присутствующим. Хотя данная стратегия проста, она довольно эффективна. Ниже описываются методы поиска фрагментов, а затем представляется ряд последовательно усложняющихся реализаций данной стратегии.